Math 4441 - Fall 2016 Formulas for Midterm 2

1. If $\boldsymbol{\alpha}:[a, b] \rightarrow \mathbb{R}^{n}$ is a regular parameterization of a curve C then the length of C is $\int_{a}^{b}\left\|\boldsymbol{\alpha}^{\prime}(t)\right\| d t$.
2. If $\boldsymbol{\alpha}:[a, b] \rightarrow \mathbb{R}^{n}$ is a regular parameterization of a curve then $f(t)=$ $\int_{a}^{t}\left\|\boldsymbol{\alpha}^{\prime}(x)\right\| d x$ has an inverse $g:[0, l] \rightarrow[a, b]$ so that $\boldsymbol{\beta}(s)=\boldsymbol{\alpha}(g(s))$ is a parameterization of the same curve with $\left\|\boldsymbol{\beta}^{\prime}(s)\right\|=1$ (that is $\boldsymbol{\beta}$ is an arc length parameterization).
3. If $\boldsymbol{\alpha}$ is an arc length parameterization of a curve C, then $\boldsymbol{T}(s)=\boldsymbol{\alpha}^{\prime}(s)$ is a unit tangent vector and $\boldsymbol{T}^{\prime}(s)$ is perpendicular to $\boldsymbol{T}(s)$. The curvature of C at $\boldsymbol{\alpha}(s)$ is

$$
\kappa(s)=\left\|\boldsymbol{T}^{\prime}(s)\right\|
$$

and the normal vector is $\boldsymbol{N}(s)=\frac{\boldsymbol{T}^{\prime}(s)}{\left\|\boldsymbol{T}^{\prime}(s)\right\|}$.
4. If $\boldsymbol{\alpha}$ is a curve in \mathbb{R}^{3} then the binormal vector is $\boldsymbol{B}=\boldsymbol{T} \times \boldsymbol{N}$ and the torsion is

$$
\tau(s)=-\boldsymbol{B}^{\prime}(s) \cdot \boldsymbol{N}(s) .
$$

5. If $\boldsymbol{\alpha}$ is a regular parameterization of a curve C (but not necessarily an arc length parameterization), then the curvature of C at $\boldsymbol{\alpha}(t)$ is

$$
\kappa(t)=\left\|\left(\frac{\boldsymbol{\alpha}^{\prime}(t)}{\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|}\right)^{\prime} \frac{1}{\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|}\right\| .
$$

6. For a surface Σ in \mathbb{R}^{3} in local coordinates

$$
f: V \rightarrow \Sigma
$$

where V is an open subset of \mathbb{R}^{2} with coordinates (u, v) we have the tangent space of Σ spanned by $\left\{\boldsymbol{f}_{u}, \boldsymbol{f}_{u}\right\}$. the first fundamental form in the basis $\left\{\boldsymbol{f}_{u}, \boldsymbol{f}_{u}\right\}$ is given by the matrix with entries $g_{11}=\boldsymbol{f}_{u} \cdot \boldsymbol{f}_{u}$, $g_{12}=g_{21}=\boldsymbol{f}_{u} \cdot \boldsymbol{f}_{v}$ and $g_{22}=\boldsymbol{f}_{v} \cdot \boldsymbol{f}_{v}$. The second fundamental from if given by $\left[\begin{array}{ll}A & B \\ B & C\end{array}\right]$ where $A=S_{\boldsymbol{p}}\left(\boldsymbol{f}_{u}\right) \cdot \boldsymbol{f}_{u}, B=S_{\boldsymbol{p}}\left(\boldsymbol{f}_{u}\right) \cdot \boldsymbol{f}_{v}$, and $C=S_{\boldsymbol{p}}\left(\boldsymbol{f}_{v}\right) \cdot \boldsymbol{f}_{v}$, where S_{p} is the shape operator.
7. With notation above the Gauss and mean curvature is give by

$$
K=\frac{A C-B^{2}}{g_{11} g_{22}-g_{12}^{2}} \quad \text { and } \quad H=\frac{1}{2} \frac{A g_{22}-2 B g_{12}+C g_{11}}{g_{11} g_{22}-g_{12}^{2}} .
$$

