C. Applications
given a map $f: s^{\prime} \rightarrow s^{\prime}$
let $\bar{f}:\{0,1] \rightarrow S^{\prime}$ be the map $f \circ g=\bar{f}$

$$
\begin{array}{ll}
{[0,1]} \\
1 q \\
s^{\prime} \xrightarrow[f]{ } & \text { where }
\end{array} \quad q(t)=(\cos 2 \pi t, \sin 2 \pi t)
$$

Th \underline{m} says there is a unique lift $\tilde{f}:[0,1] \rightarrow \mathbb{R}$ of \bar{f} once we choose lift of $\bar{f}(0)$
we now define the degree of f to be the number

$$
\operatorname{deg} f=\tilde{f}(1)-\tilde{f}(0)
$$

note: if \hat{f} is another such lift then $\hat{f}(s)=\tilde{f}(s)+k$ for some k

$$
\text { so } \hat{f}(1)-\hat{f}(0)=\tilde{f}(1)+k-(\tilde{f}(0)+k)=\tilde{f}(1)-\tilde{f}(0)
$$

and the degree is well-defined

Th m / 1:
$f: s^{\prime} \rightarrow s^{\prime}$ and $g: s^{\prime} \rightarrow s^{\prime}$ are homotopic
\Leftrightarrow

$$
\operatorname{deg} f=\operatorname{deg} g
$$

Proof: \Leftrightarrow let $F: S^{\prime} \times[0,1] \rightarrow S^{\prime}$ be the homotopy let $\bar{F}:\{0,1] \times[0,1] \rightarrow S^{\prime}$ be the map such that

$$
F(q(s), t)=\bar{F}(s, t)
$$

let \tilde{F}, \tilde{g} be lifts of \bar{f} and \bar{g}

as above
by $T^{m}{ }^{m} 10 \exists$! lift of \bar{F} to $\tilde{F}:[0,1] \times[0,1] \rightarrow \mathbb{R}$ with $\bar{F}(0,0)=\tilde{f}(0)$ by uniqueness of path lifting we know

$$
\tilde{F}(s, 0)=\tilde{F}(s) \text { since } \tilde{F}(s, 0) \text { is a lift of } \bar{f}
$$

let $\gamma:\{0,1] \rightarrow s^{\prime}:+\mapsto \bar{F}(0, t)=\bar{F}(1, t)$
Set $\tilde{\gamma}:[0,1] \rightarrow \mathbb{R}$ lift of γ set. $\tilde{\gamma}(0)=\tilde{f}(0)$
$\tilde{\gamma}^{\prime}:[0,1] \rightarrow \mathbb{R}$ lift of γ st. $\tilde{\gamma}^{\prime}(0)=\tilde{f}(1)$
we can assume $\tilde{g}(0)=\tilde{\gamma}(1)$
note we have \widetilde{F} given by

so $\operatorname{deg} f=\tilde{F}(1,0)-F(0,0)=\tilde{\gamma}^{\prime}(0)-\tilde{\gamma}(0)$

$$
\operatorname{deg} g=\tilde{F}(1,1)-\tilde{F}(0,1)=\tilde{\gamma}^{\prime}(1)-\tilde{\gamma}(1)
$$

but $\tilde{\gamma}^{\prime}(t)=\tilde{\gamma}(t)+k$ some k and $\operatorname{deg} f=\operatorname{deg} g$
(\Leftarrow) assume $\operatorname{deg} f=\operatorname{deg} g$
let θ be the angle between $f(1,0)$ and $g(1,0)$ let $R_{t}: S^{\prime} \rightarrow S^{\prime}$ be rotation through angle t
set $H(s, t)=R_{t \theta} \circ f(s)$
So $H(s, 0)=f(s)$

$H(s, 1)=R_{\theta} \circ f(s)$ ie $H((1,0), 1)=R_{\theta} \circ f((1,0))=g((1,0))$
so after homotopy we can assume $f((1,0))=g((1,0))$
(from \Leftrightarrow) we know deg f unchanged under htpy.
let $\bar{f}_{1} \bar{g}:[0,1] \rightarrow S^{\prime}$ be as above (note $\bar{f}(0)=\bar{g}(0)$ by above) let $\tilde{f}, \tilde{g}:[0,1] \rightarrow s^{\prime}$ be lifts of \bar{f}, \bar{q}, respectively st. $\tilde{f}(0)=\tilde{q}(0)$
now $\operatorname{deg} f=\operatorname{deg} g \Rightarrow \tilde{F}(1)=\tilde{q}(1)$
set $\tilde{H}(s, t)=+\tilde{f}(s)+(1-t) \tilde{g}(s)$
note:

$$
\begin{aligned}
& \tilde{H}(0, t)=t \tilde{f}(0)+(1-t) \tilde{g}(0)=\tilde{f}(0) \\
& \tilde{H}(1, t)=+\tilde{f}(1)+(1-t) \tilde{g}(1)=\tilde{f}(1)
\end{aligned}
$$

so $p \circ \tilde{H}_{t}:[0,1] \rightarrow s^{\prime}$ decends to a map $H_{t}: s^{\prime} \rightarrow s^{\prime} \forall t$ H_{t} give homotopy of f to g
exercise: 1) the constant map $f: S^{\prime} \rightarrow S^{\prime}$ has degree 0
2) $f_{*}: \pi_{1}\left(S^{\prime},(1,0)\right) \rightarrow \pi_{1}\left(S^{\prime},(1,0)\right)$ is multiplication by deg f ne. $\mathbb{Z} \rightarrow \mathbb{Z}$ $[\gamma] \longmapsto($ leg $f)[\gamma]$ need to homotop f to preserve base pt!

Corollary 12:
two maps $f, g: S^{\prime} \rightarrow S^{\prime}$ are homotopic

$$
f_{*}=g_{*}: \pi_{1}\left(S_{1}^{\prime}(1,0)\right) \rightarrow \pi_{1}\left(s_{1}^{\prime}(1,0)\right)
$$

In particular, $f: S^{\prime} \rightarrow S^{\prime}$ is homotopically trivial \Leftrightarrow it induces trivial map on $\pi_{1}\left(S_{1}^{\prime}(1,0)\right)$

Proof: imedicite from exercises
Remark: so maps on s^{\prime} are completely determined by π !
lemma / 3:
a map $f: S^{\prime} \rightarrow S^{\prime}$ extends to a map $F: D^{2} \rightarrow S^{\prime}$

$$
\operatorname{deg} f=0
$$

Proof: (\Rightarrow) let $P:[0,1] \times s^{\prime} \rightarrow D^{2}$

$$
(r, \theta) \longmapsto(r, \theta) \underset{\text { polar lords }}{\longleftrightarrow})
$$

given $F: D^{2} \rightarrow S^{1}$ such that $F l_{\partial D^{2}}=f$
set $H(s, t)=F \circ P(s, t)$
this is a homotopy from

$$
H(s, 0)=F \cdot p(s, 0)=F(0, s)=p t
$$

to
C origin

$$
H(s, 1)=F \circ P(s, 1)=F l_{\partial D^{2}}=f(s)
$$

so $f \simeq$ constant $\therefore \operatorname{deg} f=0$
(\Leftarrow) if $\operatorname{deg} f=0$, then \exists a homotopy $H: s^{\prime} \times[0,1] \rightarrow s^{\prime}$
s.t. $H(s, 1)=f(s)$ and $H(s, 0)=$ pt
so we get an induced map
$F: D^{2} \rightarrow s^{\prime}$ that
extends f
quotient l. map $D^{2} \ldots{ }_{F}$
exercise:
think of S^{\prime} as the cult circle in \mathbb{C}
let $f_{n}: s^{\prime} \rightarrow s^{\prime}: z \longmapsto z^{n}$
show $\operatorname{deg}\left(f_{n}\right)=n$

Th m 14 (Fundamental Th ㄹ of Algebra):
any non-constant complex polynomial $P(z)$ has a root ne. z_{0} such that $P\left(z_{0}\right)=0$

Remark: Amazing! We are using algebraic topology to prove basic facts about polynomials!
Proof: let $P(z)=z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0} \quad n \geq 1$
assume $P(z)$ has no root
let $M=\max \left\{\left|a_{0}\right|, \ldots,\left|a_{n-1}\right|\right\}$ and choose $k \geq \max \left\{1, Z_{n} M\right\}$
note: $P(z)=z^{n}(1+\underbrace{\left.a_{n-1} \frac{1}{z}+\ldots+a_{1} \frac{1}{z^{n-1}}+a_{0} \frac{1}{z^{n}}\right)}_{b(z)}$
so if $|z|=k$, then

$$
\begin{aligned}
|b(z)| & \leq\left|a_{n-1}\right| \frac{1}{|z|}+\ldots+\left|a_{0}\right| \frac{1}{|z|^{n}} \\
& \leq M\left(\frac{1}{k}+\ldots+\frac{1}{k^{n}}\right) \leq M \frac{n}{k} \\
& \leq M \frac{n}{2 n M}=\frac{1}{2}
\end{aligned}
$$

let $f: s^{\prime} \rightarrow s^{\prime}: z \longmapsto \frac{P(h z)}{|p(k z)|}$ well-detived since never zero by assumption
this extends to

$$
F: D^{2} \rightarrow S^{\prime}: z \mapsto \frac{P(k z)}{|P(k z)|}
$$

so $\operatorname{deg} f=0$ by lemma 14
but let $P_{t}(z)=z^{\prime \prime}(1+t b(z))$
from above $P_{t}(z) \neq 0$ for $|z|=k$
so $f_{t}: s^{\prime} \rightarrow s^{\prime}: z \mapsto \frac{P_{t}(k z)}{\left|P_{t}(k z)\right|}$
is a homotopy from f to $f_{1}(z)=\frac{(k z)^{n}}{\left(\left.k z\right|^{n}\right.}=\frac{k^{n} z^{n}}{k^{n} \underbrace{|z|^{n}}_{11}}=z^{n}$
1
$\therefore P(z)$ has a root!
lemma 15:
-
If $f: s^{\prime} \rightarrow s^{\prime}$ is continuous and $f(-x)=-f(x) \forall x$
then $\operatorname{deg}(f)$ is odd
Proof: given such an $f: s^{\prime} \rightarrow s^{\prime}$
let $\bar{f}:[0,1] \rightarrow s^{\prime}$ be as above (ie. $f \circ g=\bar{f}$)
let $a=\bar{f}(0)$ and $p^{-1}(a)=\left\{\tilde{a}_{2}\right\}$ where $p: \mathbb{R} \rightarrow 5^{\prime}$ and

$$
\tilde{a}_{2}=\tilde{a}_{0}+i
$$

note $\bar{f}(1 / 2)=f((-1,0))=-f((1,0))=-a$ and
$p^{-1}(-a)=\left\{\tilde{b}_{2}\right\}$ where $\tilde{b}_{2}=\tilde{a}_{2}+\frac{1}{2}$
let $f_{1}=\left.\bar{f}\right|_{[0,1 / 2]}$

$$
f_{2}=\left.\bar{f}\right|_{[1 / 2,1]}
$$

since $f(x)=f(-(-x))=-f(-x)$
and

$$
q(x-1 / 2)=-q(x)
$$

we have $f_{2}(x)=\bar{f}(x)=f(g(x))$

$$
=-f(-q(x))=-f(q(x-1 / 2))=-\bar{f}(x-1 / 2)=-f_{1}(x-1 / 2)
$$

so if \tilde{f}_{1} is a lift of f_{1} starting at \tilde{a}_{0} then $\tilde{f}_{1}(1 / 2)=\tilde{b}_{2}$ some i and $\tilde{f}_{1}(x-1 / 2)+1 / 2$ is a lift of $f_{2}:[1 / 2,1] \rightarrow s^{\prime}$ starting at $\tilde{a}_{0}+1 / 2=\tilde{b}_{0}$
\uparrow, uss like for 9 above $p(x-1 / 2)=-p(x)$
so $f_{2}(x)=f_{1}(x-1 / 2)+1+1 / 2$ is a lift of f_{2} starting at $f_{1}(1 / 2)=b_{2}$
now $\tilde{f}_{2}(1)=\tilde{f}_{1}(1 / 2)+2+1 / 2=\tilde{b}_{2}+1+1 / 2=\tilde{q}_{2}+1+1=\tilde{a}_{0}+2 i+1$
note $\tilde{f}_{1} * \tilde{f}_{2}$ is a lift of f

$$
\text { so } \operatorname{deg}(f)=\tilde{f}_{1} \times \tilde{f}_{2}(1)-\tilde{f}_{1} \times \tilde{f}_{2}(0)=\tilde{a}_{0}+2 \imath+1-\tilde{q}_{0}^{2}=2 i+1
$$

Th 픅 (Borsuk-Ulam I):
There does not exist a continuous map

$$
f: s^{2} \rightarrow s^{1}
$$

sending antipodal points to antipodal porits
Proof: If $f: s^{2} \rightarrow s^{1}$ is such a map then let $S^{\prime} \subset S^{2}$ be the equator

$$
\left.f\right|_{s^{\prime}}: s^{\prime} \rightarrow s^{\prime} \text { satisfies } f(-x)=-f(x)
$$

so $\operatorname{deg} \mathrm{fl}_{\mathrm{s}^{\prime}}$ is odd by lemma 15
but $\mathrm{fl}_{s^{\prime}}$ extends oven northern hemisphere
so $\operatorname{deg} \mathrm{fl}_{\mathrm{s}^{\prime}}=0$ by lemma $13 \$$
Th m 17 (Borsuk-Ulam II):
Any continuous map $f: S^{2} \rightarrow \mathbb{R}^{2}$ must send a pair of antipodal points to the same point

Proof: given any continuous $f: s^{2} \rightarrow \mathbb{R}^{2}$
assume $f(x) \neq f(-x) \quad \forall x \in s^{2}$
then consider $g: s^{2} \rightarrow s^{\prime}: x \longmapsto \frac{f(x)-f(-x)}{\|f(x)-f(-x)\|}$
exercise: g is continuous
clearly $g(-x)=-g(x) \ngtr \mathbb{T h}^{m} / 6$
Remark: Th ${ }^{m}$ implies that at any point in time there are antipodal point on the earth with the same temperature and humidity!

Th ${ }^{m} 18$ (Ham sandwich th ${ }^{m}$):
let R_{1}, R_{2}, R_{3} be three connected open regions in \mathbb{R}^{3} each of which is bounded and of finite volume Then \exists a plane which cuts them in half by volume

Proof: let $s^{2} \subset \mathbb{R}^{3}$ be a large sphere about origin containing all given $x \in S^{2}$, let l_{x} be the line through x and origin
for each i, \exists plane $P_{i, x}$ perpendicular to l_{x} that cuts R_{i} in half

let $d_{i}(x)=$ distance of $P_{1, x}$ from origin (where $d_{2}(x)>0$ if $P_{2 x}$ on same side of origin as x)
exercise: Show $d_{1}(x)$ are continuous functions $d_{2}: s^{2} \rightarrow \mathbb{R}$
Hint: Equation of planes perpendicular to l_{x} continuously vary with x
Volume of regions of R_{i} cut by plane continuously vary with eq of plane
clearly $d_{i}(-x)=-d_{2}(x)$
consider $f: S^{2} \rightarrow \mathbb{R}^{2}: x \mapsto\left(d_{1}(x)-d_{2}(x), d_{1}(x)-d_{3}(x)\right)$
Th ${ }^{m} 17 \Rightarrow \exists x$ such that $f(x)=f(-x)$
so $d_{1}(x)-d_{2}(x)=d_{1}(-x)-d_{2}(-x)=-d_{1}(x)+d_{2}(x)$

$$
\therefore \quad 2 d_{1}(x)=2 d_{2}(x) \Rightarrow d_{1}(x)=d_{2}(x)
$$

similarly $d_{3}(x)=d_{1}(x)=d_{2}(x)$
so \exists plane \perp to l_{x} that cuts R_{1}, R_{2}, R_{3} in half!

