III Cohomology
A Cohomology groups of a chain complex
a sequence of abeliain groups C^{*} and maps

$$
\delta^{n}: C^{n} \rightarrow C^{n+1}
$$

is called a co-chain complex if $\delta_{n+1} \delta_{n}=0$ for all the "homology" of the complex is called the cohomology of $\left(C^{*}, \delta\right)$

$$
H^{n}\left(C^{*}, \delta\right)=\operatorname{ker} \delta_{n} / \operatorname{im} \delta_{n-1}
$$

If $\left(C_{*}, \partial\right)$ is a chain complex and G any abelcan group then we get a dual w-chain complex

$$
C^{n}=\operatorname{Hom}\left(C_{n}, G\right)=\left\{\text { homomorphisms } C_{n} \rightarrow G\right\}
$$

$\hat{}$ is G omitted, then assumed to be Z
and $\delta_{n}=\partial_{n+1}^{*}: c^{n} \rightarrow c^{n+1}$
ne. $\tau \in C^{n}$ so $\tau: C_{n} \rightarrow G$
then

$$
\delta(\tau): C_{n+1} \rightarrow G: \sigma \mapsto \tau\left(\partial_{n+1} \sigma\right)
$$

$$
\text { note }\left[\delta_{n+1} \circ \delta_{n}(\tau)\right](\sigma)=\left[\delta_{n}(\tau)\right]\left(\partial_{n+2} \sigma\right)=\tau\left(\partial_{n+1} \circ \partial_{n+2} \sigma\right)=\tau(0)=0
$$

so $\left(C^{*}, \delta\right)$ is a co-chain complex and

$$
H^{n}\left(c_{*} ; G\right)=\text { her } \delta_{n} / \operatorname{lin} \delta_{n-1}
$$

is called the cohomology of $\left(C_{w}, \partial\right)$
Question: Is there any more information in cohomology
Answer: No ... and Yes
we will see the groups $H^{*}\left(C^{*}, \delta\right)$ contain same information as groups $H_{x}\left(C_{v}, \partial\right)$
but the cohomology of a topological space $\underset{\sim}{\oplus} H^{n}\left(C_{*}(x)\right)$ has a ring structure that does give more information about X.

If $\left(A_{*}, \partial\right)$ and $\left(B_{*}, \partial^{\prime}\right)$ are chain complexes and $\alpha:\left(A_{*}, \partial\right) \rightarrow\left(B_{*}, \partial^{\prime}\right)$ is a chain map then
$\alpha^{*}: B^{*} \rightarrow A^{*}$ is a co-chain map (ie. $\delta \cdot \alpha^{*}=\alpha^{*} \circ \delta^{\prime}$)

$$
\stackrel{\rightharpoonup}{\beta} \longmapsto \stackrel{\rightharpoonup}{\beta \circ \alpha}
$$

and hence induces a map $\alpha^{*} \cdot H^{n}\left(B_{*} ; G\right) \rightarrow H^{n}\left(A_{*} ; G\right)$
exercise: 1) $\alpha:\left(A_{\alpha}, \partial\right) \rightarrow\left(B_{x}, \partial^{\prime}\right)$
$\beta!\left(B_{*}, \partial\right) \rightarrow\left(C_{w}, \partial^{\prime \prime}\right)$ chari maps
then $(\beta \circ \alpha)^{*}=\alpha^{*} \circ \beta^{*}$
2) $\mathbb{1}^{*}=\mathbb{1}$ and $0^{*}=0$

As mentioned above $H^{*}\left(C_{n}, \partial\right)$ is determined by $H_{*}\left(C_{*}, \partial\right)$
But this is not obvious
example: if $\left(C_{x}, \partial\right)$ is
\Downarrow homology
\Downarrow cohomology

$$
\begin{array}{llll|llll}
H_{3} & H_{2} & H_{1} & H_{0} & H^{3} & H^{2} & H^{1} & H^{0} \\
11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 \\
\mathbb{Z} & 0 & \mathbb{Z} / 2 & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} / 2 & 0 & \mathbb{Z}
\end{array}
$$

so H^{n} is not just something like $\operatorname{Hom}\left(H_{n}, \notin\right)$
note there is a natural pairing

$$
\begin{aligned}
H^{n}\left(C_{*} ; G\right) \times H_{n}\left(C_{*}, \partial\right) & \longrightarrow G \\
([\alpha],[\beta]) & \longmapsto \alpha(\beta)
\end{aligned}
$$

exercise: Show $\alpha(\beta)$ is independent of representative you take of $[\alpha]$ and $[\beta]$
thus we get a natural map

$$
\begin{aligned}
& H^{n}\left(C_{x} ; G\right) \Phi \\
& {[\alpha] \longmapsto } H_{\text {om }}\left(H_{n}\left(C_{x}, \partial\right), G\right) \\
& \phi_{[\alpha]}: H_{n}\left(C_{x}, \partial\right) \rightarrow G \\
& {[\beta] } \longmapsto \alpha(\beta)
\end{aligned}
$$

we want to understand this map better
If A is an abelian group, then \exists free abeliain groups F and R and homomorphisms st.

$$
0 \rightarrow R \xrightarrow{f} F \xrightarrow{g} A \rightarrow 0
$$

is exact
exercise: $\operatorname{Hom}(\cdot, G)$ is left exact
2.e. $\quad G_{1} \rightarrow G_{2} \xrightarrow{\beta} G_{3} \rightarrow 0$ exact, then

$$
0 \rightarrow \operatorname{Hom}\left(G_{3}, G\right) \xrightarrow{\beta^{*}} \operatorname{Hom}\left(G_{2}, G\right) \rightarrow \operatorname{Hom}\left(G_{1}, G\right)
$$

is exact
(but if $0 \rightarrow G_{1} \xrightarrow{\alpha} G_{2}$ too then don't necessarily get α^{*} surjèctive)
define: $E_{x}(A, G)=\operatorname{Hom}(R, G) /$ mi f^{*} (..e. cover*)
so $0 \rightarrow \operatorname{Hom}(A, G) \xrightarrow{g_{*}} \operatorname{Hom}(F, G) \xrightarrow{f^{*}} \operatorname{Hom}(R, G) \rightarrow E_{x}+(A, G) \rightarrow 0$ is exalt. So Ext (A, G)
examples:
$\mathbb{Z}: \quad 0 \rightarrow 0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0$

$$
E_{x}+(\mathbb{Z}, G)=0 / \mathrm{min}^{*}=0
$$ measures failure of

$$
\operatorname{Hom}(F, G) \rightarrow \operatorname{Hom}(R, G) \rightarrow 0
$$

from being exact
$\mathbb{Z}_{n}: \quad 0 \rightarrow \mathbb{Z}^{n \times x} \mathbb{Z} \rightarrow \mathbb{Z}_{n} \rightarrow 0$

$$
E_{x}+\left(\mathbb{Z}_{n}, G\right)=\operatorname{Hom}(\mathbb{Z}, G) / \operatorname{im}(n x .)^{*} \cong G / n G
$$

in particular: $E_{x} t\left(\mathbb{Z}_{n}, \mathbb{Z}_{m}\right) \cong \mathbb{Z}_{d} \quad d=$ g.c.d. (m, n)
exercises: 1) $E_{x}+(A, G)$ independent of $F_{1} R, f, g$
2) $\operatorname{Ext}\left(H \oplus H^{\prime}, G\right) \cong E_{x}+(H, G) \oplus E_{x}+(H, G)$
3) $\operatorname{Ext}(H, G)=0$ if H is free
4) $E x+\left(Z_{n} ; G\right) \cong G / n G$
5) from the above we can compute $E_{x}+(H, G)$ for all finitely generated abelian H and G
6) $\operatorname{Ext}(G ; \mathbb{Q})=0 \quad \forall G$

Th ${ }^{m} 1$ (Universal Coefficients Theorem):

$$
0 \rightarrow E_{x}+\left(H_{n-1}\left(C_{*}\right), G\right) \rightarrow H^{n}\left(C_{*} ; G\right) \rightarrow \operatorname{Hom}\left(H_{n}\left(C_{*}\right), G\right) \rightarrow 0
$$

is exact and splits and is natural with respects to chain maps
being split means the middle group is the direct sum of the other two.
Proof: purely algebraic (not too hard) see Hatcher's book
Cor 2:
if $F_{n}=$ free part of $H_{n}\left(C_{*}\right)$
$T_{n}=$ torsion part of $H_{n}\left(C_{n}\right)$
then $H^{n}\left(C_{j}^{*} ; \mathbb{Z}\right) \cong F_{n} \oplus T_{n-1}$
Proof: clear from $T^{\underline{m}}$ I and exercises
example: suppose

$$
H_{n}\left(C_{x}, \partial\right)= \begin{cases}\mathbb{Z} & n=0 \\ \mathbb{Z} / 2 & n \text { odd } \\ 0 & n \text { even }\end{cases}
$$

then

$$
\begin{aligned}
H^{n}\left(C_{*}, \mathbb{Z}\right)= & \begin{cases}\mathbb{Z} & n=0 \\
0 & n \text { odd } \\
\mathbb{Z} / 2 & n \text { even }>0\end{cases} \\
H^{n}\left(C_{*}, \mathbb{Z} / 2\right)= & \begin{array}{ll}
\operatorname{Hom}(\mathbb{Z}, \mathbb{Z} / 2) & =\mathbb{Z} / 2 \\
\operatorname{Hom}(\mathbb{Z} / 2, \mathbb{Z} / 2) \oplus E x+10, \mathbb{Z} / 2) & =\mathbb{Z} / 2 \\
\operatorname{Hom}(0,2 / 2) \oplus E_{x t}(\mathbb{Z} / 2, \mathbb{Z} / 2) & =\mathbb{Z} / 2
\end{array} \\
= & \mathbb{Z} / 2
\end{aligned}
$$

Cor 3:
if a chain map induces an isomorphism on all homology groups then it induces an isomorphism on all cohomology groups

Proof: if $\alpha:\left(C_{m}, \partial\right) \rightarrow\left(C_{x}^{\prime}, \partial^{\prime}\right)$ induces an is amorphism on homology then

$$
\begin{aligned}
& 0 \rightarrow E_{x}+\left(H_{n-1}\left(C_{x}\right), G\right) \longrightarrow H^{n}\left(C_{x} ; G\right) \longrightarrow H_{o m}\left(H_{1}\left(C_{x}\right), G\right) \longrightarrow 0 \\
& \uparrow\left(\alpha_{*}\right)^{*} \quad \uparrow \alpha^{*} \quad \uparrow\left(\alpha_{x}\right)^{*} \\
& 0 \rightarrow E_{x}+\left(H_{n-1}\left(C_{x}^{\prime}\right), G\right) \longrightarrow H^{n}\left(C_{x}^{\prime} ; G\right) \longrightarrow \operatorname{Hom}^{\prime}\left(H_{n}\left(C_{x}^{\prime}\right), G\right) \longrightarrow 0
\end{aligned}
$$

two maps on end are isomorphisms so α^{*} is omor phis (exercise)
B. Cohomology of a space
let X be a topological space
$\left(C_{n}(x), \partial\right)$ be the singular chain complex of X
the cohomology of this complex is the cohomology of $X(w /$ eff $\sim G)$

$$
H^{n}(x ; b)
$$

similarly for the pair (x, A),

$$
H^{n}(x, A ; G)
$$

is the cohomology of $\left(C_{n}(x, A), \partial\right)$
from Corollary 3 we know that if X is a CW complex then we get the sane cohomology groups if we use $\left(C_{n}^{c w}(x), \partial^{c w}\right)$.

If $f: X \rightarrow Y$ a continuous map then we get a chain map

$$
f_{*}: C_{n}(x) \rightarrow C_{n}(y)
$$

and thus a homomorphism

$$
f^{*}: H^{n}(Y ; G) \rightarrow H^{\prime \prime}(x ; G)
$$

if $f, g: X \rightarrow Y$ are homotopic then f_{*}, g_{*} are chain homotopic

$$
\text { ie } \exists P_{n}: C_{n}(x) \rightarrow C_{n+1}(y) \text { s.t. } \quad \partial_{n+1} P_{1}+\rho_{n-1} \partial_{n}=f_{n}-g_{n}
$$

dualizing we get

$$
P^{*} \delta+\delta P^{*}=f^{n}-g^{n}
$$

exercise: this miplies $f^{*}=g^{*}$ on $H^{n}(Y ; G)$
Thus cohomology is a contravariant functor from
14 = category of topologezol spaces and homotopy classes of continuous maps
to
$\operatorname{Dr}^{\prime}$ = category of graded abelian groups
Exactly as we did for homology, we can prove

1) Exact sequence of a pair

$$
\begin{gathered}
\ldots \rightarrow H^{n}(x, A) \xrightarrow{J^{*}} H^{n}(x) \xrightarrow{r^{*}} H^{n}(A) \xrightarrow{\delta} H^{n+1}(x, A) \rightarrow \ldots \\
i: A \rightarrow x \quad \text { inclusion maps } \\
J:(x, \phi) \rightarrow(x, A) \quad
\end{gathered}
$$

and if $f:(X, A) \rightarrow(Y, B)$ then

$$
\begin{array}{cc}
H^{n}(A) \xrightarrow{\delta} & H^{n+1}(X, A) \\
f^{*} \uparrow & 0 \\
H^{n}(B) & \uparrow f^{*} \\
H^{n+1}(Y, B)
\end{array}
$$

2) Excision: $z \subset \bar{z} \subset \operatorname{int} A \subset A \subset x$ then the reclusion $(x-z, A-z) \rightarrow(x, A)$ induces an isomorphism

$$
H^{n}(x, A) \rightarrow H^{n}(x-Z, A-Z)
$$

3) dimiensioń:

$$
H^{n}(p t ; G) \cong \begin{cases}G & n=0 \\ 0 & n \geq 0\end{cases}
$$

4) Mayer-Vietorís: $X=A \cup B \quad A_{1} B$ open sets

$$
\ldots \rightarrow H^{n}(X) \rightarrow H^{n}(A) \oplus H^{n}(B) \rightarrow H^{n}(A \cap B) \rightarrow H^{n+1}(X) \rightarrow \ldots
$$

exercise: from above show directly that

$$
\begin{aligned}
& H^{k}\left(D^{n} ; G\right) \cong \begin{cases}G & k=0 \\
0 & k \neq 0\end{cases} \\
& H^{k}\left(S^{n} ; G\right) \cong H^{k}\left(D^{n}, \partial D^{n} ;\right) \cong \begin{cases}G & k=0, n \\
0 & k \neq 0, \eta\end{cases}
\end{aligned}
$$

C. Products
we will define a
cross product: $\quad H^{p}(X) \times H^{q}(Y) \longrightarrow H^{\rho+q}(X \times Y)$

$$
(\alpha, \beta) \longmapsto \alpha \times \beta
$$

that is bilinear: $\left(\alpha_{1}+\alpha_{2}\right) \times \beta=\alpha_{1} \times \beta+\alpha_{2} \times \beta$

$$
\alpha \times\left(\beta_{1}+\beta_{2}\right)=\alpha \times \beta_{1}+\alpha \times \beta_{2}
$$

and natural: if $f: X^{\prime} \rightarrow X$ and $g: Y^{\prime} \rightarrow Y$ are maps then $\left(f^{*} \alpha\right) \times\left(g^{*} \beta\right)=(f \times g)^{*}(\alpha \times \beta)$
cup product: $H^{\rho}(x) \times H^{q}(x) \rightarrow H^{p+q}(x)$

$$
(\alpha, \beta) \longmapsto \alpha \cup \beta
$$

that is bilmear: $\left(\alpha_{1}+\alpha_{2}\right) \cup \beta=\alpha_{1} v \beta+\alpha_{2} \cup \beta$

$$
\alpha v\left(\beta_{1}+\beta_{2}\right)=\alpha v \beta_{1}+\alpha v \beta_{2}
$$

and natural: if $f: X^{\prime} \rightarrow X$ is a map, then

$$
f^{*}(\alpha \cup \beta)=f^{*}(\alpha) \cup f^{*}(\beta)
$$

the cup product is more useful and makes cohomology of spaces a stronger uivarcaint of spaces, but the cross product is simpler to define and study
But the cup and cross products are logically equivalent to see this let $p_{1}: X \times Y \rightarrow X$ and
$\rho_{2}: X \times Y \rightarrow Y$ be the projection maps and $\Delta: x \rightarrow X \times X: \rho \mapsto(p, p)$ be the diagonal map
suppose we have a cup product defined with above properties
we define: $x_{v}: H^{\rho}(x) \times H^{q}(y) \rightarrow H^{\rho+\varphi}(x \times y)$

$$
(\alpha, \beta) \longmapsto \rho_{1}^{*} \alpha \cup p_{2}^{*} \beta
$$

exercise: x_{u} is bilinear and natural
suppose we have a cross product defined with above properties
we define: $U_{x}: H^{\rho}(x) \times H^{q}(x) \rightarrow H^{\rho+q}(x)$

$$
(\alpha, \beta) \longmapsto \Delta^{*}(\alpha \times \beta)
$$

exercise: U_{x} is bilinear and natural
note: given u then $u_{x_{u}}=u$

$$
\text { indeed } \quad \alpha U_{x_{v}} \beta=\Delta^{*}\left(\alpha x_{v} \beta\right)=\Delta^{*}\left(\rho_{1}^{*} \alpha \cup \rho_{2}^{*} \beta\right)
$$

where $p_{i}: X \times X \rightarrow X$ projection to $1^{\text {th }}$ factor

$$
\begin{aligned}
& =\Delta^{*} \rho_{1}^{*} \alpha \cup \Delta^{*} \rho_{2}^{*} \beta=\left(p_{1} \circ \Delta\right)^{*} \alpha \cup\left(\rho_{2} \cdot \Delta\right)^{*} \beta \\
& =\alpha \cup \beta \quad\left(\operatorname{since} \rho_{1} \circ \Delta=i d_{x}\right)
\end{aligned}
$$

exercise: Show $x_{v_{x}}=x$
so if we can define either the cup or cross product then we get the other one and

$$
\begin{aligned}
& \alpha \cup \beta=\Delta^{*}(\alpha \times \beta) \\
& \alpha \times \beta=p_{1}^{*} \alpha \cup p_{2}^{*} \beta
\end{aligned}
$$

note: it is key we are working in cohomology not homology or none of the above would work!
Cross products:
$1^{t^{t}}$ we need to "recall" the tensor product of groups (modules,...)
let G and H be 2 abeliai groups
let $F(G \times H)$ be the free abelian group generated by $G \times H$ (ie. finite formal sums $\left.\sum a_{1}\left(g_{i}, h_{i}\right)\right)$
let $S=$ subgroup generated by

$$
\begin{array}{ll}
& \left(\left(g+g^{\prime}\right), h\right)-(g, h)-\left(g^{\prime}, h\right) \\
& \left(g,\left(h+h^{\prime}\right)\right)-(g, h)-\left(g, h^{\prime}\right)
\end{array} \quad \begin{array}{ll}
\\
\text { follow from } \\
\text { fin \& but } \\
\text { nice to take } \\
\text { explicit }
\end{array} \begin{cases}(n g, h)-n(g, h) & h, h^{\prime} \in H \\
(g, n h)-n(g, h) & n \in \mathbb{Z}\end{cases}
$$

the tensor product of G and H is the group $G \otimes H=F(G \times(t) / \mathrm{s}$ the coset of (g, h) is denoted $g \otimes h$ so elements of $G \otimes H$ are $\sum_{i=1}^{k} a_{i} g_{i} \otimes h_{i} \quad a_{1} \in \mathbb{Z}$ and we have $\left(g+g^{\prime}\right) \otimes h=g \otimes h+g^{\prime} \otimes h$

$$
\begin{aligned}
& g \otimes\left(h+h^{\prime}\right)=g \otimes h+g \otimes h^{\prime} \\
& n g \otimes h=g \otimes u h=n(g \otimes h)
\end{aligned}
$$

exercises: 1) $G \otimes H \cong H \otimes G$
2) $\left(\oplus_{1} G_{i}\right) \otimes H \cong \bigoplus_{i}\left(G_{1} \otimes H\right)$
3) $(G \otimes H) \otimes K \cong G \otimes(H \otimes K)$
4) $\mathbb{Z} \otimes G \cong G$
5) $\mathbb{Z} / n \otimes G \cong G / n G$
6) given homomorphisms $f: G \rightarrow G^{\prime}$ and $g: H \rightarrow H^{\prime}$
then $f \otimes g: G \otimes H \rightarrow G^{\prime} \otimes H^{\prime}$ is a homomorphism $x \otimes y \mapsto f(x) \otimes y(y)$
key property!
turns bilinear maps
into homomorphisms
7) a bilviear map $\phi: G \times H \rightarrow K$ induces a homomorphism

$$
G \otimes H \rightarrow K
$$

$g \otimes h \mapsto \phi(g, h)$
more generally if R is a commutative ring with unit and A and B are R-modules
(think vector space over R) eg abelian groups are \mathbb{Z}-modules
(thwik field but without multiplicitive avenses) eg. \mathbb{Z}
then you can analogously defrie $A \otimes_{R} B$
we can also take tensor products of complexes
let (C, ∂) and $\left(C^{\prime}, \partial '\right)$ be two chain complexes their tensor product is the chain complex

$$
\left(C \otimes e^{\prime}\right)_{n}=\underset{1+j=n}{\oplus}\left(C_{1} \otimes e_{j}^{\prime}\right)
$$

with boundary maps

$$
\partial^{\otimes}(a \otimes b)=(\partial a) \otimes b+(-1)^{i} a \otimes \partial^{\prime} b \quad \text { it } a \in C_{i} \text { and } b \in C_{j}^{!}
$$

exeruse: $\left(\partial^{\otimes}\right)^{2}=0$ so this is a chain complex we now get an algebraic cross product

$$
\begin{aligned}
x_{\text {alg }}: H_{p}(C) \otimes H_{q}\left(C^{\prime}\right) & \rightarrow H_{\rho+q}\left(C \otimes C^{\prime}\right) \\
{[z] \otimes[w] \longmapsto } & {[z \otimes w] }
\end{aligned}
$$

note: if $\bar{z}=\bar{z}+\partial \tau$, then

$$
\left.\begin{array}{rl}
z \otimes w & =\bar{z} \otimes w+\partial \tau \otimes w \\
& =\bar{z} \otimes w+\partial^{\otimes}(\tau \otimes w)
\end{array}\right\} \text { since } \partial^{\prime} v=0
$$

exercise: check $x_{\text {alg }}$ is a well-defued homomorphism that is natural with respect to chari maps

Th ${ }^{m} 4$ ($1 / 2$ Künneth Sequence) $(H A)$:

$$
0 \rightarrow \bigoplus_{p+q=n}\left(H_{p}(e) \otimes H_{q}\left(e^{\prime}\right)\right) \rightarrow H_{n}\left(e \otimes e^{\prime}\right) \text { is exact }
$$

Remark: Proof is purely algebraic and we don't really need this so we will ship the proof (see book if you are interested)
now for topological spaces:
if X and Y are $C W$-complexes, then we get a $C W$-structure on $X \times Y$ by taking products of cells
ie. e_{j}^{1} an 1 -cell of X
$\hat{e}_{j^{\prime}}^{i^{\prime}}$ an 1^{\prime} cell of Y
then $e_{j}^{1} \times \hat{e}_{J^{\prime}}^{1^{\prime}}$ an $\left(1+1^{\prime}\right)$-cell of $X \times Y$
and if $a_{j}^{i}: \partial e_{j}^{1} \rightarrow X^{(i-1)}$ attacking map of e_{j}^{1} and $\hat{a}_{j}^{i^{\prime}}: \partial \hat{e}_{j}^{i} \rightarrow Y^{(2-1)}$ attaching map of $\hat{e}_{j^{\prime}}^{i^{\prime}}$
then

$$
\begin{aligned}
& \partial\left(e_{j}^{1} \times \hat{e}_{j^{\prime}}^{\prime}\right)=\left(\partial e_{j}^{\prime}\right) \times \hat{e}_{j}^{\prime} \rightarrow e_{j}^{1} \times\left(\partial \hat{e}_{j^{\prime}}^{i^{\prime}}\right) \rightarrow \frac{\leq(x \times y)^{\left(+i^{\prime}-1\right)}}{\chi^{(1-1)} \times y^{\left(i^{\prime}\right)} \cup \chi^{(i)} \times Y^{\left(z^{\prime}-1\right)}} \\
& (x, y) \longmapsto(x, y) \longmapsto\left(a^{1}(x), y\right) \longrightarrow\left(x, \hat{a}^{\imath^{\prime}},(y)\right)
\end{aligned}
$$

is the attaching map for $e_{j}^{1} \times \hat{e}_{j}^{l}$,
thus if $a \in C_{i}^{c w}(x), b \in C_{2^{\prime}}^{c^{w}}(y)$

$$
\begin{aligned}
& a=\sum \alpha^{k} e_{k}^{1} \\
& b=\sum \beta^{l} \hat{e}_{l}^{1^{\prime \prime}}
\end{aligned}
$$

then

$$
a \otimes b=\sum \alpha^{k} \beta^{l}\left(e_{k}^{i} \otimes \hat{e}_{l}^{i^{\prime}}\right)
$$

and

$$
\begin{aligned}
\partial^{\omega}(a \times b)= & \sum \alpha^{k} \beta^{l}\left(\left(\partial e_{k}^{l}\right) \times \hat{e}_{l}^{z^{\prime}}+(-1)^{i} e_{k}^{1} \times \partial \hat{e}_{l}^{z^{\prime}}\right) \\
& =\left(\partial^{(\omega)} a\right) \times b+(-1)^{i} a \times \partial^{w} b
\end{aligned}
$$

thus we get a chain map

$$
{ }_{p+q=n}^{\oplus} C_{p}^{c w}(x) \otimes C_{q}^{c w}(y) \xrightarrow{B} C_{n}^{C v}(x \times y)
$$

similarly we get a chain map

$$
C_{n}^{w}(X \times Y) \xrightarrow{A^{\prime}} \underset{p+q=n}{\oplus} C_{p}^{c w}(X) \otimes C_{q}^{c w}(y)
$$

where $A\left(\sum_{p_{i+1}=n} a^{i j} e_{i}^{p_{i}} \times e_{j}^{q_{j}}\right)=\sum_{p_{i+1}=n} a^{i j} e_{i}^{p_{i}} \otimes e_{j}^{q_{j}}$
clearly $A \circ B(a)=a, \quad B \circ A(a \otimes b)=a \oplus b$
so we get a natural isomorphism

$$
H_{n}(X \times Y) \rightarrow H_{n}\left(C_{*}^{w}(x) \otimes C_{*}^{\omega}(y)\right) \quad \forall n
$$

Similarly in singular homology we have

$$
\begin{aligned}
& B: C_{p}(x) \otimes C_{p}(y) \longrightarrow C_{p+q}(x \times y) \\
& \left(\sigma: \Delta^{\nu} \rightarrow x, \tau: \Delta^{q} \rightarrow Y\right) \mapsto \sigma \times \tau: \underbrace{\Delta_{\rho} \times \Delta_{g}}_{\text {ven can break }} \rightarrow x \times y \\
& \text { we can break this into union } \\
& \text { of } p+q \text { smiplicies } \\
& \text { ecg. } \Delta^{\rho}=\longrightarrow \quad \Delta^{q}=\square \\
& \Delta^{P} \times \Delta^{q}=1,11
\end{aligned}
$$

given $\sigma: \Delta^{n} \rightarrow X$ set $\rho^{\sigma}: \Delta^{p} \rightarrow x:\left(t_{0}, \ldots, t_{p}\right) \mapsto \sigma\left(t_{0}, \ldots, t_{p}, 0, \ldots, 0\right)$

$$
\sigma_{q}: \Delta^{\gamma} \rightarrow x:\left(t_{0}, \ldots, t_{q}\right) \longmapsto\left(0, \ldots, 0, t_{0}, \ldots t_{q}\right)
$$

egg.

detivie $A: C_{n}(x \times y) \rightarrow \underset{p \neq m}{\oplus} C_{p}(x) \otimes C_{p}(y)$

$$
\sigma \longmapsto \sum_{p_{+q=n}} p_{p}\left(p_{x} \circ \sigma\right) \otimes\left(\rho_{r} \circ \sigma\right)_{q}
$$

where $P_{x}: X \times Y \rightarrow X$
Th́ㅡㄴ (Eilenberg-Zilber Th́n):

$$
\begin{aligned}
& p_{Y}: X \times Y \rightarrow Y \text { are projections }
\end{aligned}
$$

A, B induce natural chain maps and induce isomorphisms on homology (they are inverses)

Remark: It is easy to see they are natural chain maps the rest is much more complicated. We will see some of the ideas involved later, but we skip the proof.
the homological cross product is

$$
H_{x}^{H_{p}(x) \otimes H_{q}(y)} \underbrace{\xrightarrow{x_{d y}} H_{p+q}\left(C_{x}(x) \otimes C_{x}(y)\right) \xrightarrow{B} H_{p+q}(x x y)}_{x}
$$

Th ${ }^{\text {m }} 4$ and $5 \Rightarrow$

$$
0 \rightarrow \underset{n=p+q}{\oplus}\left(H_{p}(x) \otimes H_{q}(y)\right) \rightarrow H_{n}(x \times y) \text { is exact. }
$$

Now for cohomology
C_{*}, e_{*}^{\prime} chain complexes
define $\quad X_{a l g}: C^{p}\left(C_{n} ; G_{1}\right) \otimes C^{q}\left(C_{\nu}^{\prime} ; G_{2}\right) \longrightarrow C^{p+q}\left(C_{\nu} \otimes C_{*}^{\prime} ; G_{1} \otimes G_{2}\right)$

$$
\alpha \otimes \beta \longmapsto \alpha \times \beta
$$

where $\alpha \times \beta: C_{p} \otimes C_{q}^{\prime} \rightarrow G_{1} \otimes G_{2}$

$$
\sum z_{1} \otimes w_{2} \longmapsto \sum \alpha\left(z_{2}\right) \otimes \beta\left(w_{1}\right)
$$

note: if $G_{1}=G_{2}=\operatorname{ring} R$ then $G_{1} \otimes_{R} G_{2} \cong R$ (eg. $R=\mathbb{Z}$ then $x_{\text {alg }}$ maps to same coifs)
easy to check $x_{\text {alg }}$ well-defined and induces homomorphism on homology
to cohomology cross product is

$$
H_{x}^{H^{\rho}\left(x ; G_{1}\right) \otimes H^{q}\left(Y ; G_{2}\right) \stackrel{x_{\text {alg }}}{H^{\rho+q}\left(C_{*}(X) \otimes C_{x}(Y) ; G_{1} \otimes G_{2}\right)} \xrightarrow[\rightarrow]{A^{*}} H^{\rho+q}\left(X \times Y_{;} ; G_{1} \otimes G_{2}\right)}
$$

always use ring coeff. so defined with same coeff as we mentioned erker this also gives the cup product

$$
H^{p}(x) \times H^{q}(x) \rightarrow H^{p+q}(x):(\alpha, \beta) \longmapsto \Delta^{*}(\alpha \times \beta)
$$

Alternate Cup Product definition
given $\alpha \in C^{P}(x ; R)$

$$
\beta \in C^{g}(x ; R)
$$

define $\alpha \cup \beta: C_{p+q}(x) \rightarrow R$ by
$\alpha v \beta(\sigma)=\alpha\left(p_{p} \sigma\right) \beta\left(\sigma_{q}\right) \quad$ evaluate α on front ρ-face evaluate β on back q-face
and on cohomology $[\alpha] \cup[\beta]=[\alpha \cup \beta]$
exerusé: check u well-detined, bilinear, natural map on cohomology
note: this agrees with above definition

$$
\begin{aligned}
(\alpha \cup \beta)(\sigma) & =\Delta^{*} A^{*}\left(\alpha x_{\alpha g} \beta\right)(\sigma)=\left(\alpha x_{a l g} \beta\right)\left[(A \circ \Delta)_{*} \sigma\right] \\
\text { old def } & =\left(\alpha x_{a b} \beta\right)\left(\sum_{r+s=p+q}\left(p_{1} \Delta \Delta(\sigma)\right) \otimes\left(p_{i} \Delta \Delta(\sigma)\right)_{s}\right. \\
& =\alpha(p \sigma) \beta\left(\sigma_{q}\right)
\end{aligned}
$$

note: can use this definition to define cross product

$$
\alpha \times \beta=\left(p_{1}^{*} \alpha\right) v\left(p_{2}^{*} \beta\right)
$$

Th ${ }^{m}$ 6:

1) let $\mathbb{1} \in H^{\circ}(x ; R)$ be the elemend represented by the cocycle

$$
1: C_{0}(x) \rightarrow R: \sigma \mapsto 1 \text { runt in } R
$$

Then $\mathbb{1} v \alpha=\alpha v \mathbb{1}=\alpha$
2) \cup makes $C^{*}(X ; R)$ and $H^{*}(X ; R)$ a ring with unit that is natural (1.e. U is billuear, associative, and has unit)
3) In cohomology
$\alpha \cup \beta=(-1)^{p q} \beta \cup \alpha$
if $\alpha \in H^{P}(x ; R)$ and $\beta \in H^{q}(x ; R)$

So $H^{*}(X)$ is a skew-commutative graded ring
Cote if α has odd grading, then $\alpha v \alpha=-\alpha v \alpha$ so $\alpha v \alpha=0$ if char $R \neq 2$)

Proof: 1) 1 $\cup a: C_{p}(x) \rightarrow R: \sigma \mapsto 1\left(\sigma_{0}\right) a\left(\sigma_{p}\right)=1 \cdot a(\sigma)=a(\sigma)$
so 1va=a (you can check other),
2) X is billiear and natwal so U is too
$x_{a l g}$ clearly associative since \otimes is
exercise: check x, and hence u, is associative
Hint: just need to consider map A^{*} above.
3) Is more complicated!
given a permutation π of $\{0, \ldots, p\}$ we get a linear map

$$
\Delta^{P} \xrightarrow{\pi} \Delta^{P}
$$

that sends e_{1} to $e_{\pi(i)}$ example:
If σ is a p-siniplex we get a new simplex e_{0}

$\sigma_{\pi}: \Delta^{p} \rightarrow X$ by composing σ with above map this defines a homomorphism $C_{p}(x) \rightarrow C_{p}(x)$
now let $\theta_{p}(i)=p-i$ be permutation sending $(0, \ldots, p)$ to $(p, \ldots, 0)$
define: $\theta: C_{p}(x) \rightarrow C_{p}(x)$

$$
z \mapsto(-1)^{\frac{1}{2} p(p+1)} z \circ \theta_{\rho} \quad \text { (can dothis for all } p \text {) }
$$

Claim 1: θ is a chain map $\theta \cdot \partial=\partial \cdot \theta$
Claim 2: θ is chain homotopic to the identity.
we prove these later.
Claini $1 \Rightarrow \theta^{*}: C^{*}(X) \rightarrow C^{*}(X)$ is a cochain map
Claims $2 \Rightarrow \theta^{*}=i_{H^{*}(x)}: H^{*}(x) \rightarrow H^{*}(x)$
note: $p\left(\sigma \circ \theta_{p+q}\right)=\sigma_{p} \circ \theta_{p}$

$$
\left(\sigma \circ \theta_{p+q}\right)_{q}=q \sigma \circ \theta_{q}
$$

now if $c \in C^{p}(x ; R), d \in C^{q}(x ; R)$, then

$$
\begin{aligned}
&\left(\theta^{*}(c \cup d)\right)(\sigma)=(c \cup d)(\theta(\sigma))=(-1)^{\frac{1}{2}(p+q)(p+q+1)} c\left(\left(\sigma \cdot \theta_{p+q}\right)\right) d\left(\left(\sigma_{0} \theta_{p+q}\right)_{q}\right) \\
&=(-1)^{1 / 2(p+q)(p+q+1)} c\left(\sigma_{p} \cdot \theta_{p}\right) d\left(, \sigma_{0} \theta_{q}\right) \\
&=(-1)^{\frac{1}{2}(p+q)(p+q+1)+\frac{1}{2} p(p+1)+\frac{1}{2} q(q+1) c(\theta(\sigma)) d(\theta(\sigma))} \\
&=(-1)^{\cdots \cdots}\left(\theta^{*} c\right)\left(\sigma_{p}\right)\left(\theta^{*} d\right)\left({ }_{q} \sigma\right) \\
&=(-1)^{\cdots}\left(\theta^{*} d \cup \theta^{*} c\right)(\sigma)=(-1)^{\cdots}\left(\theta^{*}(d \cup c)\right)(\sigma)
\end{aligned}
$$

$$
\begin{aligned}
& \text { exponent is } \begin{aligned}
\frac{1}{2} & {\left[p^{2}+p q+p+p q+q^{2}+q+p^{2}+p+q^{2}+q\right] } \\
& =p^{2}+q^{2}+p q+p+q=\frac{p(p+1)+q(q+1)}{(q)}+p q \\
& =p q \bmod 2
\end{aligned} \\
& \therefore \theta^{*}\left(\text { cud }-(-1)^{p q} d u c\right)=0 \\
& \theta \text { isomorphism } \Rightarrow c u d=(-1)^{p q} d u c
\end{aligned}
$$

Proof of Claim 1: σ a p-simplex

$$
\begin{aligned}
& \text { Claim 1: } \sigma \text { a } p \text {-simplex } \\
& \partial \theta(\sigma)=(-1)^{1 / 2 p(p+t)} \partial\left(\sigma \cdot \theta_{p}\right)=(-1)^{\frac{1}{2} p(p+1)} \sum(-1)^{p-i} \sigma_{0} \overbrace{\left.e_{p}, \ldots . \hat{e}_{i} \ldots e_{0}\right]}
\end{aligned}
$$ face is (-1)

and

$$
\theta \partial(\sigma)=\theta\left[(-1)^{i} \sigma \cdot\left[e_{0} \ldots \hat{e}_{2} \ldots e_{p}\right]=(-1)^{\frac{1}{2}(p-1) p} \sum(-1)^{i} \sigma_{0}\left[e_{p} \ldots \hat{e}_{1} \ldots e_{0}\right]\right.
$$

but consider exponents:

$$
\left(\frac{1}{2} p(p+1)+p-i\right)-\left(\frac{1}{2}(p-1) p+i\right)=\frac{p^{2}+3 p-p^{2}+p}{2}-2 i=2(p-i) \text { even }
$$

so parity of exponents same and $\partial \theta=\theta \partial$
Proof of Claim 2:
need to construct

$$
\begin{array}{ll}
& J_{p}: C_{p}(x) \rightarrow C_{p+1}(x) \\
\text { s.t. } & 1 d-\theta=\partial_{p+1} \circ J_{p}+J_{p-1} \circ \partial_{p}
\end{array}
$$

we construct J_{p} by induction on p
for $p \leq 0$, set $J_{p}=0$ (note $(l d-\theta)\left(\sigma^{0}\right)=0$)
to inductively continue weneed a little more set up
let $1_{0}, \ldots, q_{q}$ be $(q+1)$ numbers between 0 and p (don't need to be distinct)
let $\left(i_{0}, \ldots, q_{q}\right): \Delta^{q} \rightarrow \Delta^{p}$ be the map

$$
\begin{aligned}
& \sum_{j=0}^{q} t_{j} e_{j} \mapsto \sum_{j=0}^{q} t_{j} v_{\imath_{j}} \\
& \text { example: }(1,2):[0,1] \rightarrow \underbrace{e_{2}}_{e_{1}}
\end{aligned}
$$

given a p-simplex $\sigma: \Delta^{p} \rightarrow X$
$\sigma\left(1_{0}, \ldots, q_{q}\right)$ will be $q-$ smiplex $\sigma_{0}\left(1_{0}, \ldots, 1_{q}\right)$
let $C(\sigma)_{q}$ be subgroup (module) of $C_{q}(x)$ generated by all of the $\sigma\left(7_{0}, . ., l_{q}\right)$
note: $\partial\left(\sigma\left(l_{0}, \ldots 1_{q}\right)\right)=\left.\sum_{i=0}^{q}(-1)^{i} \sigma\left(l_{0} \ldots l_{q}\right)\right|_{\left[e_{0} \ldots . . \hat{e}_{i} . . . e_{q}\right]}$

$$
=\sum_{q=1}^{q}(-1)^{i} \sigma\left(1_{0} \ldots \hat{p}_{2} \ldots 1_{q}\right) \in C(\sigma)_{q-1}
$$

So $\left(C(\sigma)_{v}, \partial\right)$ is a chain complex.
note: $H_{q}\left(C(\sigma)_{*}, \partial\right)=0 \quad \forall q>0 \quad$ such a complex is called indeed define $B: C(\sigma)_{q} \rightarrow C(\sigma)_{q+1}$ by acyclic

$$
B\left(\sigma\left(1_{0} \ldots 1_{q}\right)\right)=\sigma\left(0,1_{0}, \ldots 1_{q}\right)
$$

for any $z \in C(\sigma)_{q}, q>0$

$$
\partial(B z)=Z-B(\partial z)
$$

so if $\partial z=0$, then $Z=\partial(B z) \quad \therefore H_{q}=0$
Back to construction of J_{p} assume J_{k} defined for $k<p$ so that

$$
\begin{aligned}
& \text { 1) } I d-\theta=J \partial+\partial J \text { and } \\
& \text { 2) } \forall \tau \in C_{q}(x), q<p \text {, then } J(\tau) \in C(\tau)_{q+1}
\end{aligned}
$$

now given σ a p-simplex

$$
J \partial \sigma \subset \bigcup_{i} C\left(\left.\sigma\right|_{\left[e_{0} \ldots \hat{e}_{i} \ldots e_{p}\right]}\right)=\bigcup_{i} C\left(\sigma\left(0, \ldots \hat{i}_{1} \ldots p\right)\right) \subset C(\sigma)_{p}
$$

also

$$
(1 d-\theta)(\sigma) \in C(\sigma)_{p}
$$

and

$$
\partial[(1 d-\theta-J \partial) \sigma]=[\underbrace{I d-\theta-\partial J}](\partial \sigma)=J \partial \partial \sigma=0
$$

$=J \partial$ by viduction
but $C(\sigma)_{*}$ acyclic so $\exists z \in C(\sigma)_{p+1}$ st. $\partial z=(1 d-\theta-\partial J)(\sigma)$ so set $J(\sigma)=Z$ and we are done

Now for a computation:
recall $H_{n}\left(S^{n}\right)=H^{k}\left(S^{n}\right)= \begin{cases}飞 & k=0, n \\ 0 & k \neq 0, n\end{cases}$
and

$$
H_{k}\left(s^{n} \times s^{m}\right)=H^{k}\left(s^{n} \times s^{m}\right)=\left\{\begin{array}{lll}
\mathbb{Z} & k=0, n, m, n+m & \text { can compute using CW-str } \\
0 & \text { otherwise } & e^{0}, e^{n} \text { cells for } s^{n} \\
f^{0}, f^{m} \text { cells for } s^{m} \\
& e^{0} \times f^{0}, e^{0} \times f^{m}, e^{n} \times f^{0}, e^{n} \times e^{m} \\
\text { for } s^{n} \times s^{m}
\end{array}\right.
$$

Künneth gives:
(look back at def of cross prod.)
if $\bar{\alpha}$ dual of a in $\operatorname{Hom}\left(H_{n}\left(s^{n}\right) ; \mathbb{Z}\right) \cong H^{n}\left(s^{n}\right)$
$\bar{\beta}$ dual of 6 in $\operatorname{Hom}\left(H_{m}\left(s^{m}\right) ; \mathbb{Z}\right) \cong H^{m}\left(s^{m}\right)$
then $(\bar{\alpha} \times \bar{\beta})(a \times b)=\alpha(a) \beta(b)=1$ so $\bar{\alpha} \times \bar{\beta}$ gen $H^{n+m}\left(s^{n} \times s^{m}\right)$
now let $p_{1}: S^{n} \times s^{m} \rightarrow s^{n}$
$p_{2}: s^{n} \times s^{m} \rightarrow s^{m}$ be projections
and $\alpha=p_{1}^{\prime \prime} \bar{\alpha}, \beta=p_{2}^{*} \bar{\beta}$
then α generates $H^{n}\left(S^{n} y S^{m} ;{ }^{n}\right)$ and β generates $H^{m}\left(S^{n} \times s^{m} ; z\right)$ (to see this let $2_{1}: S^{n} \rightarrow s^{\circ}, \cdot m: x \mapsto\left(x, p_{0}\right)$ fixed

$$
\eta_{1}^{*} \cdot\left(\rho_{1}^{*}(\bar{\alpha})\right)=\left(\rho_{1} \circ q_{1}\right)^{*} \bar{\alpha}=1 d_{s^{n}}^{*} \bar{\alpha}=\bar{\alpha}
$$

so $p_{1}^{*} \bar{\alpha}$ is a generator of $H^{n}\left(S^{n} \times s^{m}\right)$
(if not α then take use $-\bar{\alpha}$ instead of $\bar{\alpha}$)
done if $u \neq m$
exercise: think about $n=m$ case)
now $\quad \alpha \cup \beta=p_{1}^{*} \bar{\alpha} \cup p_{2}^{*} \bar{\beta}=\bar{\alpha} \times \bar{\beta}$ generator of $H^{n+m}\left(S^{n} \times S^{m}\right)$
note, together with $\mathbb{1} \cup g=g$ we know all cup products!
example:

$$
\begin{aligned}
& X=S^{2} \times S^{3} \\
& Y=S^{2} \vee S^{3} \vee s^{5} \\
& H_{n}(x) \cong H^{n}\left(x^{n}\right) \cong\left\{\begin{array}{ll}
Z & n=0,2,3,5 \\
0 & \text { otherwise }
\end{array}\right\} \cong H^{n}(Y) \cong H_{n}(Y) \\
& \pi_{1}(X)=\{1\}=\pi_{n}(Y)
\end{aligned}
$$

so all previous invariants same
but if α, β gens in dim 2,3 in $H^{*}(X)$ then $\alpha u \beta \neq 0$
now consider Y
$s^{5} \xrightarrow{i} Y \xrightarrow{\pi} s^{5}$ obvious maps

$$
\pi \circ i=d d_{s^{5}}
$$

so $i^{*}: H^{5}(Y) \rightarrow H^{115}\left(s^{5}\right)$ is sorjective \therefore an isomorphism

$$
\begin{aligned}
& \forall x \in H^{2}(Y) \text { any } y \in H^{3}(Y) \\
& \imath^{*}(x \cup y)=r^{*}(x) \cup \eta^{*}(y)=0 \\
& \therefore x \cup y=0
\end{aligned}
$$

so $S^{2} \times s^{5}$ not homotopy equivalent to $s^{2} v s^{3} v s^{5}$!
Cup products and Relative Cohomology
recall if $A \subset x$, then $C_{n}(x, A)=C_{n}(X) / C_{n}(A)$
so $C^{n}(x, A ; R)=\operatorname{Hom}\left(C_{n}(x) / C_{n}(A), R\right)$
we note $0 \rightarrow C^{n}(x, A) \xrightarrow{q^{*}} C^{n}(x) \xrightarrow{i^{*}} C^{n}(A)$ is exact since $0 \rightarrow C_{n}(A) \xrightarrow{q} C_{n}(X) \xrightarrow{q} C_{n}(X, A) \rightarrow 0$ is exact and $\operatorname{Hom}(\cdot, R)$ is left exact thus $C^{n}(X, A ; R) \cong \operatorname{im} q^{*} \cong \operatorname{ker} 2^{*}$
note if $\eta \in C^{n}(X ; R)$ then $\tau^{*}(\eta)$ is just η restricted to $C_{n}(A)$
so we can think of $C^{n}(X, A ; R)$ as homomorphisms from $C_{n}(X)$ that vanish on $C_{n}(A)$
so with the definition of cup product

$$
(a \cup b)(\sigma)=a(p \sigma) b\left(\sigma_{q}\right)
$$

for $a \in H^{p}(x ; R)$ and $b \in H^{q}(X ; R)$
we also get products: $H^{p}(x, A ; R) \times H^{q}(x ; R) \rightarrow H^{p+q}(x, A ; R)$

$$
H^{\rho}(x ; R) \times H^{q}(x, A ; R) \rightarrow H^{\rho+q}(x, A ; R)
$$

and

$$
H^{d}(x, A ; R) \times H^{q}(x, A ; R) \rightarrow H^{p+q}(x, A ; R)
$$

working a bit more we also get

$$
H^{\rho}(X, A ; R) \times H^{q}(X, B ; R) \rightarrow H^{\rho+q}(X, A \cup B ; R)
$$

to see this note U mops

$$
C^{p}(x, A ; R) \times C^{q}(X, B ; R) \rightarrow C^{p+q}(X ; A+B ; R)
$$

where $C^{p+q}(X, A+B ; R)$ is the cochains that vanish on elements of $C_{p+q}(X)$ of the form $\alpha+\beta$ where $\alpha \in C_{p+q}(A)$ and $\beta \in C_{p+q}(B)$ ie. $C_{p+q}(X) / C_{p+q}(A)+C_{p+q}(B)$
there is an reclusion map

$$
C_{p+q}(X ; A+B) \rightarrow C_{p+q}(X ; A \cup B)
$$

similar to our discussion of excision, one can show this induces an isomorphism on homology
\therefore we also get an isomorphism

$$
H^{p+q}(X, A \cup B ; R) \cong H^{\rho+q}(X, A+B ; R)
$$

lemma 7:
suppose $X=$ UUV with U, V open sets with

$$
\tilde{H}_{*}(U)=\tilde{H}_{x}(V)=0
$$

Then $\alpha \cup \beta=0 \quad \forall \alpha_{1} \beta \in H^{*}(x)$ of posinue degree
Proof: In the long exact sequence of a pair we have

$$
\begin{aligned}
& H^{\rho}(x, v) \xrightarrow{J^{*}} H^{p}(x) \xrightarrow{u^{*}} H_{0}^{p}(v) \quad p>0 \\
& \text { so } \forall \alpha \in H^{\rho}(x), r^{*}(\alpha)=0 \\
& \therefore \exists \bar{\alpha} \in H^{p}(x, v) \text { sit } J^{*} \bar{\alpha}=\alpha
\end{aligned}
$$

similarly $\forall \beta \in H^{q}(x), \exists \bar{\beta} \in H^{q}(X, V)$ s.t. $)^{\alpha} \bar{\beta}=\beta$ for $q>0$
now $\quad \bar{\alpha} \cup \bar{\beta} \in H^{\rho+q}(x, \cup \cup v)=H^{\rho+q}(x, x)=0$
but $\begin{array}{ccc}H^{\rho}(x) & \times H^{q}(x) & \stackrel{u}{u} \\ \uparrow J^{*} & \uparrow J^{*} & \stackrel{u}{u}\end{array} H^{\rho+q}(x)$

$$
\begin{aligned}
& H^{p}(x, v) \times H^{q}(x, v) \xrightarrow{u} H^{p+q}(x, v \cup v) \\
\therefore & \left.\alpha \cup \beta=J^{*} \bar{\alpha} \cup\right)^{*} \bar{\beta}=J^{*}(\bar{\alpha} v \bar{\beta})=0
\end{aligned}
$$

note: J^{*} maps not same so think about this to see argument OK.
examples:

1) lemma $\Rightarrow s^{n} \times s^{m}$ is not the union of two acyclic sets!
2) a suspensini $\sum X=\frac{X \times\{0,1] / x \times\{0\}, X \times\{1\}}{}=X_{x \times[0,1)}^{x \times\{0\}} v^{x \times(1,0]} / x \times\{1\}$
always has trivial cup products in pos. degrees!
3) so $S^{n} \times s^{m}$ not a suspension
so cup products can tell us interesting things!
exercise: if X the union of n contractible open sets then n fold cup products are trivial.
D. More products
recall we have a map

$$
C_{p}(x ; R) \times C^{P}(x ; R) \longrightarrow R
$$

$(\beta, \alpha) \longmapsto \alpha(\beta)$ we write this $\langle\alpha, \beta\rangle$
this pairing is non degenerate so we can look at the "adjoint" of U with respect to this parring
that is, we define the cap product as the map

$$
n: C_{p+q}(x ; R) \times C^{p}(x ; R) \rightarrow C_{p}(x ; R)
$$

st. for $\alpha \in C^{P}(x ; R)$

$$
\beta \in C_{p+q}(x ; R)
$$

$\beta \wedge \alpha$ is the unique element in $C_{q}(x ; R)$ satisting

$$
\langle\beta \cap \alpha, \gamma\rangle=\langle\beta, \alpha \cup \gamma\rangle \quad \forall \gamma \in C^{q}(x ; R)
$$

2.e. If we think of αv as a map $C^{q}(x ; R) \rightarrow C^{p+q}(x ; R)$ then $n \alpha$ is the adjoint with respect to passing we can define Λ as follows

$$
\beta \cap \alpha=\underbrace{\alpha(p \beta)}_{\epsilon R} \beta_{q} \epsilon_{C_{q}(x ; R)} \in C_{q}(x ; R)
$$

exercise: Check this is the adjoint of αu.
lemma 8:
$C_{*}(x ; R)$ is a unitary $C^{*}(x ; R)$ module using 1
Proof:

$$
\begin{aligned}
\beta \cap(\alpha \cup \gamma) & =(\alpha \cup \gamma)\left(_{p+q} \beta\right) \beta_{r} \\
& =\alpha(p \beta) \gamma\left(\left(_{p+q} \beta\right)_{q}\right) \beta_{r}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } \begin{aligned}
(\beta \wedge \alpha) \cap \gamma & =\left[\alpha(p \beta) \beta_{q+r}\right] \cap \gamma \\
& =\alpha(p \beta) \gamma(\underbrace{\left.q\left(\beta_{q+r}\right)\right)}_{(\sim \wedge \beta)_{q}} \beta_{r} \\
\text { so } \beta \wedge(\alpha \cup \gamma) & =(\beta \cap \alpha) \wedge \gamma
\end{aligned}
\end{aligned}
$$

exercise: check rest
lemma 9:
it $\beta \in C_{p+q}(X ; R), \alpha \in C^{P}(X ; R)$ then

$$
\partial(\beta \cap \alpha)=(-1)^{\rho}((\partial \beta) \cap \alpha-\beta \cap \delta \alpha)
$$

Proof: we need to check each side in equality pairs same with all elements in $C^{p-1}(x ; R)$

$$
\begin{aligned}
&(-1)^{p}(\langle\partial \beta \Omega \alpha, \gamma\rangle-\langle\beta \cap \delta \alpha, \gamma\rangle) \\
&(-1)^{p}(\langle\partial \beta, \alpha u \gamma\rangle-\langle\beta,(\delta \alpha) \cup \gamma\rangle) \\
&=(-1)^{p}(\langle\beta, \delta(\alpha \cup \gamma)\rangle-\langle\beta,(\delta \alpha) \cup \gamma\rangle) \\
&=(-1)^{p}\left(\langle\beta(\delta \alpha) \cup \gamma\rangle+\left\langle\beta,(-1)^{p} \alpha \cup \delta \gamma\right\rangle-\langle\beta,(\delta \alpha) \cup \gamma\rangle\right) \\
&=\langle\beta, \alpha \cup \delta \gamma\rangle=\langle\beta \cap \alpha, \delta \gamma\rangle \\
&=\langle\partial(\beta \cap \alpha), \gamma\rangle \text { 囲 }
\end{aligned}
$$

from lemma its clear Λ decends to ($c 0$)homology

$$
n: H_{p+q}(x ; R) \times H^{p}(x ; R) \rightarrow H_{q}(x ; R)
$$

exercosé: check well-defined
lemma 10:

$$
f: X \rightarrow Y \text { a map }
$$

Then

$$
f_{*}\left(\beta \cap f^{*} \alpha\right)=f_{*}(\beta) \cap \alpha
$$

for $\beta \in H_{p+q}(x ; R)$ and $\alpha \in H^{p}(Y ; R)$
exercise: Prove lemma (just like last lemma)
we also get relative cap products

$$
\begin{aligned}
& H_{p+q}(X, A ; R) \times H^{p}(x, A ; R) \longrightarrow H_{q}(X ; R) \quad \text { and } \\
& H_{p+q}(x, A ; R) \times H^{p}(x ; R) \longrightarrow H_{q}(x, A ; R)
\end{aligned}
$$

let's see the first one is well-defined

$$
\begin{aligned}
& {[\beta] \in H_{p+q}(X, A ; R) \quad \text { so } \beta \in C_{p+q}(X, A ; R)} \\
& {[\alpha] \in H^{P}(X, A ; R) \quad \text { so } \alpha \in C^{p}(X, A ; R) \text { ne. } \alpha \text { vanishes on } C_{p}(A ; R)} \\
& \partial(\beta \cap \alpha)=(-1)^{P}(\partial \beta \cap \alpha-\beta \cap \delta \alpha) \quad \text { since } \partial \beta \in C_{p+q-1}(A ; R) \\
& \quad \text { note: } 1)\langle\partial \beta \cap \alpha, \gamma\rangle=\langle\partial \beta, \alpha \cup \gamma\rangle=0 \quad \forall \gamma \therefore \partial \beta \cap \alpha=0
\end{aligned}
$$

2) $\delta \alpha$ vanishes on $C_{p+1}(A ; R){ }^{3}{ }_{p+1} \beta \quad($ since $\partial \beta \subset A)$
$\therefore \partial(\beta \cap \alpha)=0$ not just in $C_{q-1}(A ; R)$
so gives eltement in $H_{q}(X ; R)$
