Math 4441 - Fall 2016 Formulas for Midterm 2

- 1. If $\alpha:[a,b]\to\mathbb{R}^n$ is a regular parameterization of a curve C then the length of C is $\int_a^b \|\alpha'(t)\| dt$.
- 2. If $\alpha:[a,b]\to\mathbb{R}^n$ is a regular parameterization of a curve then $f(t)=\int_a^t\|\alpha'(x)\|\,dx$ has an inverse $g:[0,l]\to[a,b]$ so that $\beta(s)=\alpha(g(s))$ is a parameterization of the same curve with $\|\beta'(s)\|=1$ (that is β is an arc length parameterization).
- 3. If α is an arc length parameterization of a curve C, then $T(s) = \alpha'(s)$ is a unit tangent vector and T'(s) is perpendicular to T(s). The curvature of C at $\alpha(s)$ is

$$\kappa(s) = \|\boldsymbol{T}'(s)\|$$

and the normal vector is $N(s) = \frac{T'(s)}{\|T'(s)\|}$.

4. If α is a curve in \mathbb{R}^3 then the binormal vector is $\boldsymbol{B} = \boldsymbol{T} \times \boldsymbol{N}$ and the torsion is

$$\tau(s) = -\boldsymbol{B}'(s) \cdot \boldsymbol{N}(s).$$

5. If α is a regular parameterization of a curve C (but not necessarily an arc length parameterization), then the curvature of C at $\alpha(t)$ is

$$\kappa(t) = \left\| \left(\frac{\alpha'(t)}{\|\alpha'(t)\|} \right)' \frac{1}{\|\alpha'(t)\|} \right\|.$$

6. For a surface Σ in \mathbb{R}^3 in local coordinates

$$f: V \to \Sigma$$

where V is an open subset of \mathbb{R}^2 with coordinates (u,v) we have the tangent space of Σ spanned by $\{\boldsymbol{f}_u,\boldsymbol{f}_u\}$. the first fundamental form in the basis $\{\boldsymbol{f}_u,\boldsymbol{f}_u\}$ is given by the matrix with entries $g_{11}=\boldsymbol{f}_u\cdot\boldsymbol{f}_u$, $g_{12}=g_{21}=\boldsymbol{f}_u\cdot\boldsymbol{f}_v$ and $g_{22}=\boldsymbol{f}_v\cdot\boldsymbol{f}_v$. The second fundamental from if given by $\begin{bmatrix} A & B \\ B & C \end{bmatrix}$ where $A=S_p(\boldsymbol{f}_u)\cdot\boldsymbol{f}_u$, $B=S_p(\boldsymbol{f}_u)\cdot\boldsymbol{f}_v$, and $C=S_p(\boldsymbol{f}_v)\cdot\boldsymbol{f}_v$, where S_p is the shape operator.

7. With notation above the Gauss and mean curvature is give by

$$K = \frac{AC - B^2}{g_{11}g_{22} - g_{12}^2}$$
 and $H = \frac{1}{2} \frac{Ag_{22} - 2Bg_{12} + Cg_{11}}{g_{11}g_{22} - g_{12}^2}$.