C. Applications
given a map
$$f: S' \rightarrow S'$$

let $\overline{f}: \{0, 1\} \rightarrow S'$ be the map $f \circ \overline{f} = \overline{f}$
where
 $\begin{bmatrix} 0, 1 \end{bmatrix} - \overline{f}$
 $g(t) = (\cos 2\pi t, \sin 2\pi t)$
 $S' - \overline{f} \rightarrow S'$
The 8 says there is a unique lift $\widehat{f}: [0, 1] \rightarrow \mathbb{R}$ of \overline{f} once we choose
lift of $\overline{f}(0)$
we now define the degree of f to be the number
 $deg f = \overline{f}(1) - \overline{f}(0)$
Mode: if \widehat{f} is another such lift then $\widehat{f}(S) = \overline{f}(S) + k$ for some k
so $\widehat{f}(1) - \widehat{f}(0) = \overline{f}(1) + k - (\overline{f}(0) + k) = \overline{f}(1) - \overline{f}(0)$
and the degree is well-defined

 $f: S' \rightarrow S' \text{ and } g: S' \rightarrow S' \text{ are homotopic}$ \Leftrightarrow deg f = deg g<u>Proof</u>: (\Rightarrow) let $F: S' \times \{o, i\} \rightarrow S'$ be the homotopy let $\overline{F}: [0, 1] \times [0, 1] \rightarrow S'$ be the map such that let f, g be lifts of f ang g $S' \times [o, I] \xrightarrow{F} S'$ as above by TATIO J! lift of F to F: [0,1] × [0,1] -> IR with F(0,0) = F(0) by uniqueness of path lifting we know $\tilde{F}(s,0)$ = $\tilde{F}(s)$ since $\tilde{F}(s,0)$ is a left of \bar{F} let V: {0,1] -> 5': + -> F(0,+) = F(1,+) Set $\widetilde{\mathcal{T}}: [o, 1] \rightarrow \mathbb{R}$ lift of $\mathcal{T} s.t. \widetilde{\mathcal{T}}(o) = \widetilde{f}(o)$ $\widetilde{\mathscr{C}}': \{o, I\} \rightarrow \mathcal{R} \ lift of \ \mathscr{C} \xrightarrow{f} \widetilde{\mathscr{C}}'(o) = \widetilde{\mathcal{F}}(I)$ we can assume glo)= gli) note we have F given by 8 1/1/ 8' 50 deg f = F(1,0) - F(0,0) = 8'(0) - 8(0) $deg \ g = \vec{F}(1,1) - \vec{F}(0,1) = \vec{F}(1) - \vec{F}(1)$ but & lt) = & (t) + k some k and degf=degg/

(E) assume deg f = deg g
let
$$\Rightarrow$$
 be the angle between $f(1,0)$ and $g(1,0)$
let $R_t: S' \rightarrow S'$ be
rotation through
angle t
set $H(s,t) = R_{to} \circ f(s)$
 $f(1,0) = f(s)$
 $H(s,1) = R_0 \circ f(s)$ $re H((1,0),1) = R_0 \circ f((1,0)) = g((40))$
so after homotopy we can assume $f((1,0)) = g((40))$
(from (\Rightarrow) we know deg f unchanged under htpy.
let $\tilde{f}_1 \tilde{g}: (0,1] \rightarrow S'$ be as above (note $F(0) = \tilde{g}(0)$ by above)
let $\tilde{f}_1 \tilde{g}: (0,1] \rightarrow S'$ be as above (note $F(0) = \tilde{g}(0)$ by above)
let $\tilde{f}_1 \tilde{g}: (0,1] \rightarrow S'$ be $1ifts$ of $\tilde{f}_1 \tilde{g}$, respectively
 $st: f(0) = \tilde{g}(0)$
now deg $f = deg g \Rightarrow f(1) = \tilde{g}(1)$
set $\tilde{H}(s,t) = t \tilde{f}(s) + (1-t) \tilde{g}(s)$
note: $\tilde{H}(0,t) = t \tilde{f}(0) + (1-t) \tilde{g}(1) = \tilde{f}(0)$
 $\tilde{H}(1,t) = t \tilde{f}(1) + (1-t) \tilde{g}(1) = \tilde{f}(1)$
so $p \circ \tilde{H}_t: [0,1] \rightarrow S'$ decends to a map $H_t: S' \rightarrow S'$ $\forall t$
 H_t give homotopy of f to g

<u>exercise</u>: 1) the constant map $f: S' \rightarrow S'$ has degree 0 2) $f_*: T_1(S', (1, 0)) \rightarrow T_1(S', (1, 0))$ is multiplication by dep f 1e. $Z \rightarrow Z$ need to homotop f to $[x] \mapsto (deg f)[x]$ preserve have pt! Lorollary 12:

two maps f,g: S'-> 5' are homotopic $f_* = g_* : \pi_i(S'_i(1, \infty)) \to \pi_i(S'_i(1, \infty))$ In particular, f: 5'->5' is homotopically trivial ⇒ it induces trivial map on Th (S', (1,0))

Proof: Imediate from exercises Remark: so maps on s' are completely determined by TI, ! lemma 13:-

a map $f: S' \rightarrow S'$ extends to a map $F:D^2 \rightarrow S'$ \Leftrightarrow deg f = 0

Proof: (=) let
$$P: [o, i] \times s' \rightarrow D^{2}$$

 $(r, \vartheta) \mapsto (r, \vartheta)$
polar coords
given $F: D^{2} \rightarrow s'$ such that $F'_{\partial D^{2}} = f$
set $H(s,t) = F \circ P(s,t)$
this is a homotopy from
 $H(s, 0) = F \circ P(s, 0) = F(o, s) = pt$
 fo
 $H(s, 1) = F \circ P(s, 1) = F|_{\partial D^{2}} = f(s)$
so $f \cong constant : deg f = 0$
(\notin) if deg $f = 0$, then $\exists a$ homotopy $H: s' \times So, i] \rightarrow s'$
st. $H(s, i) = F(s)$ and $H(s, 0) = pt$
so we get an induced map
 $F: D^{2} \rightarrow s'$ that
 $extends f$

Exercise: think of 5' as the unit circle in C let $f_n: 5' \rightarrow 5': 2 \rightarrow 2^n$ show $deg(f_n) = n$ $\int_{S'} \frac{2^n}{3} \int_{S'} \frac{1}{3} \frac{$

Thm 14 (Fundamental Thm of Algebra):

any non-constant complex polynomial P(Z) has a root ne. Zo such that P(Zo)=D

$$\frac{Proof}{Proof}: |ef P(z) = z^{n} + q_{n-1} z^{n-1} + \dots + q_{1} z + q_{0} \qquad n \ge 1$$
assume $P(z)$ has no roof

$$|ef M = \max\{|q_{0}|, \dots, |q_{n-1}|\} \text{ and choose } k \ge \max\{\{1, 2nM\}\}$$

$$\underline{note: P(z) = z^{n}(1 + q_{n-1} \frac{1}{z} + \dots + q_{1} \frac{1}{z^{n-1}} + q_{0} \frac{1}{z^{n}})$$

$$\underline{b(z)}$$

so if
$$|2|=k$$
, then
 $|b(2)| \leq |a_{n-1}| \frac{1}{|2|} + ... + |a_0| \frac{1}{|2|^n}$
 $\leq M(\frac{1}{k} + ... + \frac{1}{k^n}) \leq M \frac{n}{k}$
 $\leq M \frac{n}{2nM} = \frac{1}{2}$

let
$$f: S' \rightarrow S': Z \longmapsto \frac{P(kZ)}{|P(kZ)|}$$
 well-defined
since never zero
by assumption
 $F: D^2 \rightarrow S': Z \longmapsto \frac{P(kZ)}{|P(kZ)|}$

so deg f=0 by lemma 14

but let
$$P_{t}(z) = \overline{z}^{n} (l+tb(z))$$

from above $P_{t}(z) \pm 0$ for $|\overline{z}| = k$
so $f_{t}: S' \rightarrow S': \overline{z} \mapsto \frac{P_{t}(k\overline{z})}{|P_{t}(k\overline{z})|}$
is a homotopy from f to $f_{t}(\overline{z}) = \frac{(k\overline{z})^{n}}{(k\overline{z})^{n}} = \frac{h^{n}}{n} \frac{\overline{z}^{n}}{|\overline{z}|^{n}} = \overline{z}^{n}$
deg $f_{t} = n \pm 0$ \overline{R} $f = f_{t}$ by $Th^{-\frac{n}{2}}/2$
 $\therefore P(\overline{z})$ has a root !
If $f: S' \rightarrow S'$ is contribuces and $f(-x) = -f(x) \forall x$
then deg(f) is odd
Proof: given such an $f: S' \rightarrow S'$
let $\overline{f}: [\overline{a}, 1] \rightarrow S'$ be as above (ie $f \circ \overline{g} = \overline{f}$)
let $q = \overline{f}(0)$ and $p^{-1}(\alpha) = \{\overline{a}_{t}^{n}\}$ where $p: \mathbb{R} \rightarrow S'$ and
 $\overline{a}_{t} = \overline{a}_{t} + \overline{z}$
note $\overline{f}(Y_{t}) = f((-t, 0)) = -f((1, 0)) = -q$ and
 $p^{-1}(-q) = \{\overline{b}_{t}\}$ where $\overline{b}_{t} = \overline{q}_{t} + \frac{1}{2}$
let $f_{t} = \overline{f}|_{[0, N_{t}]}$
 $f_{s} = \overline{f}|_{[(N_{t})]}] = -f(-x)$
we have $f_{s}(x) = \overline{f}(x) = f(q(x, x_{t})) = -\overline{f}(x, y_{t}) = -\overline{f}_{t}(x, y_{t}) = -\overline{f}_{t}(x, y_{t})$

so if \tilde{f}_1 is a lift of f_1 starting at \tilde{q}_6 then $\tilde{f}_1(4) = \tilde{b}_1$ some i and $\tilde{f}_1(x-1/2) + 1/2$ is a lift of $f_2: [1/2, 1] \rightarrow 5'$ starting at $\tilde{q}_6 + 1/2 = \tilde{b}_6$ $\Gamma_1 ust like for 9 above <math>\rho(x-1/2) = -\rho(x)$

So
$$f_{L}(x) = f_{1}(x - t_{0}) + t + t_{2}$$
 is a lift of f_{1} starting at $f_{1}(t_{0}) = b_{1}$
now $f_{x}(t) = f_{1}(t_{0}) + 3 + t_{2} = b_{1} + t + t_{2} = a_{1} + t + t = a_{1}^{2} + 2i + t$
note $f_{1} * f_{0}$ is a lift of f
so $deg(f) = f_{1} * f_{1}(t_{1}) - f_{1} * f_{1}(a) = b_{0} + 2t + t - a_{1}^{2} = 2i + t$
There does not exist a continuous map
 $f_{1}: S^{2} \rightarrow S^{1}$
sending antipodal points to antipodal points
Proof: If $f_{1}: S^{2} \rightarrow S^{1}$ is such a map
then let $S' \subset S^{2}$ be the equator
 $f_{1}_{S^{1}}: S' \rightarrow S^{1}$ satisfier $f(-x) = -f(x)$
So $deg fl_{S^{1}}$ is odd by lemma 15
but $fl_{S^{1}}$ extends over northern hemisphere
So $deg fl_{S^{1}} = 0$ by lemma 13 f_{1}
 $f_{1} = 17(Barsuk-Ulam II)$
Any continuous $f_{1}: S^{2} \rightarrow R^{2}$ must send a pair
of antipodal points to the same point
Proof: given any continuous $f: S^{2} \rightarrow R^{2}$
 $assume f(x) \neq f(-x) \forall x \in S^{2}$
then consider $g: S^{2} \rightarrow S^{1}: x \longmapsto \frac{f(x) - f(-x)}{\|f(x) - f(-x)\|}$
 $exercise: g is continuous
 $clearly g(-x) = -g(x) \notin T_{1} = 16$
 $flemark: Th^{2}$ implies that at any point in time there are antipodal points $f(x) = f(-x)$
 $function of the same temperature and humidity!$$

Th 18 (Ham sandwich thm): let K, K, R3 be three connected open regions in R3 each of which is bounded and of finite volume Then I a plane which cuts them in holf by volume Proof: let 52 CR3 be a large sphere about origin containing all ? given RE 5°, let lx be the line through x and origin for each i, I plane Pix perpendicular to ly that cuts R; in half let di (x) = distance of Pa,x from origin (where $d_1(x) > 0$ if P_{4x} on some side of origin as x) exercise: Show di (x) are continuous functions di: 5° -> R Hint: Equation of planes perpendicular to lx Continuously vary with x Volume of regions of Ri cut by plane continuously vary with eq" of plane clearly $d_i(-x) = -d_i(x)$ consider $f: S^2 \rightarrow \mathbb{R}^2: x \mapsto (d_1(x) - d_2(x), d_1(x) - d_3(x))$ $Th^{n} 17 \Rightarrow \exists x \text{ such that } f(x) = f(-x)$ 50 $d_1(x) - d_2(x) = d_1(-x) - d_2(-x) = -d_1(x) + d_2(x)$ $\therefore \ 2d_1(x) = 2d_2(x) \implies d_1(x) = d_2(x)$ similarly $d_3(x) = d_1(x) = d_2(x)$ so] plane I to lx that cuts R1, R2, R3 in half!