Math 4431 - Fall 2009
 Homework 4

Work all these problems and talk to me if you have any questions on them, but carefully write up and turn in only problems 1, 7, 9 and 11. Due: November 17

1) For each i let $X_{i}=\{0,1\}$ be the two point set with the discrete topology. Show $\prod_{i=1}^{\infty} X_{i}$ is the Cantor set.
2) Let C be the standard Cantor set in the unit interval. Let S be a countably infinite subset of \mathbb{R}. Given any $\epsilon>0$ show there is a constant a such that $|a|<\epsilon$ and $h(C) \cap S=\emptyset$ where $h(x)=x+a$ is the translation of \mathbb{R} by a.
3) Let X be a countable, compact, metric space. Then X has an isolated point.
4) Let X be an uncountable, compact, metric space. Show X contains a Cantor set.
5) Let C be a Cantor set in \mathbb{R}^{n}. Show there is a continuous map $f:[0,1] \rightarrow \mathbb{R}^{n}$ such that $C \subset f([0,1])$.
6) The product of countably many Cantor sets is homeomorphic to the Cantor set.
7) Let p and q be two points in the Cantor set C. Show there is a homeomorphism $h: C \rightarrow C$ such that $h(p)=q$.
8) Prove a connected surface is arc-wise connected. That is, given any two points p and q in a connected surface Σ there is an embedding $f:[0,1] \rightarrow \Sigma$ such that $f(0)=p$ and $f(1)=q$. (An embedding of $[0,1]$ into a space is called an arc.)
Hint: First observe that if x and y can be connected by an arc and y and z can be connected by an arc then so can x and z.
9) Let D be a disk and I be an interval in ∂D. If Σ is a surface and $f: I \rightarrow \partial \Sigma$ is an embedding, then show the surface

$$
\Sigma \cup_{f} D
$$

is homeomorphic to Σ.
Hint: It might be good to try to show that the space obtained from two disks by gluing them along intervals in their boundary is homeomorphic to a disk. You may assume, as discussed in class, that given any connected component B of $\partial \Sigma$ there is an open set U in Σ that contains B and is homeomorphic to $S^{1} \times[0,1)$.
10) Show that each point in a surface Σ is contained in an open set U that is homeomorphic to \mathbb{R}^{2}.
11) Show that for any connected surface Σ and points p and q in Σ there is a homeomorphism $h: \Sigma \rightarrow \Sigma$ such that $h(p)=q$.
Hint: Recall Σ is also arc connected. What if p and q are in an open set homeomorphic to \mathbb{R}^{2} ?

