Math 4441 - Fall 2016 Formulas for Midterm 1

- 1. If $\alpha: [a,b] \to \mathbb{R}^n$ is a regular parameterization of a curve C then the length of C is $\int_a^b \|\alpha'(t)\| dt$.
- 2. If $\alpha : [a,b] \to \mathbb{R}^n$ is a regular parameterization of a curve then $f(t) = \int_a^t \|\alpha'(x)\| dx$ has an inverse $g : [0,l] \to [a,b]$ so that $\beta(s) = \alpha(g(s))$ is a parameterization of the same curve with $\|\beta'(s)\| = 1$ (that is β is an arc length parameterization).
- 3. If α is an arc length parameterization of a curve C, then $T(s) = \alpha'(s)$ is a unit tangent vector and T'(s) is perpendicular to T(s). The curvature of C at $\alpha(s)$ is

$$\kappa(s) = \|\boldsymbol{T}'(s)\|$$

and the normal vector is $N(s) = \frac{T'(s)}{\|T'(s)\|}$.

4. If α is a regular parameterization of a curve C (but not necessarily an arc length parameterization), then the curvature of C at $\alpha(t)$ is

$$\kappa(t) = \left\| \left(\frac{\boldsymbol{lpha}'(t)}{\|\boldsymbol{lpha}'(t)\|} \right)' \frac{1}{\|\boldsymbol{lpha}'(t)\|} \right\|.$$

5. If $\alpha:[0,l]\to\mathbb{R}^2$ is an arc length parameterization of a plane curve, then we define $\widehat{N}(s)$ to be $\alpha'(s)$ rotated by $\pi/2$ counter-clockwise, then we define the signed curvature to be

$$\kappa_{\sigma}(s) = \widehat{\boldsymbol{N}}(s) \cdot \boldsymbol{\alpha}''(s) = \widehat{\boldsymbol{N}}(s) \cdot \boldsymbol{T}'(s).$$

6. If $\alpha:[0,l]\to\mathbb{R}^2$ is an arc length parameterization of a plane curve C, then there is a function $\theta(s)$ such that

$$\alpha'(s) = (\cos \theta(s), \sin \theta(s)),$$

and in particular

$$\alpha(s) = (a + \int_0^s \cos \theta(t) dt, b + \int_0^s \sin \theta(t) dt),$$

where $\alpha(0) = (a, b)$. The signed curvature is $\kappa_{\sigma}(s) = \theta'(s)$.

7. With the notation above the rotation number of a curve C is

$$R(C) = \frac{1}{2\pi} (\theta(l) - \theta(0)).$$

8. With notation above the total signed curvature of a curve C is $TK(C) = \int_0^l \kappa_{\sigma}(t) dt$.