Math 4441 - Fall 2016 Formulas for Midterm 1

1. If $\boldsymbol{\alpha}:[a, b] \rightarrow \mathbb{R}^{n}$ is a regular parameterization of a curve C then the length of C is $\int_{a}^{b}\left\|\boldsymbol{\alpha}^{\prime}(t)\right\| d t$.
2. If $\boldsymbol{\alpha}:[a, b] \rightarrow \mathbb{R}^{n}$ is a regular parameterization of a curve then $f(t)=$ $\int_{a}^{t}\left\|\boldsymbol{\alpha}^{\prime}(x)\right\| d x$ has an inverse $g:[0, l] \rightarrow[a, b]$ so that $\boldsymbol{\beta}(s)=\boldsymbol{\alpha}(g(s))$ is a parameterization of the same curve with $\left\|\boldsymbol{\beta}^{\prime}(s)\right\|=1$ (that is $\boldsymbol{\beta}$ is an arc length parameterization).
3. If $\boldsymbol{\alpha}$ is an arc length parameterization of a curve C, then $\boldsymbol{T}(s)=\boldsymbol{\alpha}^{\prime}(s)$ is a unit tangent vector and $\boldsymbol{T}^{\prime}(s)$ is perpendicular to $\boldsymbol{T}(s)$. The curvature of C at $\boldsymbol{\alpha}(s)$ is

$$
\kappa(s)=\left\|\boldsymbol{T}^{\prime}(s)\right\|
$$

and the normal vector is $\boldsymbol{N}(s)=\frac{\boldsymbol{T}^{\prime}(s)}{\left\|\boldsymbol{T}^{\prime}(s)\right\|}$.
4. If $\boldsymbol{\alpha}$ is a regular parameterization of a curve C (but not necessarily an arc length parameterization), then the curvature of C at $\boldsymbol{\alpha}(t)$ is

$$
\kappa(t)=\left\|\left(\frac{\boldsymbol{\alpha}^{\prime}(t)}{\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|}\right)^{\prime} \frac{1}{\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|}\right\|
$$

5. If $\boldsymbol{\alpha}:[0, l] \rightarrow \mathbb{R}^{2}$ is an arc length parameterization of a plane curve, then we define $\widehat{\boldsymbol{N}}(s)$ to be $\boldsymbol{\alpha}^{\prime}(s)$ rotated by $\pi / 2$ counter-clockwise, then we define the signed curvature to be

$$
\kappa_{\sigma}(s)=\widehat{\boldsymbol{N}}(s) \cdot \boldsymbol{\alpha}^{\prime \prime}(s)=\widehat{\boldsymbol{N}}(s) \cdot \boldsymbol{T}^{\prime}(s)
$$

6. If $\boldsymbol{\alpha}:[0, l] \rightarrow \mathbb{R}^{2}$ is an arc length parameterization of a plane curve C, then there is a function $\theta(s)$ such that

$$
\boldsymbol{\alpha}^{\prime}(s)=(\cos \theta(s), \sin \theta(s))
$$

and in particular

$$
\boldsymbol{\alpha}(s)=\left(a+\int_{0}^{s} \cos \theta(t) d t, b+\int_{0}^{s} \sin \theta(t) d t\right)
$$

where $\boldsymbol{\alpha}(0)=(a, b)$. The signed curvature is $\kappa_{\sigma}(s)=\theta^{\prime}(s)$.
7. With the notation above the rotation number of a curve C is

$$
R(C)=\frac{1}{2 \pi}(\theta(l)-\theta(0))
$$

8. With notation above the total signed curvature of a curve C is $T K(C)=$ $\int_{0}^{l} \kappa_{\sigma}(t) d t$.
