Math 4431 - Fall 2009 Homework 4

Work all these problems and talk to me if you have any questions on them, but carefully write up and turn in only problems 1, 7, 9 and 11. Due: November 17

- 1) For each i let $X_i = \{0,1\}$ be the two point set with the discrete topology. Show $\prod_{i=1}^{\infty} X_i$ is the Cantor set.
- 2) Let C be the standard Cantor set in the unit interval. Let S be a countably infinite subset of \mathbb{R} . Given any $\epsilon > 0$ show there is a constant a such that $|a| < \epsilon$ and $h(C) \cap S = \emptyset$ where h(x) = x + a is the translation of \mathbb{R} by a.
- 3) Let X be a countable, compact, metric space. Then X has an isolated point.
- 4) Let X be an uncountable, compact, metric space. Show X contains a Cantor set.
- 5) Let C be a Cantor set in \mathbb{R}^n . Show there is a continuous map $f:[0,1]\to\mathbb{R}^n$ such that $C\subset f([0,1])$.
- 6) The product of countably many Cantor sets is homeomorphic to the Cantor set.
- 7) Let p and q be two points in the Cantor set C. Show there is a homeomorphism $h: C \to C$ such that h(p) = q.
- 8) Prove a connected surface is arc-wise connected. That is, given any two points p and q in a connected surface Σ there is an embedding $f:[0,1]\to\Sigma$ such that f(0)=p and f(1)=q. (An embedding of [0,1] into a space is called an arc.)

Hint: First observe that if x and y can be connected by an arc and y and z can be connected by an arc then so can x and z.

9) Let D be a disk and I be an interval in ∂D . If Σ is a surface and $f:I\to\partial\Sigma$ is an embedding, then show the surface

$$\Sigma \cup_f D$$

is homeomorphic to Σ .

Hint: It might be good to try to show that the space obtained from two disks by gluing them along intervals in their boundary is homeomorphic to a disk. You may assume, as discussed in class, that given any connected component B of $\partial \Sigma$ there is an open set U in Σ that contains B and is homeomorphic to $S^1 \times [0,1)$.

- 10) Show that each point in a surface Σ is contained in an open set U that is homeomorphic to \mathbb{R}^2 .
- 11) Show that for any connected surface Σ and points p and q in Σ there is a homeomorphism $h: \Sigma \to \Sigma$ such that h(p) = q.

Hint: Recall Σ is also arc connected. What if p and q are in an open set homeomorphic to \mathbb{R}^2 ?