Math 4441 - Fall 2016

Formulas

1. If $\boldsymbol{\alpha}:[a, b] \rightarrow \mathbb{R}^{n}$ is a regular parameterization of a curve C then the length of C is $\int_{a}^{b}\left\|\boldsymbol{\alpha}^{\prime}(t)\right\| d t$.
2. If $\boldsymbol{\alpha}:[a, b] \rightarrow \mathbb{R}^{n}$ is a regular parameterization of a curve then $f(t)=\int_{a}^{t}\left\|\boldsymbol{\alpha}^{\prime}(x)\right\| d x$ has an inverse $g:[0, l] \rightarrow[a, b]$ so that $\boldsymbol{\beta}(s)=\boldsymbol{\alpha}(g(s))$ is a parameterization of the same curve with $\left\|\boldsymbol{\beta}^{\prime}(s)\right\|=1$ (that is $\boldsymbol{\beta}$ is an arc length parameterization).
3. If $\boldsymbol{\alpha}$ is an arc length parameterization of a curve C, then $\boldsymbol{T}(s)=\boldsymbol{\alpha}^{\prime}(s)$ is a unit tangent vector and $\boldsymbol{T}^{\prime}(s)$ is perpendicular to $\boldsymbol{T}(s)$. The curvature of C at $\boldsymbol{\alpha}(s)$ is

$$
\kappa(s)=\left\|\boldsymbol{T}^{\prime}(s)\right\|
$$

and the normal vector is $\boldsymbol{N}(s)=\frac{\boldsymbol{T}^{\prime}(s)}{\left\|\boldsymbol{T}^{\prime}(s)\right\|}$.
4. If $\boldsymbol{\alpha}$ is a regular parameterization of a curve C (but not necessarily an arc length parameterization), then the curvature of C at $\boldsymbol{\alpha}(t)$ is

$$
\kappa(t)=\left\|\left(\frac{\boldsymbol{\alpha}^{\prime}(t)}{\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|}\right)^{\prime} \frac{1}{\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|}\right\| .
$$

5. If $\boldsymbol{\alpha}:[0, l] \rightarrow \mathbb{R}^{2}$ is an arc length parameterization of a plane curve, then we define $\widehat{\boldsymbol{N}}(s)$ to be $\boldsymbol{\alpha}^{\prime}(s)$ rotated by $\pi / 2$ counterclockwise, then we define the signed curvature to be

$$
\kappa_{\sigma}(s)=\widehat{\boldsymbol{N}}(s) \cdot \boldsymbol{\alpha}^{\prime \prime}(s)=\widehat{\boldsymbol{N}}(s) \cdot \boldsymbol{T}^{\prime}(s) .
$$

6. If $\boldsymbol{\alpha}:[0, l] \rightarrow \mathbb{R}^{2}$ is an arc length parameterization of a plane curve C, then there is a function $\theta(s)$ such that

$$
\boldsymbol{\alpha}^{\prime}(s)=(\cos \theta(s), \sin \theta(s)),
$$

and in particular

$$
\boldsymbol{\alpha}(s)=\left(a+\int_{0}^{s} \cos \theta(t) d t, b+\int_{0}^{s} \sin \theta(t) d t\right),
$$

where $\boldsymbol{\alpha}(0)=(a, b)$. The signed curvature is $\kappa_{\sigma}(s)=\theta^{\prime}(s)$.
7. With the notation above the rotation number of a curve C is

$$
R(C)=\frac{1}{2 \pi}(\theta(l)-\theta(0)) .
$$

8. With notation above the total signed curvature of a curve C is $T K(C)=\int_{0}^{l} \kappa_{\sigma}(t) d t$.
9. If $\boldsymbol{\alpha}$ is a curve in \mathbb{R}^{3} then the binormal vector is $\boldsymbol{B}=\boldsymbol{T} \times \boldsymbol{N}$ and the torsion is

$$
\tau(s)=-\boldsymbol{B}^{\prime}(s) \cdot \boldsymbol{N}(s) .
$$

10. For a surface Σ in \mathbb{R}^{3} in local coordinates

$$
f: V \rightarrow \Sigma
$$

where V is an open subset of \mathbb{R}^{2} with coordinates (u, v) we have the first fundamental form in the basis $\left\{\boldsymbol{f}_{u}, \boldsymbol{f}_{u}\right\}$ is given by the matrix with entries $g_{11}=\boldsymbol{f}_{u} \cdot \boldsymbol{f}_{u}, g_{12}=g_{21}=\boldsymbol{f}_{u} \cdot \boldsymbol{f}_{v}$ and $g_{22}=\boldsymbol{f}_{v} \cdot \boldsymbol{f}_{v}$. The second fundamental from if given by $\left[\begin{array}{ll}A & B \\ B & C\end{array}\right]$ where $A=S_{\boldsymbol{p}}\left(\boldsymbol{f}_{u}\right) \cdot \boldsymbol{f}_{u}, B=S_{\boldsymbol{p}}\left(\boldsymbol{f}_{u}\right) \cdot \boldsymbol{f}_{v}$, and $C=S_{\boldsymbol{p}}\left(\boldsymbol{f}_{v}\right) \cdot \boldsymbol{f}_{v}$, where $S_{\boldsymbol{p}}$ is the shape operator. And if \boldsymbol{N} is a unit normal vector field to the surface, then the shape operator applied to a tangent vector \boldsymbol{v} in $T_{\boldsymbol{p}} \Sigma$ is $S_{\boldsymbol{p}}(\boldsymbol{v})=-\boldsymbol{N}_{\boldsymbol{v}}(\boldsymbol{p})$, that is the directional derivative of \boldsymbol{N} in the direction \boldsymbol{v}.
11. With notation above the Gauss and mean curvature is give by

$$
K=\frac{A C-B^{2}}{g_{11} g_{22}-g_{12}^{2}} \quad \text { and } \quad H=\frac{1}{2} \frac{A g_{22}-2 B g_{12}+C g_{11}}{g_{11} g_{22}-g_{12}^{2}}
$$

12. Given a Riemannian metric $g=\left[\begin{array}{ll}g_{11} & g_{12} \\ g_{21} & g_{22}\end{array}\right]$ on a surface that satisfies $g_{12}=g_{21}=0$ then the Gauss curvature is expressed by

$$
K=-\frac{1}{2 \sqrt{g_{11} g_{22}}}\left\{\left(\frac{\left(g_{11}\right)_{v}}{\sqrt{g_{11} g_{22}}}\right)_{v}+\left(\frac{\left(g_{22}\right)_{u}}{\sqrt{g_{11} g_{22}}}\right)_{u}\right\}
$$

13. With the notation from 12 we can express the Christoffel symbols as

$$
\Gamma_{j k}^{i}=\sum_{l=1}^{2} g^{i l} \frac{1}{2}\left(\left(g_{k l}\right)_{u_{j}}+\left(g_{l j}\right)_{u_{k}}-\left(g_{j k}\right)_{u_{l}}\right)
$$

where the local coordinates are $\left(u_{1}, u_{2}\right)$ and the $g^{i j}$ are the entries in the inverse to the matrix $\left(g_{i j}\right)$.
14. Using the notation above the Gauss curvature can also be expressed

$$
K=\frac{1}{g_{11}}\left[\left(\Gamma_{11}^{2}\right)_{u_{2}}-\left(\Gamma_{12}^{2}\right)_{u_{1}}+\Gamma_{11}^{1} \Gamma_{12}^{2}+\Gamma_{11}^{2} \Gamma_{22}^{2}-\Gamma_{12}^{1} \Gamma_{21}^{2}-\left(\Gamma_{12}^{2}\right)^{2}\right]
$$

15. If $\boldsymbol{f}: V \rightarrow \Sigma$ is a local coordinate system on Σ and a curve $\boldsymbol{\alpha}(t)$ is expressed as $\boldsymbol{f}(u(t), v(t))$ and a vector field along $\boldsymbol{\alpha}$ is expressed by $\boldsymbol{w}(t)=a(t) \boldsymbol{f}_{u}(u(t), v(t))+b(t) \boldsymbol{f}_{v}(u(t), v(t))$, then \boldsymbol{w} is parallel along $\boldsymbol{\alpha}$ if

$$
\begin{gathered}
a^{\prime}+\Gamma_{11}^{1} a u^{\prime}+\Gamma_{12}^{1} a v^{\prime}+\Gamma_{21}^{1} b u^{\prime}+\Gamma_{22}^{1} b v^{\prime}=0 \text { and } \\
b^{\prime}+\Gamma_{11}^{2} a u^{\prime}+\Gamma_{12}^{2} a v^{\prime}+\Gamma_{21}^{2} b u^{\prime}+\Gamma_{22}^{2} b v^{\prime}=0 .
\end{gathered}
$$

16. If $\boldsymbol{f}: V \rightarrow \Sigma$ is a local coordinate system on Σ and a curve $\boldsymbol{\alpha}(t)$ is expressed as $\boldsymbol{f}(a(t), b(t))$ then $\boldsymbol{\alpha}$ is a geodesic if

$$
\begin{gathered}
a^{\prime \prime}+\Gamma_{11}^{1}\left(a^{\prime}\right)^{2}+2 \Gamma_{12}^{1} a^{\prime} b^{\prime}+\Gamma_{22}^{1}\left(b^{\prime}\right)^{2}=0 \text { and } \\
b^{\prime \prime}+\Gamma_{11}^{2}\left(a^{\prime}\right)^{2}+2 \Gamma_{12}^{2} a^{\prime} b^{\prime}+\Gamma_{22}^{2}\left(b^{\prime}\right)^{2}=0
\end{gathered}
$$

17. If $\boldsymbol{\alpha}$ is a parameterization of a curve in a surface Σ with Riemannian metric g the its geodesic curvature κ_{g} is the length of $\nabla_{\boldsymbol{\alpha}^{\prime}} \boldsymbol{\alpha}^{\prime}$.
18. If Σ is a surface with piecewise smooth boundary $\partial \Sigma=C_{0} \cup \ldots \cup C_{k-1}$ and Riemannian metric g, then let θ_{i} be the exterior angle between C_{i} and C_{i+1} and we have the formula

$$
\sum_{i=0}^{k-1} \int_{C_{i}} \kappa_{g}(s) d s+\int_{\Sigma} K d A+\sum_{i=0}^{k-1} \theta_{i}=2 \pi \chi(\Sigma)
$$

19. In geodesic polar coordinates $\boldsymbol{f}: V \rightarrow \Sigma$ centered at \boldsymbol{p} the Riemannian metric (that is, first fundamental form) is $\left[\begin{array}{lll}1 & 0 \\ 0 & G(r, \theta)\end{array}\right]$ where $\sqrt{G(r, \theta)}=r-\frac{1}{6} K(\boldsymbol{p}) r^{3}+R(r, \theta)$ where $\lim _{r \rightarrow 0} \frac{R(r, \theta)}{r^{3}}=0$.
