Math 6441 - Spring 2020
 Supplement 1: H and H^{\prime}-spaces

A pointed space $\left(Y, y_{0}\right)$ is called an H-space if there are maps

$$
\mu: Y \times Y \rightarrow Y \text { and } \nu: Y \rightarrow Y
$$

such that

- $\mu \circ i_{1} \sim i d_{Y}$ and $\mu \circ i_{2} \sim i d_{Y}$ where $i_{1}: Y \rightarrow Y \times Y: y \rightarrow\left(y, y_{0}\right)$ and similarly for i_{2},
- $\mu \circ\left(i d_{Y} \times \mu\right) \sim \mu \circ\left(\mu \times i d_{Y}\right)$ as maps from $Y \times Y \times Y$ to Y, and
- $\mu \circ\left(i d_{Y} \times \nu\right)$ is homotopic to a constant map.

1. Show that $[X, Y]_{0}$ has a natural group structure for every pointed space X if and only if Y is an H-space. Here natural means that if $f: X \rightarrow X^{\prime}$ is a continuous map then the induced map $\left[X^{\prime}, Y\right]_{0} \rightarrow[X, Y]_{0}$ is a homomorphism.
Hint: Given an H-space note that $[f],[g] \in[X, Y]_{0}$ then $f \times g: X \rightarrow Y \times Y$. Define multiplication by $[f] *[g]=[\mu \circ(f \times g)]$.
For the other implication assume take $X=Y \times Y$ and let $p_{i}: Y \times Y \rightarrow Y$ be projection to the $i^{\text {th }}$ factor. Now let μ be a representative of $\left[p_{1}\right] *\left[p_{2}\right]$ and ν a representative of $\left[i d_{Y}\right]^{-1}$.
2. Let $\left(Y, y_{0}\right)$ be a pointed space. The loop space $\Omega(T)$ of Y is the space of based continuous maps from $\left(S^{1}, x_{0}\right)$ to $\left(Y, y_{0}\right)$. Show $\Omega(Y)$ is an H-space.

Recall that if $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ are pointed space then the wedge product $X \vee Y$ is the subset $\left(X \times\left\{y_{0}\right\}\right) \cup\left(\left\{x_{0}\right\} \times Y\right)$ in $X \times Y$, with base point $\left(x_{0}, y_{0}\right)$.

A pointed space $\left(Y, Y_{0}\right)$ is called an H^{\prime}-space if there are mappings

$$
\mu: Y \rightarrow Y \vee Y \text { and } \nu: Y \rightarrow Y
$$

such that

- $p_{1} \circ \mu \sim i d_{Y}$ and $p_{2} \circ \mu \sim i d_{y}$ where $p_{i}: Y \vee Y \rightarrow Y$ is projection to the $i^{\text {th }}$ factor,
- $\left(i d_{Y} \vee \mu\right) \circ \mu \sim\left(\mu \vee i d_{Y}\right) \circ \mu$ as maps from Y to $Y \vee Y \vee Y$, and
- $\left(i d_{Y} \vee \nu\right) \circ \mu$ is homotopic to the identity on Y

3. Show that $[Y, X]_{0}$ has a natural group structure for every pointed space X if and only if Y is an H^{\prime}-space. Here natural means that if $f: X \rightarrow X^{\prime}$ is a continuous map then the induced map $[Y, X]_{0} \rightarrow\left[Y, X^{\prime}\right]_{0}$ is a homomorphism.

Let X be a topological space, the suspension of X is

$$
\Sigma X=X \times[0,1] / \sim
$$

where \sim indicates that $X \times\{0\}$ is collapsed to a point and so $X \times\{1\}$ to another point. If $\left(X, x_{0}\right)$ is a pointed space then the reduced suspension of X is $\Sigma X=X \times[0,1] / \sim$ where you collapse as before, but also collapse $\left\{x_{0}\right\} \times[0,1]$. Notice that this means that \sim in this case just collapses $(X \times\{0,1\}) \cup\left(\left\{x_{0}\right\} \times[0,1]\right)$ to a point. Call this point the new base point of the suspension. For pointed spaces ΣX will always mean reduced suspension.
4. Show that the suspension of S^{n} is S^{n+1}. If we choose a base point of S^{n} show that it's reduced suspension is also S^{n+1}.
5. If $\left(Y, y_{0}\right)$ is a pointed space then show that ΣY is an H^{\prime}-space.

Notice that we now know that

$$
\pi_{n}\left(X, x_{0}\right)=\left[S^{n}, X\right]_{0}
$$

is a group for all $n \geq 1$!
6. If $\left(X, x_{0}\right)$ is an H^{\prime}-space and $\left(Y, y_{0}\right)$ is an H-space, then show that the product structures on $[X, Y]_{0}$ coming form X as an H^{\prime}-space and from Y as an H-space agree. Also show that the product is commutative.
Hint: Let + be the multiplication from the H^{\prime}-space structure and \cdot be the one from the H-space structure. Denote μ for the H^{\prime}-space structure by μ_{V} and the μ for the H-space structure by μ_{x}. Note that $\left[f_{1}\right] \cdot\left[f_{2}\right]=\left[\mu_{x} \circ f_{1} \times f_{2}\right]$ and $\left[f_{1}\right]+\left[f_{2}\right]=\left[\nabla \circ\left(f_{1} \vee f_{2}\right) \circ \mu_{\vee}\right]$ where $\nabla: Y \vee Y \rightarrow Y$ send $\left(y, y_{0}\right)$ and $\left(y_{0}, y\right)$ to y. Let $\Delta: X \rightarrow X \times X: x \mapsto(x, x)$. Now given $f_{1}, f_{2} \in[X, Y]_{0}$, show that $\nabla \circ\left(f_{1} \wedge f_{2}\right) \circ \mu_{\vee}$ and $\mu_{x} \circ\left(f_{1} \times f_{2}\right) \circ \Delta$ are homotopic. For commutativity note that if G is a group and $\rho: G \times G \rightarrow G:(g, h) \mapsto g h$ is a homomorphism then multiplication is commutative.

The smash product of pointed spaces X adn Y is

$$
X \wedge Y=(X \times Y) /(X \vee Y)
$$

7. For a pointed space X show that $\Sigma X=X \wedge S^{1}$.
8. Show that

$$
[\Sigma X, Y]_{0}=[X, \Omega Y]_{0}
$$

Hint: Note that there are obvious map $\Psi: C^{0}(X \mid$ times $Y, Z) \rightarrow C^{0}\left(X, X^{0}(Y, Z)\right)$ defined by letting $\Psi(g)(x)$ be the function $y \mapsto g(x, y)$ is a homeomorphism if Y is locally compact (that is has an open neighborhood with compact closure) and Hausdorff and X is Hausdorff. And the inverse that sends $f: X \rightarrow C^{0}(Y, Z)$ to $\Psi^{-1}(f)(x, y)=f(x)(y)$.
Not this shows that $[X \times Y, Z]=\left[X, C^{0}(Y, Z)\right]$.
Now show that for based spaces $[X \wedge Y, Z]_{0}=\left[X, C_{b a s e d}^{0}(Y, Z)\right]_{0}$.
Notice that this shows that

$$
\pi_{n}\left(X, x_{0}\right)=\left[S^{n}, X\right]_{0}=\left[\Sigma S^{n-1}, X\right]_{0}=\left[S^{n-1}, \Omega X\right]_{0} .
$$

So if $n \geq 2$ then S^{n-1} is an H^{\prime}-space and ΩX is an H-space, so $\pi_{n}\left(X, x_{0}\right)$ is abelian.

