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Poincaredualitya
. StatementandConsequencema_fotdofd.in is a topological space M that Is

Hausdorff and locally Euclidean

⇐points can be
each point xe M has an

separated by
disjoint open sets open neighborhood homeomorphcc

to IR
"

,
such a nbhd called a coordinate

note : we don't require M to be second countable as some chart
definitions do .

a manifhboundaryofdiniensco.nl Is a space M that Is

Hausdorff and every point has an open neighborhood

homeomorphic to IR
"

or IRI = { lx
, , ...

xD I xnzo }

2M= { xem that don't have nbhd homeo to IR
"

}

in 't M= { xe M that do have nbhd homeo to 1/7
" }

exercise : 212Mt

0hit @M)= JM

2 ( in 't M )= 0

2 M is an Cn-1) dimensional manifold

we say M Is closed if M Is compact and JM = 0

Wls :

1) Surfaces are 2- manifolds

& @ @ .  . .

2) 5
"

c Mm '

Is an n - manifold

3) products of manifolds are manifolds : eg
5×5 "

4) IRP
"

=
Rn "

- land }/,,z . go , is a closed n - manifold

epn =
em '

- { ' o
'  .  " 0M€

. { o , is a closed zn - manifold



Tnt
-

let R be a ring
1) M a closed connected manifold of dimension n

M is R - orientableiff
Hnlm ; R ) = R

2) M a compact connected n - manifoldwithboundary
M is R - orientable iff HNCMDM; R ) IR

Renard : I ) we will define R - orientations and prove that in next

section
2)

all manifolds are Zh - orientable

} ) the
"

standard
"

definition of oneirtable ( say from

differential topology ) Is equivalent to Z - onentable4)a choice of generator for Hn ( M ; R ) Is called afundamentalcladof M
,

Is denoted [ M ]
,

and determines an orientation

similarly for a generator [ M ,2M ] of Hn ( M ,2M ; R)
Thaz

.

÷

incareDuali#

: it M is a closed connected R . oriented n - main fold with

fundamental class [ M ]
,

then

HPCM;R ) -
Hn

. plm ; R )
[ M ]n .

is an Isomorphism .

Poincaretefschetzduality: it M is a compact connected R . oriented

n . manifold with boundary and [ MDM ] is a

fundamental class
,

then

2 [ MDM ] = @M )

where 2 : Hulm ,2M;R)→Hn . dam ;R ) comes from the

long exact sequence of the pair ( MRM )

moreover
. . .

→ Hp
' '

I M ) → HP "
bn ) → HPIMDM) → HMM) →

. . .

f[ Minn . it [2M]n '

f[ MDM )n . if [ Mismn .

i. .
→ An .p+!MRml→Hn . plan ) → Hn

. p( M ) → Hn
. p( MDM ) →

. . .

commutes ( up to sign) and vertical maps are Isomorphism s
.



we prove this later
,

for now we consider some consequences

Cort
letM be a closed compact oriented n - manifold

the cap product pairing

(
Hrlnytodxftmpkyan

) → E

K, p ) 1- dup ( [ m ] )

Is non degenerate and onto -2

( i.e. kup )[m]= 0 H p ⇒ x=o)

Proof : Universal Coefficients Theorem says

0 → Tor ( Hp . in )
,

# → HPCM
; z ) ¥ HOMCHPCM)

,
E) → 0

× 1- oh a) ( o ) = xco )

so Hpmytor ¥ Homlhplm ,
# ± Homlttpmytor

,
E)

Poincare Duality says

Hnplmytor = Hpmhor
x i- [ m ] nd

: Hplmyto
, #

Hom ( Hnplmyar ; ZA an Isomorphism
( composition of  ¢ and

a 1- ( Hnplmyto ,
→ E) P

. D. ⇒

p to 1012) ( [ m]np)=x( [ m ] np )
= pvd ( [ MT )

so pu&([ m ) )=o Hp ⇒ EK ) = 0 ⇒ x=O
<#

he :

the cohomology of GP "

Is

H*lEPn ; E) I
* [ ×Y⇐nt'

> where degx -2



Proof '

÷ heir we saw EP
"

= ( o - cell )u( 2- cell ) u
. .  .

u 12h - cell )

ZI k= 0,2 ,
... 2h

so Hhlep " ;ZH={ootherwise

we have the inclusion 2 : GP
" "

→ GP
"

apyapn.ie 5 "

the long exact sequence of a pair gives y
y*Hhlep "

,
6pm ') → Hk ( epn ) → Hkcepn ') →

Hhtycpn

,
a pay

11 11

k < 2h 0 0

so 2* an isomorphism on
Hk F k < Zn

statement in theorem clearly true for n=l : H
't

( EP
'

) I
# [×Y⇐ ,

now it true for ep
" "

then

× t HYGP" " ) st . xkgenerates H24EPn " ) F k= 1,2 . .  . in - '

so I
* KM generates HMCEP " ) t k< n

: . by her 3
, 1*4 u It HY

"
must generate HMCGP ")

At

her 5=

any homotopy equivalence EP
"

→ EP
"

preserves orientation

Proof : Such an f induces an isomorphism on HYGP " ) EE

so f
*

( × ) =
 ±x

:
. f* ( ×

" ) = ( f
*

C x ) )2 "

= ⇐× )
"

= x2
"

so f-
*

takes a fundamental class to itself  i. preserves or
"

#,
( by universal weft

.

Cod : cheorem )

M a closed oriented n - manifold

Free Hank ) = Free Hnlm)

Tor Hmhlm ) I Tor Hk . ,
In )

if n is odd then c- Eulecharactuistic
XCM )=o

if h=4mt2 then
x( m ) even



Prod : 1st part is just Poincare
'

duality and Universal Coefficients

it dini M = Zmtl,
then

rant

enirq.n.iti-E.enib.IE?.eiibi=I..oeisib

,

+ I.oath
" ' iban

, . i

= Iof-is
'

'

b
,

+ ¥of, y
- i

b
,

?OshieFree HE Free Ham
. ,  . h

it dim M even then same computation gives

Xlml = but even number

it denim = 4M -12 then XCM) even ⇐ bzm+
,

even

her 3 ⇒ It
'm "

Imya
,

x
HZM "

(myeon → z

a non - degenerate skew-symmetric pairing

linear algebra fact :

-

If V an k - dimensional vector space

of : V x V → IR

is a non - degenerate shew - symmetric pairing
then k is even

exercise : Prove this hint it W subspace of V

and Wt = { v EV : qtr ,
4--0 . tf w E W )

then dim V -

- dim Wedin Wt

( wtf = w

so fact  ⇒ X IM ) even .

L#

Cor 7i.
let Mu -

- TV
" "

with Y compact ,

orientable
,

and M connected

then rank C Hn Int ) is even and

dim ( her ht : Hdmi -7 Haw ) ) -

- dim I it : HMV ) → Hnlms) -
- I dim Hmm)

moreover any two classes in image it Cup to

zero



Proof: Hnlv ) Is Hnlm ) # Hntykm )

[m]n . f=If [ VDDN . by Poincare - Lefschett

Hnlm ) # Hnlv) duality

so[ M ]n ( imF) = [ m]n(kerS* ) = her 1*

and rank z* = dim ( ini n
't )= duiker e* ) = dim Hnlm) - rank n*

= dim Hnlm) - rank n
't

+
since < ix. C > = (n 't d)(c) =L ( 7

* c) = { x ,1*c )

: . di in Hnlm ) = I rank i* so z* , 1* are adjoins .

'

.
have same

rank he .

rank of matrix and transpose
are equal. )

now it x.pe HNH ) then
a

since 8*02*0

8*17*4 )ui*fsD= 8*02 't

( xup ) = O

but H
"

( m ) Is H
" "

( km )

Hotline
,
¥oil) and n* injective : . s* injective

so Hau r*lH=0
#

Cord .

If M=2V unneeded and V compact and Orient able

then XIM ) even

Proof : if dim M odd then XIM )=O ✓

it dim M =  4mt2 then XCM ) even by Cor 6

it dim M=4m
,

then proof of Cor 6 ⇒ ( XM ) even # bzmeven)

but 6r7 says it is even
#



¥ "

gpu
is not the boundary of a compact

oriented ( 4 nth. manifold
.

B
.

Fundamental classes of manifolds
-

let M be a manifold and R a ring with identity I usually Z or Eh )

if x c- M and U
open  nbhd of x that is home o

. to IR
"

then by excision

Halm ,
M - Ix ) ; R ) Z Hn ( U

,
U - Ix ) ; R ) = Hnl IR

"

,
IR

"
-

ftp.RT
abuse of

notation
'

, really
image of xtummy

"
"

under home o
.

the long exact sequence of the pair (IR
"

,
IR

"
- HI ) gives

no i Hn Clan) → Hn cnn.IR
'

- fxl ; R) → Ha ,
CIN - lol ; R ) → Hn

- IIR
" )

It 511 "

o o
An - is

" "

i R )
11 S

so Hn I M
,

M - 1×3 '

,
RI = R H x e M R

we call a generator of Hnl M
,

m - 1×3 '

, R ) a local

Reorientation
ofthat±

and denote it by Mx

note :  if R= Z then every point has twolocal orientations

It R=Z4z u it one u
'  '

exercise : It you know another definition of orientation at  x show

it is equivalent to a Z - orientation at  x

now it B is an open ball in a coordinate chart U
,

thenas above

Hnl M
,

M - B ; R ) I R

i
moreover the inclusion ( M

,
M -IBD → ( m

,
M - I xD for xe B

induces an isomorphism ↳
Hnl M

,
M - B ; R) → Hnl M

,
M - 1×3 ;R )

thus a generator for either group determines one for the other



so It x. y are in a ball B in a coordinate chart U in M

then
Hnlm , Mtxl ;R)= Hnlm ,

M - B ; R ) = Hnlm ,
M - {y3 ; R )

and Isomorphism s induced by inclusion

so a local orientation at × determines one at y
-

an Rorientaton on M Is a choice of local R - orientations µ× for all XEM

St
.

for all open balls B in coordinate charts of M
,

F µB a generator
of Hn( M

, M - B ; R ) st . µ×=7*lµB ) HXEB I where i : In
,

M - B) → (M
,

M - A }) )

He. a consistent choice of local R - orientations )

it an R . orientation exists on M
,

we say M is Rorientable
,

it R=E
,

we

say M is orientals

exercise : If  you know another definition of orieutable
,

show It

Is equivalent to this definition

lemma 10-

all manifolds have a uniqueZtk
orientation

Proof : ltxem
, µ ,

must be the unique generator of 742

similarly µB for any open ball in a coordinate chart

'

'

' 1*1 MB )=µ× Hx e B
Et

lemma "

÷
oppose M is R - orientable and connected

it two R - orientations agree at some x EM
,

then they are the same
.

he
.

if M is R . orientable
,

then an R . orientation Is determined

by a choice of local R - orientation at any point x EM )

Proofs . let {µ×l×€m and { µ~×}×en be two R - orientations on M
.

assume Fxo EM st
. µ×o=~µ×o

let S= { xem : µ×=F× }

st 0 since xoes



Sisopen : x e S then I open ball B st
.

xe Bc U ← word . chart

let µB be generator of Hnlm ,
M - B ; M st 1*lµB)=µ×

MI " "
"

'  ' 1*1%1 = µI

since n* isomorphism ,
and µ×=et× we have µB=µI

now for any y E B we have my =1×lµBl=1*lµTp = A.,

soB c S
-1

Similarly S is closed

so S=M since M connected
,

and orientations agree .

for the parenthetical statement :

let {µ×}×eµ be an R - orientation

let µ~×o be a choice of generator for Hn ( MM - fxol;R)

so F r E R H
. F×o=rµ×

.

and r a unit

. :{ rµ×)×eµ an R - orientation on M determined by µ~xoL#

6=12

if M is orientable and connected ,
then

M has exactly two orientations .

Proof : Z has two units +1 and -1 L#

The 13 '

-

let M be a closed connected n - manifold

1) it M is R - orientable then the map 1 :(M
,

0 ) → ( M
, M . {xD

induces an Isomorphism

lx : Hnlm ;R ) → Hnlmm - sx3 ;R)=R
for all x EM

2) it M is not R - orientable the inclusion above
-

induces es an indie map

lx : Hnlm ;R ) → Hnlm ,Mtx3 ; R )

with image = { re R : 2r=O } for all x EM



3) H
;

I M ; R ) = 0 H z > n

an element [ M ] e Hnlm ; R ) whose image in Hn ( M
,

M - N; R ) Is a

generator for all x EM is called a fundamental clay of M

with coefficients in R
.

note : by lemma 11
,

for connected M
,

the fundamental classes of M

are in one - to - one correspondence with 12 - orientations
.

for R - orcentable manifolds M a choice of generator for Hnlm ; R )

is sometimes called an them on M
.

6=14 :

i ) it M is a closed
,

connected
,

orientable n - manifold
then

Hnlm ;z ) EE

Hn ( mi ZHDEZTZ

2) it M is a closed
,

connected n - manifold that Is not - orcentable

then
Hnlm ;Zt ) = 0

Hn ( mi 2M¥Eh

Proof : clear from lemma 10 and theorem 13 L#

to prove theorem we need some preliminary work

let Me { xxlxem
, xxe Hnlmmtxl ; R ) }

we put a topology on MR as follows

for each open ball B in a coordinate chart of M

and each xt Hnlm , M - B ;R )

let UK
,

B) = { M* ( x ) }×€
,

where M : IMM - B) → ( min - { x } ) is inclusion

exercise :
 , ) Show this is a basis for a topology on MR

2) Mrtm :&×l→× is a covering map ( MR might be

disconnected )



3) if o : M → MR Is continuous st . Too = idm

( we call such a map a sewof MR )

and ttx
,

olx ) is a generator of Hn ( M
, M - { x } ; R )

then or defines an R - orientation on M

similarly an R . orientation on M gives a 0 as above .

lemma 15-

let M be an n - manifold and ACM a compact subset .

1) it 0 : M → MR is a section of MR
,

then 31
. class xae Hnlmm - A ; R )

whose image in HNIMM - 1×3 ; R ) Is olx ) Hxe A
.

2) Helm ,
M - A ; R ) = 0 He > n

Proof of That 13-

If A  = M in
' lemma 15 then The 13 part 3) follows from lem 15 part 2)

for part 1) of The 13

let PR = { sections of MR }

note :  , ) sum of two sections Is a section

2) it o a section and re R
,

then ro a section

SO PR is an R . module

lemma 15 part 1) ⇒ F a well-defined map of R - modules

0

Pr → Hnlm ; R )

Claim : 01 an Isomorphism
X

indeed
,

it XE Hn ( M ; R )
,

then define

0×1×1=1*1×1
where

y
: m → ( M , M - { xD

exercised of a section and 1010×1=2

:
.

10 onto
.nowit otrr and 10107=0 e Hnlm ; R )

then 0 ( x ) = 0 Hxem
,

: . 0=0 in rr
so 4 injecting



just as in the proof of lemma 11
,

it M connected
,

then

two sections of MR are the same it they agree
at one point .

:
.

if
we fix % EM the map

pp → R = T
'  '

lxo ) = Hnlm ,
M - { x } ; R )

oh oc xD

Is Injective
it M is R - orientable

,
F a section 0

,
st .

olxo ) a generator
of Hn ( M , M - { xD ; R )

. :above map onto
.

and Halm : NI Pr II ,

for part 2) of That see Hatcher ( or work it out yourself ! )
#.

Prootoflemmal

Claimed It lemma true for A and B and AAB
,

then true for AUB

Claim : It lemma true for M= IR
"

,
then true for all manifolds

Claim : lemma Is true for IR
"

Clearly lemma follows from claims
.

ProototClaim= : note I M
, M - ( AUBD = In , CM-A) n(M-B) )

so

Mayer
- ketorisgives

H ; t.IM, M - An B) ) →It
;

( M M - IAUBD → H
,.IM ,

n - A) toHilm ,
M - B)

11 11 11

1>1 0 0 0

so Him , M - CAUB ) ) = 0 1 > n

for 1=n

O → Hnlm, M - IAUBD #Hnlm,
M - A) to H I M

,
M - B)¥ H ( M , M - ( ANBD

n n

where I I a. f) =

x-p
and § 121 = 1 d. x )

now suppose 0 Is a section of MR



by assumption 7 ! da C- Hn ( M , M - A) and

9 BE Hn 1 M
,

M - B)

st
. 11 Ida ) = ocxl = M* I XB ) V. XEA  or B

so I ( da , LB ) Is the class in HNCM, M - CANBD corresponding
to the section F that Is always 0

so it Is 0

by exactness F daub £ Hn ( M
,

M - HUBD st
. OIHAUB ) = (

%B
, Guts )

.
: l×* ( daub ) = 01×7 H × EAUB

= ( da , ×B )

to see

&auB
unique ,

note that it I was another such

class
,

then if ldau ,
- E) =o Hx EAUB

:
. Xanz - £ as a class in HNIM, M - A) or HNIM , M - B)

also has this property
. : by uniqvness for A and B Xauts I = 0 in

Hn ( MM . A ) and Hnlm
,

M - B)

thus ingenuity of I ⇒ ×auB - II ,

Proofof(1aim= : it A c M compact ,
then we can write A  = A. u

.  .

u Ah

where A ; are compact and each Is in a coordinate chart U
;

Hjlm ; M - Ae) I H
, We,Ue -Ae ) F H

,
11179,1172 Ae )

texcision

so it lemma true for compact subsets of IR
"

then true

for ( M
, A;) and ( M

,
A ,nAj)

Estill in IR
"

:
 . by Claim 1 true for ( M , A. u Az )

since (A.UADNA
,

c U
, can continue inductively

so lemma true for ( MAI
Proofofclainii : it A is convey then IR

"

- A and IR
"

. { × } both

retract onto a sphere centered at x



.

'

. Hi ( IRYIR
"

- A) = H
; .fm. A) = H

, . ,
( sn

' ') = Hulk
"

- s × } )

I H; ( IN
,

IR
"

- { x } )

so part 2) of lemma clear

exercised : IRK = lR^xR ( R has discrete topology )

so sections of Mnr are constant and .
: i ) also true

.

by Claim ' I
,

lemma now true for A  = finite unions of convex sets

now let A be anycompact set in M
"

let Z be a cycle that represents a E H
;

( IN
,

IR
"

- A ; R )

thus ZZ E 4 . ,
( IR

"
- A)

let ( = Union of images of siinplicies in ZZ

since (
, A are compact F some r 3. t.dk ,y ) > r Fx E ( any y E A

0

•"k8¥ze.⇐2Z

by compactness of A we can find finitely many closed r - balls B. , ... ,Bn
that cover A and Cn B. = 0

let K= UB ;

note Z defines an element xk £ H; 1 IR
"

,
IR

"
- k) that maps

to a E H
,

1 IR ? IR
"

. A) by inclusion

since B
, are convex

,
if 1 > n

,
then 4<=0 :

. x=o

if n=n and 0 a section of IR"R then Fdk EHNIIRYIR
"

- k )

st
. l×*lxk)= old txtk

but HIM ,
R

"
- k ) #Hn 1Mn

,
M

"
- A) ¥Hn (IR ? IR

"
- sxD

÷
*

so &=1*l&k ) is desired element



now suppose x. a
'

are two such elements

then M
*

1 x . d) = 0 Hxt A

it ye K then F some B; and xe An B ;
st

. Y E B
;

then
Hnunn,RYx};R ) HNIIRYR

"
- { yl ; R )

PTE¥ y
* *

Halim
,

Rn. B
.

;R )

so it ( d . x
' ) = if 1 ¥5

'

101=0

.

'

. 14*12 - L ' ) = 0 H y EK

: from above X - 21=0 and we have uniqueness
#

Remote a fundamental class [ Miami] can similarly be considered
for compact manifolds with boundary

C. Algebraic limits and Proof of Duality
.

a set I Is a diieckdset it F a partial order 1 er
' defined

on certain pairs in I st . He
, ,

'
C- I

, Fz " EI st
.

112
"

and 1
'

± 2
"

example :  , ) I = subsets of a set X

E given by inclusion

2) I  
= Z  with E standard Inequality

now suppose { M
, }

, #
is a family of R - modules indexed by a directed

set I st
.

tier '

,
F a homomorphism

4
;

:M
,

→ M
,

,

st
. ¢ ,

"

no
 of

, ; ,

= ¢
, "

,
,

it 1=2 't 7
"

and 4h = idm
;

this Is called a directedsystem#modulesthedirectLime of { Mi }
, . I

is a module M together with homomorphisms
4

,
:m

,
→ n



st . oh , of = 0
;

H iei

"
it

and for any module N and maps Yi : M
,

→ N satisfying 4
,

,°¢
, , ,

,=4
;

F ! homeomorphism 4 : M → NS.t
. 4=4001 ;

4. /
'FY #

$2
,

$32
M

,
→ Mz→M3→ .

. .

⇒ J ! 4 : Mt N

*that }

" '

M

exercised any two direct limits are Isomorphic

we denote the direct limit by hmj Mi

lemmal=
direct limits exist

t.ro#letM+=0Mi
and lost : M

,
→ Mt

xt I - tuple with 7th cpt=x others 0

letJ=submodules of Mt generated by { olio4
,

1×1 -loilx} Fxem ;in
and 1. n 't I

set

m=m%-
and ¢,

=
 too ,t where T : M +

→ M is the quotient map

exercise : check ( M
, oh . ) is the direct product L#

exercises .

÷F M ;
are all submodules of M and nee

'
⇒ an . in ,→M , ,

is inclusion

then l±
,

M
,

= UM
;

2) it JMEI st .
gem He e I

,
then 4mi. Mm → line M ; Is an Isomorphism

3) suppose F it I
, Me = MOP ;

and

01in
=

Yni
,

@

fin
tie '

'

let N= lim
, Nn.

,
P= limp, , M= lim

,
M

,

then we get 4 : Ntn and p : P→ M st
.

404
,

= oh In , pop .
= 4

,
lp



and YOP : Nop → M Is an Isomorphism

4) a subset JCI Is called final if th EI
, F) EJ st . kj

applying definition to 4
,

:M
,

→ M we get a homomorphism

t : ¥ M
,

→
line,

M ;

Show X Is an Isomorphism

5) it { A
,

}
, # ,

{ B
,

}
, ← ± ,

{ (
,

}
, #

are directed systems and ti we have

A.EiB.eci@s.t
.

the '
'

A ;
 G B

,

¥ G '

.

totalthintorii
Is commutative

A
,

,  #By # (
n

'

then in the limit we get homomorphisms

limit , ''→l⇒B ,
I # G . #

show if @ is exact at B
,

ti
,

then # Is exact

lemma 17 '

÷
- { 4 } be a directed system of subsets of X st

. any compact
set KCX Is in some Ux

Then

1in
,

H
;

( Ux ;R)= It ;lX ; R )

Promote Clearly we have inclusion maps Hilua;Rl → It
,

( x ;R ) to

i. get  map 1in H.lk ;m→ H
,

l X ; R )

it [ o ] EH
,

( X ; R ) then in o C Ux , some d
'

so Hyun ; R ) → It ,l×iR ) hits [ o ]

but H.lk ;R) - H
.

lx ;R )

\v
° 17

hm→HilUxiR) so map svrjectiie

exercise : check inyechie ( similar ) at



now if M is an n - manifold

let I={ all compact subsets of M } directed by inclusion

note : KEK ' ⇒ ( M
,

M - K
'

) -22 (

mm
- K ) Inclusion

z*
⇒ HMM

,
M - Kim → H9 1 m

,
M - K

'

; R )

:
. { HMM

,
M - K ;R ) } Is a directed system of R - modules

define H ! ( M ;R ) = he
,

HMM
,

M - K ; R )

note : 1) it M is compact ,
then M is trial in

'

I

:
. Hot (m ;R)E HE

CMIR
)

2) you can think of elements ofHYLMIR) as cochairs that

vanish off of some compact subset of M

so we call HYCMIR) the Edgy.net#tsupp=

fix an R - orientation on M

recall this means a section o :M→ Mr st
.

01×1 generates

Hnlm ,
M - { x } )

let K be a compact set in
' M

then lemma 15 gives a class xk c- HNIMM - K ; R )

st
.

M* ( g.) = ocx ) where M : ( M
,

M - k ) → (M
,

mtx })

the cap product gives

Hnlm
,

M - K ;R)× HPCM
,

M - K ;R ) →

Hnplm
;Rl

so xkn . gives a mapHPIMM
- Kim → Hn

.

plMiR)
r i- ×k^8

if KCK
'

then

HPIM
, M - K ;R ) 44 '

\ , why ? think
f Hn

. plmi R )
f about lean 15

Hplmn . Kim +
akin .

Is commutative

so we get a map
HP

.
( µ ;m #An .pl MIR )



Tha 18 I Poincare
' Duality Revised ) :

.if M is an R - oriented n - manifold
,

then

Dm
: Hpc( M ) → Hn

. plm )

is an Isomorphism

Clearly The 2 part 1) follows from this since it M compact HPDM; RKHMM ; R )

and map is given one since xµ= [ m ]

Proof
÷ epI_: If the true for open sets V.V ,

and Unv in M then true for Uuy

Steph let { U
,
} be a system of open sets totally ordered by inclusion

set U= Uui .

It the true for all U
, then true for U

Stephie : tha true for any open U c coordinate chart of M .

once we have established Steps I - # we are done as follows :

recall Zornislemma : if P is a partially ordered set such that every

, cnhalnhas an upper bound
,

then P has a

totally ordered maximalelement some elt greater than ( or equal to )
subset all elts in chain

this Is equivalent to the

axcoin of choice

now by Step I and Zorn 's lemma there Is a maximal element U

in
' M for which that is true

it M¥U
,

then let x € M - U

F an open set V st
. x E V C X - U st

.
V is In a word . chart  IIR

"

:
. the true for UUV by Step I XO maximal ity of U

: U=M and we are done

step # Is heart of proof
Proof of Step

#
suffices to prove for open set in IR

"

÷

A-
: let U be convex open set in IR

"

exercise : vhomeomorphic YIM ##Ia #¥€



so by naturally of everything just need to check for IR
"

let Krbe the closed (compact) ball of radius r in M
"

( centered at 0)

{ Kr }
, do , • )

is final in all compact sets in 117
"

: Hiram =
lying

HPAM
, IN . kr )

and each HPCM.IR '
. Kr ) = O tptn

: .
Hpc ( Mn ) = 0 for ptn

also Hn
. path

" ) = 0 H pt n :
.

the true it pen

for pin we get Hne CRYER and Ho ( ME R

now consider xkp. : HNCIM
,

# Kr ) → HOUR
" )

recall Hnl IN
,

IN - Kr ) × HYIRYR
'

- Kr ) → Holm
" )

( x
, p ) 1- p( nd ) =p( & )

teval on front n - face
now xkr is a generator of Hn ( IN

, R ? kr )

( or couldn't map a generator OCD

of Hn ( IN,
IR

"
. { xD)

: it dual B in HOMIHNURHR'
. Kr ) ; R) I Hnl IN

,
lpekr )

evaluates to 1
on &kr

so p generates Hnl IN
,

IN - Kr )

and &k
,

n . Is an Isomorphism : D an isomorphism,

Cased General open VCR

let { b
,
} be a countable dense set in U

let U
,

be balls centered at bi contained in U

so U = Uui

set V
,

= U
,

and 14=14 . ,
UU

; V 2>1

tha true for each V; by following claim

Claim : tha true for any finite Union of convex sets



Proofofclaim : induct on number of convex sets

true for 1 set by Case A

assume true for Union of any 1 convex sets for 2< k

now given Ai
, ... , Ak

We know tha true for AN ...
u Ah . , by induction

Ah by Case A

and Ann (A. v.
. .uAh . , )=(AfA,

)u .  " KahnAnd
- -

each convex

only kt sets

so by induction

:
 . Step I ⇒ that true for AN . . .u Any

now the true for U by Step E- ,

Proof of Step #
-

:

from lemma 17 III
,

Hn
. p( 4) → Hn

. PIU ) induced by inclusion Is

an Isomorphism

similarly it UCV

;
and Kc U

, compact ,
then excision gives anIsomorphismHPW

;
,U

;
- H → HPCU

, ,u
,

. k)

the inverse gives maps Hrlu
, .u .

. k ) → H%
,

,u,
- k ) → HECU;)

. : we get a map H ! lu
,
) → HE w

,
)

Claim : h÷; HIM = HE w ) and Du=l÷gDu;

note that given the claim since Du
,

: HE (4) → Hnp ( y ) an

Isomorphism Vi
, Du : HE Lu ) → Hnp ( D an isomorphism too ✓

Prootofclaim : as above we get maps HE( ud → HE ( u )

: we have a map
I
;mj Hpdu;)

I
HECU )

now for any compact set K c U F , st . KCY He zj

p
so we get a map H ( Yu - H → HPCY ,U,

. k ) → HE (4)

→ h÷,
Hrecu.

)



.

'

. we have a map H !Cut'→k= ,

H ? ( v. )

exercise : show 6 and H are inverses of eachother
.

also check claim about D= ,

Proof of Step I
-

:

let K be any compact set in U

L "  ii V

set B= UNV and Y= UUV

note : (Y,
Y - ( Knl) ) = ( Y

, Y -Nu ( YIY - L )

( Y
,

Y - ( Kul )) = ( Y , Y - k ) 1

IYY
- L)

so Mayer - Vietor 's for ( Y ,u - k ) andIY,
V. c) give

HPCY
,

4- And ) →HMY,y - k ) toHPIYIY- k ) →HPCY, Y - ( Kul ) )

§
HM '

I Y
.

4- ( Kul ))

be t± t :

HPCB
, B- I km ) → Hpluiu . Ho HPCYV - L ) § an . Ha '

( B. B- C km )

f
&kun

. I did '  

Odd
' f ×knn

'

2

Hn
. pl B) → Hn

. pw ) to Hn . pm → Hn.pk ) → Hnp . , (B)

exercise : i) first two squares commute (easy since all maps are inclusions
or cap products )

2) last square commutes uplo sign

Hint : a) recall 2 is defined as follows :

÷a #19 given ZE Hn
- p

( Y )
you can  write Z  = atb

then 2 [ Z ] = [ za ]

for a € (
n . p(↳

c
b C-Cnp ( k)

b) as in
' proof of That II. 11 can use Lebesgue number and

barycentric subdivision to find chains

&
K )

&
LKKNL sit

. ×kuL = Xkt 4 + &knL

you can now compute 2 ° ( ×ku< n . )

similarly compute (×kn<n ' ) ° S

note any compact set in
' B=UnV Is KNL for some K&L as above

and similarly for Y=UuV



so above gives the following diagram commutes up to sign

HPDB) #HE women #HPCCY)# HPYCB)
isomorphism

I¥pYa¥HnpIY.FI?paa#antnYenIKYnbyassompnon
Claim : Dy is isomorphism

indeed it XEHPCY) andDyx=Othen 0=2DX=D Sa ⇒ 82=0
Y B

.
: F ( a. b) st . IC a. b) =x

and I
'

(

Dua
,

Du
b) =D

,
Il ( aid =D

,

,a=o
.

'

. Fc st
.

OIIC):( Da
,

Db )
v "

and C
'

st
.

Do
'

= C
B

now DoD #( c
' ) )= $

'

1 Do ') = ( Dua . Dub )
U V B

and Fcc 't ( a. b) since DoD an =
U V

finally x=I( a. b) = I ( Icc 'D=O and D injective
Y

exercise : Show Dy svgeitiie ,



Next steps in algebraictopology
-

I )

HOMIE

a homotopy classes of based maps

recall Tin ( X. xo ) = [ 5
,

X ]o

and f :X → Y induces a homomorphism f* : In ( X
, %) → Tal Y

,
flxo )) Fn

•

whitehead-hm_l.it

f :X → Y is a map between CW complexes and

f* : Tia ( X) → In IY ) an Isomorphism V. a

then f is a homotopy equivalence !

• for nzz
,

Tin IX. Xo ) is an abelian group

• hard to compute in general
9 t.mil#z4z5z*I8zEEsi .

• Given any abelian group G and integer n , F a space KCG ,
n ) such that

Th ( KIG
,

n ) ) = { 6 k=u

0 ktn

for such a space we have

HYX ; G) ± [ X
,

kcgn ) ]
Brown representation the

relates homotopy and cohomology!

•

Hythe
:

 it In 1×1=0 F k< n
,

then Eh(H=O then

and In ( X ) I Hn ( X)

• a map p : E → B is a fibrotic if it has the homotopy lifting property

ie .  it ft:X → B is a homotopy and Fo is a lift of to

then F a lift ft for all t

all fiber bundles are fib rations

if p : E  → B a fihrahin
,

then there Is a long exact sequence

. . .

→ Th IF
,

xo ) → In leixo ) ¥In ( B
, pho ) ) → In . ,( F. xD →

...

where XOEE
, F =p

'  '

( pho ) )

I )

Spectralsequences

computing the homology of a titration Is much harder !



a group Lor module ) is bigradded is a collection of groups E -
- { Eat }

indexed by pairs of integers
a map d '

. E  → E hasbidegree.la#itdlEs.t)cEsea.ttbHs.t
if d

'
-

- o
,

then it is called a deferential

and we can consider its homology

Hs
, t

( E
,

d) = ke%t→Eta.teI
ini Id : Es- a. t - b → Es .tl

a sp ,
is a sequence I Er

,
d

' ) set.

1) each Er is a bi module
,

d "
a differential of degree C - r

,
r - D

2) Er "
= H I Er )

e÷÷÷:÷÷÷÷÷÷÷÷:
"

Lerayttirshthm it p : E  → B a fibration

B simply connected CW complex

then 3 a spectral sequence with E } ,
= Hs l B 's Ht IED

and
"

Ex
"

more or less giving H
*

CE )

can use spectral sequences for many other things too

HI obslructiontheory-adeharacterislicclac.se

given a fibration p : E -713

there are many problems that can be phrased as the e Fence

of a section ( e.g .
does a manifold have a smooth structure . . . )

it B is a CW complex the there is a systematic
'

way to try to

construct a section skeleton by skeletor

Obstruction theory says : given a section f : Bk-"
→ E there is a

co Cycle
off) E Ch ( B ; That F ) ) set. OCH -

- o

⇒

thecae
:

"

primary
" obstruction f extends over BK)

to a G n - htt frame over ( here F is p
-  '

C pts )

2h skeleton of B ( here E a El - bundle )

these are called characteristic '

classes ( also have Stiefel - Whitney , Pontryagin
Classes

. . . )


