IV Poricaré Duality
A. Statement and Consequences
a manifold of dimension is a topological space M that is
Hausdorff and locally Euclidean
points can be separated by
disjoint open sets
\uparrow
each point $x \in M$ has an open neighborhood homeomorphec
to \mathbb{R}^{n}, such a able called a coordinate
and countable as some chart chart
note: we don't require M to be second countable as some definitions do.
a manifold with boundary of dimension r is a space M that is
Hausdorff and every point has an open neighborhood homeomorphic to \mathbb{R}^{n} or $\mathbb{R}_{+}^{n}=\left\{\left(x_{1}, \ldots x_{n}\right) \mid x_{n} \geq 0\right\}$
$\partial M=\left\{x \in M\right.$ that don't have nbhd homeo to $\left.\mathbb{R}^{n}\right\}$
int $M=\left\{x \in M\right.$ that do have ubhd homeo to $\left.\mathbb{R}^{n}\right\}$
exercise: $\quad \partial(\partial M)=\varnothing$

$$
\ln t(\partial M)=\partial M
$$

$$
\partial(\cot M)=\varnothing
$$

∂M is on ($n-1$) dimensional manifold
we say M is closed if M is compact and $\partial M=\varnothing$
examples:

1) Surfaces are 2-manifolds

2) $S^{n} \subset \mathbb{R}^{n+1}$ is an n-manifold
3) products of manifolds are manifolds: eg $S^{n} \times S^{m}$
4) $\mathbb{R} P^{n}=\mathbb{R}^{n+1}-\{(0, \ldots 0)\} / \mathbb{R}-\{0\}$ is a closed n-manifold
$\mathbb{C} P^{n}=\mathbb{C}^{n+1}-\{(0, \ldots 0)\} / \mathbb{C}-\{0\}$ is a closed $2 n$-manifold

Th ${ }^{m}$:
let R be a ring

1) M a closed connected manifold of dimension n M is R-orientable iff $H_{n}(M ; R) \cong R$
2) M a compact connected n-manifold with boundary M is R-orientable iff $H_{n}(M, \partial M ; R) \equiv R$

Remarks: 1) we will define R-onentations and prove th ㅍ in next section
2) all manifolds are $\mathbb{Z} / 2$-orientable
3) the "standard" definition of orientable lay from differential topology) is equivalent to \mathbb{Z}-orientable
4) a choice of generator for $H_{n}(M ; R)$ is called a fundamental class of M, is denoted $[M]$, and determines an orientation similarly for a generator $[M, \partial M]$ of $H_{m}(M, \partial M ; R)$
$T h^{m} 2:$
Poincare Duality: if M is a closed connected R-oriented n-mainfoldwith fundamental class $[M]$, then

$$
H^{P}(\mu ; R) \underset{[\mu] n .}{ } H_{n-p}(\mu ; R)
$$

is an isomorphism.
Pourcaré-Lefschetz duality: if M is a compact connected R-oriented n-manifold with boundary and $[M, \partial M]$ is a fundamental class, then

$$
\partial[M, \partial M]=[\partial M]
$$

where $\partial: H_{n}(M, \partial M ; R) \rightarrow H_{n-1}(\partial M ; R)$ comes from the long exact sequence of the pair $(M, \partial M)$
moreover $\ldots \rightarrow H^{p-1}(\mu) \rightarrow H^{\rho-1}(\partial \mu) \rightarrow H^{p}(\mu, \partial \mu) \rightarrow H^{p}(\mu) \rightarrow \ldots$

$$
\begin{aligned}
& \downarrow[\mu, \mu]_{n} \quad \downarrow[\partial \mu] \cap . \quad \downarrow[\mu, \partial \mu] \cap . \downarrow[\mu, \partial \mu] \cap . \\
& \ldots \rightarrow H_{n-p+1}(\mu, \partial \mu) \rightarrow H_{n-p}(\partial M) \rightarrow H_{n-p}(\mu) \rightarrow H_{n-p}\left(\mu_{1} \partial \mu\right) \rightarrow \ldots
\end{aligned}
$$

commutes (up to sign) and vertical maps are isomorphisms.
we prove this later, for now we consider some consequences
Cor 3:
let M be a closed compact oriented n-manifold the cup product pairing

$$
\begin{aligned}
\left(\begin{array}{l}
\left.H^{\rho}(M) / \text { tor }\right) \times\left(H^{n-\rho}(x) / \text { tor }\right)
\end{array}\right) & \rightarrow \mathbb{Z} \\
(\alpha, \beta) & \longmapsto \alpha \cup \beta([M])
\end{aligned}
$$

is non degenerate and onto Z

$$
(\text { se. }(\alpha \cup \beta)[M]=0 \quad \forall \beta \Rightarrow \alpha=0)
$$

Proof: Universal Coefficients Theorem says

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Tor}\left(H_{p-1}(M), Z\right) \\
& \rightarrow H^{p}(M ; z) \xrightarrow{\phi} H_{o m}\left(H_{p}(M), z\right) \rightarrow 0 \\
& \alpha \longmapsto \phi(\alpha)(\sigma)=\alpha(\sigma) \\
& \text { so } H^{p}(M) / \text { tor } \cong H_{o m}\left(H_{p}(M), z\right) \cong H_{o m}\left(H_{p}(M) / \text { for }, \mathbb{Z}\right)
\end{aligned}
$$

Poincare Duality says

$$
\begin{aligned}
& H^{n-p}(n) / \text { for } \cong H_{p}(n) / \text { for } \\
& \alpha \longmapsto[M] \wedge \alpha \\
& \therefore H^{P}(M) / \text { tor } \xrightarrow{\Phi} H o m\left(H^{n-P}(n) \text { /tor } ; \mathbb{Z}\right) \text { an isomorphism } \\
& \alpha \longmapsto\left(H^{n-p}(n) / \text { /or } \rightarrow Z\right) \quad \text { (composition of } \text { PD. }_{\square}^{\cong} \text {) } \phi \text { and } \\
& \beta \longmapsto \phi(\alpha)([m] \cap \beta)=\alpha([M] \cap \beta) \\
& =\beta v \alpha([M]) \\
& \text { so } \beta \cup \alpha([M))=0 \forall \beta \Rightarrow \Phi(\alpha)=0 \Rightarrow \alpha=0
\end{aligned}
$$

Cor 4:
the cohomology of $\mathbb{C P n}$ is

$$
H^{*}\left(\Delta P^{n} ; \mathbb{Z}\right) \cong \mathbb{Z}[x] /\left\langle x^{n+1}\right\rangle \quad \text { where deg } x=2
$$

Proof:
earlier we saw $\mathbb{C}^{n}=(0-c e l l) v(2-c e l l) \cup \ldots v(2 n-c e l l)$
so $H^{k}\left(\Delta \rho^{n} ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z} & k=0,2, \ldots 2 n \\ 0 & \text { otherwise }\end{cases}$
we have the inclusion $2: \mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{n}$
the long exact sequence of a pair giver

$$
\widetilde{C} P^{n} / \subset p^{n-1} \cong S^{2 n}
$$

$$
\downarrow
$$

$$
\begin{aligned}
& H^{k}\left(c P^{n}, c P^{n-1}\right) \rightarrow H^{k}\left(c P^{n}\right) \xrightarrow{\eta^{*}} H^{k}\left(\sigma P^{n-1}\right) \rightarrow H^{k+1}\left(c P^{n}, c P^{n-1}\right) \\
& k<2 n \quad{ }_{0}^{\prime \prime} \\
& 0
\end{aligned}
$$

so 1^{*} an isomorphism on $H^{k} \quad \forall k<2 n$
statement in theorem clearly true for $n=1: H^{*}\left(c \rho^{\prime}\right) \cong \mathbb{Z}[x] /\left\langle x^{2}\right\rangle$ now if true for $c P^{n-1}$ then

$$
x \in H^{2}\left(c \rho^{n-1}\right) \text { st } x^{k} \text { generates } H^{2 k}\left(c \rho^{n-1}\right) \quad \forall k=1,2 \ldots, n-1
$$

so $1^{*}(\alpha)^{k}$ generates $H^{2 k}\left(\sigma \rho^{\mu}\right) \forall k<n$
\therefore by $\operatorname{Cor} 3,1^{*}(\alpha) \cup 1^{+}(\alpha)^{n-1}$ must generate $H^{2 n}\left(a \rho^{n}\right)$
Cor 5:
any homotopy equivalence $c \rho^{2 n} \rightarrow \mathbb{C} p^{2 n}$ preserves orientation

Proof: Such on f induces an isomorphism on $H^{2}\left(G \rho^{2 \eta}\right) \cong \mathbb{Z}$
so $f^{*}(x)= \pm x$

$$
\therefore f^{\prime \prime}\left(x^{2 n}\right)=\left(f^{*}(x)\right)^{2 n}=(\pm x)^{2 n}=x^{2 n}
$$

so f^{*} takes a fundamental class to itself \therefore preserves or ${ }^{n}$
(by universal coeff.
Cor 6: theorem)
M a closed oriented n-manifold

$$
\begin{aligned}
& \text { Free } H_{n-k}(\mu) \cong \text { Free } H_{k}(\mu) \\
& \text { Tor } H_{n-k}(\mu) \cong \text { Tor } H_{k-1}(\mu)
\end{aligned}
$$

if n is odd then

$$
X(M)=0
$$

If $n=4 m+2$ then
$x(M)$ even

Proof: $1^{\text {st }}$ part is just Poncaré duality and Universal Coefficients if $\operatorname{dim} M=2 m+1$, then

$$
\begin{aligned}
X(M) & =\sum_{i=0}^{2 m+1}(-1)^{i} \underbrace{\operatorname{rank} H_{i}}_{b_{i}}=\sum_{i=0}^{m}(-1)^{i} b_{1}+\sum_{i=m+1}^{2 m+1}(-1)^{i} b_{i} \\
& =\sum_{i=0}^{m}(-1)^{i} b_{1}+\sum_{i=0}^{m}(-1)^{2 m+1-i} b_{2 m+1-i} \\
& =\sum_{i=0}^{m}(-1)^{i} b_{1}+\sum_{i=0}^{m}(-1)^{1-i} b_{i} \stackrel{\swarrow}{=} \text { since Free } H_{k}=\text { Free } H_{2 m+1-k}
\end{aligned}
$$

If dimi M even then same computation gives

$$
X(M)=b_{n / 2}+\text { even number }
$$

If $\operatorname{dim} \mu=4 m+2$ then $X(M)$ even $\Leftrightarrow b_{2 m+1}$ even

$$
\operatorname{Cor} 3 \Rightarrow H^{2 m+1}(\mu) / \text { for } \times H^{2 m+1}(\mu) / \text { tor } \rightarrow \mathbb{Z}
$$

a non-degenerate skew-symmetric paring
lInear algebra fact:
If V an k-dimensional rector space

$$
q: V \times V \rightarrow \mathbb{R}
$$

is a non-degenerate shew-symmetric pairing then k is even
exercise: Prove this hint: if W subspace of V and $W^{\perp}=\{v \in V: q(r, w)=0, \forall w \in W\}$
then $\operatorname{dim} V=\operatorname{din} W+\operatorname{dim} W^{\perp}$ $\left(w^{\perp}\right)^{\perp}=w$
so fact $\Rightarrow X(M)$ even.
Cor 7:
let $M^{2 n}=\partial V^{2 n+1}$ with V compact, orientable, and M connected then $\operatorname{rank}\left(H^{n}(M)\right)$ is even and

$$
\operatorname{dim}\left(\operatorname{ker} \eta_{*}: H_{n}(M) \rightarrow H_{n}(V)\right)=\operatorname{dim}\left(1^{*}: H^{n}(V) \rightarrow H^{n}(M)\right)=\frac{1}{2} \operatorname{dim} H^{n}(M)
$$

moreover any two classes in image $?^{*}$ cup to zero

Proof: $\quad H^{n}(V) \xrightarrow{2^{*}} H^{n}(M) \xrightarrow{\delta^{*}} H^{n+1}(V, M)$

$$
[M] n . \downarrow \cong \quad \cong \downarrow[v, \partial v] n . \quad \text { by Poincaré-Lefschetz }
$$

$$
H_{n}(M) \xrightarrow{l_{x}} H_{n}(V)
$$ duality

so $[M] \cap\left(1 \mathrm{~min}^{*}\right)=[M] \cap\left(\operatorname{ker} \delta_{x}\right)=\operatorname{ker} i_{*}$

$$
\text { and } \begin{aligned}
\operatorname{rank} \imath^{*}=\operatorname{din}\left(\min \imath^{*}\right) & =\operatorname{dim}\left(\operatorname{ker} \imath_{*}\right)=\operatorname{dim} H_{n}(M)-\operatorname{rank} \eta_{*} \\
= & \operatorname{dini} H_{n}(M)-\operatorname{ranh} 1^{*} \\
& \tau_{\text {since }}\left\langle\imath^{*} \alpha, c\right\rangle=\left(\imath^{*} \alpha\right)(c)=\alpha\left(\imath_{x} c\right)=\left\langle\alpha, \imath_{x} c\right\rangle
\end{aligned}
$$

$\therefore \operatorname{dim} H_{n}(M)=\frac{1}{2}$ rank i^{*} so η^{*}, η_{x} are adjoint \therefore have same rank (ie. rank of matrix and transpose are equal.)
now if $\alpha, \beta \in H^{n}(v)$ then since $\delta^{*} \circ \gamma^{*}=0$
but $H^{2 n}(M) \xrightarrow{\delta^{*}} H^{2 n+1}(V, M)$

$$
\downarrow \cong \quad \downarrow \cong
$$

$H_{0}(M) \xrightarrow{\tau_{*}} H_{0}(V) \quad$ and τ_{*} infective $\therefore \delta^{*}$ infective
so $\imath^{*}(\alpha) \cup \imath^{*}(\beta)=0$

Cor 8:
If $M=\partial V$ connected and V compact and orientable then $X(M)$ even

Proof: If $\operatorname{dimi} M$ odd then $X(M)=0$
If $\operatorname{dim} M=4 m+2$ then $X(M)$ even by Cor 6
if $\operatorname{dim} M=4 \mathrm{~m}$, then proof of $\operatorname{Cor} 6 \Rightarrow\left(X(M)\right.$ even $\Leftrightarrow b_{2 m}$ even $)$ but $\operatorname{Cor} 7$ says it is even

Cor 9:
$\mathbb{C} P^{2 n}$ is not the boundary of a compact oriented (4n+1)-manifold.
B. Fundamental classes of manifolds
let M be a manifold and R a ring with identity (usually \mathbb{Z} or $Z / 2$) If $x \in M$ and U open nbhd of x that is homes. to \mathbb{R}^{\wedge} then by excision

$$
H_{n}\left(\mu_{1} M-[x] ; R\right) \cong H_{n}(U, U-\{x\} ; R) \cong H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-[\mid x] ; R\right)
$$ abuse of notation, really

name image of x under homes.
the long exact sequence of the parr $\left(\mathbb{R}^{n}, \mathbb{R}^{n}-[x\}\right)$ gives

$$
\left.\begin{array}{cc}
n>1 \quad H_{n}\left(\mathbb{R}^{n}\right) \rightarrow \\
\text { II }
\end{array}\right)
$$

we call a generator of $H_{n}(M, M-\{x\} ; R)$ a local \underline{R}-orientation of $\underline{M}_{\text {at }} \underline{x}$ and denote it by μ_{x}
note: if $R=\mathbb{Z}$ then every point has two local orientations
if $R=\mathbb{Z} / 2$ " one "
exercise: If you know another definition of orientation at x show it is equivalent to a z-orientation at x
now if B is an open ball in a coordinate chart U, then as above

$$
H_{n}(\mu, M-B ; R) \cong R
$$

moreover the inclusion $(\mu, \mu-\{B) \rightarrow \xrightarrow{i}(\mu, \mu-\{x\})$ for $x \in B$ induces an isomorphism

$$
H_{n}(M, M-B ; R) \xrightarrow{q_{m}} H_{n}(M, M-\{x\} ; R)
$$

thus a generator for either group determines one for the other
so if x, y are in a ball B in a coordinate chart U in M then

$$
H_{n}(M, M-\{x\} ; R) \cong H_{n}(M, M-B ; R) \cong H_{n}(M, M-\{y\} ; R)
$$

and isomorphisms induced by reclusion
so a local orientation at x determines one at y
an R-orientation on M is a choice of local R-orientations μ_{x} for all $x \in M$ st. for all open balls B in coorditiate charts of $M, \exists \mu_{B}$ a generator of $H_{n}(\mu, M-B ; R)$ st. $\mu_{x}=1_{*}\left(\mu_{B}\right) \quad \forall x \in B \quad$ (where $\left.1:(M, M-B) \rightarrow(\mu, M-\{x\})\right)$
(ie. a consistant choice of local R-orientations)
If an R-orientation exists on M, we say M is R-orientable, if $R=\mathbb{Z}$, we say M is orientable.
exerase: If you know another definition of orientable, show it is equivalent to this definition
lemma 10:
all manifolds have a unique $\mathbb{Z} / 2$-orientation
Proof: $\forall x \in M, \mu_{x}$ must be the unique generator of $\# / 2$ similarly μ_{B} for any open ball in a coordinate chart

$$
\therefore \quad v_{x}\left(\mu_{B}\right)=\mu_{x} \quad \forall x \in B
$$

lemma II:
Suppose M is R-orientable and connected If two R-orientations agree at some $x \in M$, then they are the same. (ne. if M is R-orieitable, then an R-orientation is determined by a choice of local R-orientation at any pout $x \in M$)

Proof: let $\left\{\mu_{x}\right\}_{x \in M}$ and $\left\{\tilde{\mu}_{x}\right\}_{x \in M}$ be two R-orientations on M. assume $\exists x_{0} \in M$ st $\mu_{x_{0}}=\tilde{\mu}_{x_{0}}$
let $S=\left\{x \in M: \mu_{x}=\tilde{\mu}_{x}\right\}$
$S \neq \varnothing$ since $x_{0} \in S$

S is open: $x \in S$ then \exists open ball B st $x \in B \subset U \subset$ word. chart let μ_{B} be generator of $H_{n}(\mu, M-B ; R)$ st $\tau_{*}\left(\mu_{B}\right)=\mu_{x}$

$$
\tilde{\mu}_{B} \quad " \quad \text { " } \quad \text { " } 1_{x}\left(\tilde{\mu}_{B}\right)=\tilde{\mu}_{x}
$$

since η_{x} isomorphism, and $\mu_{x}=\mu_{x}$ we have $\mu_{B}=\tilde{\mu}_{B}$ now for any $y \in B$ we have $\mu_{y}=\eta_{x}\left(\mu_{B}\right)=\eta_{x}\left(\tilde{\mu}_{B}\right)=\tilde{\mu}_{y}$ so $B \subset S$

Similarly S is closed
so $S=M$ since M connected, and orientations agree. for the parenthetical statement:
let $\left\{\mu_{x}\right\}_{x \in \mu}$ be an R-orientation
let $\tilde{\mu}_{x_{0}}$ be a choice of generator for $H_{n}\left(\mu, \mu-\left\{x_{0}\right\} ; R\right)$
so $\exists r \in R$ st. $\tilde{\mu}_{x_{0}}=r \mu_{x_{0}}$ and r a unit
$\therefore\left\{r \mu_{x}\right\}_{x \in M}$ an R-orientation on M determined by $\tilde{\mu}_{x_{0} \text { 雨 }}$
Cor 12
If M is orientable and connected, then
M has exactly two orientations.
Proof: \mathbb{Z} has two units +1 and -1
Th ${ }^{\text {m }}$ 13:
let M be a closed connected n-manifold

1) If M is R-orientable then the map $1:(M, \nabla) \rightarrow(M, M-\{x\})$ induces an isomorphism

$$
\eta_{k}: H_{n}(M ; R) \rightarrow H_{n}(M, M-\{k\} ; R) \cong R
$$

for all $x \in M$
2) If M is not R-orientable the inclusion above induceses an imjective map

$$
\tau_{k}: H_{n}(M ; R) \rightarrow H_{n}(M, M-\{k\} ; R)
$$

with mage $=\{r \in R: 2 r=0\} \quad$ for all $x \in M$
3) $H_{i}(M ; R)=0 \quad \forall_{2}>n$
an element $[M] \in H_{n}(M ; R)$ whose iniage in $H_{n}(M, M-\{x\} ; R)$ is a generator for all $x \in M$ is called a fundamental class of M with coefficients in R.
note: by lemmall, for connected M, the fundamental classes of M are in one-to-one correspondence with R-orientations.
for R-orcentable manifolds M a choice of generator for $H_{n}(M ; R)$ is sometimes called an R-orientation on M.
Cor 14:

1) if M is a closed, connected, orientable n-manifold
then

$$
\begin{aligned}
& H_{n}(M ; \mathbb{Z}) \cong \mathbb{Z} \\
& H_{n}(M ; \mathbb{Z}) \cong \mathbb{Z} / 2
\end{aligned}
$$

2) if M is a closed, connected n-manifold that is not-orientable then

$$
\begin{aligned}
& H_{n}(M ; \mathbb{Z})=0 \\
& H_{n}(M ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2
\end{aligned}
$$

Proof: clear from lemma 10 and theorem 13
to prove theorem we need some preliminary work

$$
\text { let } M_{R}=\left\{\alpha_{x} \mid x \in M, \alpha_{x} \in H_{n}(M, M-\{x\} ; R)\right\}
$$

we put a topology on M_{R} as follows
for each open ball B in a coordinate chart of M
and each $\alpha \in H_{n}(M, M-B ; R)$
let $U(\alpha, B)=\left\{\tau_{*}^{x}(\alpha)\right\}_{x \in B}$ where $1^{x}:(\mu, M-B) \rightarrow(M, M-\{x\})$ is inclusion
exercise: 1) Show this is a basis for a topology on M_{R}
2) $M_{R} \xrightarrow{\pi} M: \alpha_{x} \mapsto x$ is a covering map (M_{R} might be disconnected)
3) if $\sigma: M \rightarrow M_{R}$ is contwuous sit. $\pi_{0} \sigma=i d_{M}$
(we call such a map a section of M_{R})
and $\forall x, \sigma(x)$ is a generator of $H_{n}\left(M_{1} M-\{x\} ; R\right)$
then σ defines an R-orientation on M
similarly an R-orientation on M gives a σ as above.
lemma 15:
let M be an n-manifold and $A \subset M$ a compact subset.

1) \& $\sigma: M \rightarrow M_{R}$ is a section of M_{R}, then \exists ! class $\alpha_{A} \in H_{n}(M, M-A ; R)$ whose in rage in $H_{n}(M, M-\{x\} ; R)$ is $\sigma(x) \forall x \in A$.
2) $H_{1}(M, M-A ; R)=0 \quad \forall \imath>n$

Proof of $T^{\text {M }}{ }^{m}$ 13:
If $A=M$ in lemma 15 then $T^{m} 13$ part 3) follows from lem 15 part 2) for part 1) of $T h^{N} 13$
let $\Gamma_{R}=\left\{\right.$ sections of $\left.M_{R}\right\}$
note: 1) sum of two sections is a section
2) If σ a section and $r \in R$, then $r \sigma$ a section
so Γ_{R} is an R-module
lemma 15 part 1) $\Rightarrow \exists a$ well-defined map of R-modules

$$
\Gamma_{R} \xrightarrow{\phi} H_{n}(M ; R)
$$

Claimi: ϕ an isomorphism
indeed, if $\alpha \in H_{n}(M ; R)$, then define $\sigma_{\alpha}(x)=l_{x}^{x}(\alpha)$ where $i: M \rightarrow(M, M-\{x\})$
exercise: σ_{α} a section and $\phi\left(\sigma_{\alpha}\right)=\alpha$
$\therefore \phi$ onto.
now $1 f \sigma \in \Gamma_{R}$ and $\phi(\sigma)=0 \in H_{n}(M ; R)$
then $\sigma(x)=0 \forall x \in M, \therefore \sigma=0$ in Γ_{R} so ϕ injective
just as in the proof of lemma II, if M connected, then two sections of M_{R} are the same if they agree at one point.
\therefore if we fix $x_{0} \in M$ the map

$$
\begin{aligned}
& \Gamma_{R} \longrightarrow R=\pi^{-1}\left(x_{0}\right)=H_{n}(M, M-\{\times\} ; R) \\
& \sigma \mapsto \sigma\left(x_{0}\right)
\end{aligned}
$$

is injective
if M is R-orientable, \exists a section σ, st $\sigma\left(x_{0}\right)$ a generator of $H_{n}\left(M_{1} M-\left\{x_{0} ; R\right)\right.$
\therefore above map onto.
and $H_{n}(M ; R) \cong \Gamma_{R} \cong R$,
for part 2) of Th m_{4} see Hatcher (or work ct out your self!)
Proof of lemma 15:
Claim 1: If lemma true for A and B and $A \cap B$, then true for $A \cup B$
Claim 2: If lemma true for $M=\mathbb{R}^{n}$, then true for all manifolds
Claim 3: lemma is true for \mathbb{R}^{n}
Clearly lemma follows from claims.
Proof of Claim 1: note $\left(M_{1} M-(A \cup B)\right)=\left(M_{1}(M-A) \cap(M-B)\right)$
so Mayer-Vietoris gives

12n

$$
\begin{array}{ccc}
H_{i+1}(M, M-(A \cap B)) \rightarrow H_{i}(M, M-(A \cup B)) \rightarrow H_{i}(M, M-A) \oplus H_{i}(M, M-B) \\
" 11 & 0 & 0
\end{array}
$$

$$
\text { so } H_{i}\left(M_{1} M-(A \cup B)\right)=0 \quad 1>n
$$

for $1=n$

$$
0 \rightarrow H_{n}(M, M-(A \cup B)) \xrightarrow{\Phi} H_{n}(M, M-A) \oplus H_{n}(M, M-B) \xrightarrow{\Phi} H_{n}(M, M-(A \cap B))
$$

where $\Psi(\alpha, \beta)=\alpha-\beta$ and $\Phi(\alpha)=(\alpha, \alpha)$
now suppose σ is a section of M_{R}
by assumption $\exists!\alpha_{A} \in H_{n}(M, M-A)$ and

$$
\begin{aligned}
\alpha_{B} & \in H_{n}(M, M-B) \\
\text { sit } \quad l_{x}^{x}\left(\alpha_{A}\right) & =\sigma(x)=1_{x}^{x}\left(\alpha_{B}\right) \quad \forall x \in A \text { or } B
\end{aligned}
$$

so $\Psi\left(\alpha_{A}, \alpha_{B}\right)$ is the class in $H_{n}(M, M-(A \cap B))$ corresponding to the section $\tilde{\sigma}$ that is always 0
so it is 0
by exactness $\exists \alpha_{A \cup B} \in H_{n}(M, M-(A \cup B))$ st. $\Phi\left(\alpha_{A \cup B}\right)=\left(\alpha_{A \cup B}, \alpha_{A \cup B}\right)$

$$
\therefore \quad l_{x}^{x}\left(\alpha_{A \cup B}\right)=\sigma(x) \quad \forall x \in A \cup B \quad=\left(\alpha_{A}, \alpha_{B}\right)
$$

to see $\alpha_{A \cup B}$ unique, note that if $\tilde{\alpha}$ was another such class, then $i_{*}^{x}\left(\alpha_{A \cup B}-\tilde{\alpha}\right)=0 \quad \forall x \in A \cup B$
$\therefore \alpha_{A \cap B}-\tilde{\alpha}$ as a class in $H_{n}(M, M-A)$ or $H_{n}(M, M-B)$ also has this property
\therefore by uniguness for A and $B \quad \alpha_{A \cup B}-\tilde{\alpha}=0$ in $H_{n}(M, M-A)$ and $H_{n}(M, M-B)$
thus irjectivity of $\Phi \Rightarrow \alpha_{A \cup B}-\tilde{\alpha}=0$,
Proof of Clami2: if $A \subset M$ compact, then we can write $A=A, \cup . . \cup A_{k}$ where A_{i} are compact and each is in a coordinate chart U_{i}

$$
H_{i}\left(M ; M-A_{l}\right) \cong H_{l}\left(U_{l}, U_{l}-A_{l}\right) \cong H_{l}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-A_{l}\right)
$$

\uparrow excision
so it lemma true for compact subsets of \mathbb{R}^{n} then true for $\left(M, A_{i}\right)$ and $\left(M, A_{i} \cap A_{j}\right)$
\sim still in \mathbb{R}^{n}
\therefore by Claim i 1 true for $\left(\mu_{1} A_{1} \cup A_{2}\right)$
since $\left(A_{1} \cup A_{2}\right) \cap A_{3} \subset U_{3}$ can continue inductively so lemma true for (M, A),
Proof of Clam 3: if A is convex then $\mathbb{R}^{n}-A$ and $\mathbb{R}^{n}-\{x\}$ both retract onto a sphere centered at x

$$
\begin{gathered}
\therefore H_{i}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-A\right) \cong H_{i-1}\left(\mathbb{R}^{n}-A\right) \cong H_{l-1}\left(S^{n-1}\right) \cong H_{2-1}\left(\mathbb{R}^{n}-\{\times\}\right) \\
\cong H_{i}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-\{\times\}\right)
\end{gathered}
$$

so part 2) of lemma clear
exercise: $\mathbb{R}_{R}^{n}=\mathbb{R}^{n} \times R \quad$ (R has discrete topology)
so sections of \mathbb{R}_{R}^{n} are constant and : 1) also true. by Claim 1, lemma now true for $A=$ finite unions of convex sets
now let A be any compact set in \mathbb{R}^{n}
let Z be a cycle that represents $\alpha \in H_{i}\left(\mathbb{B}^{n}, \mathbb{R}^{n}-A ; R\right)$
thus $\partial z \in C_{1-1}\left(\mathbb{R}^{n}-A\right)$
let $C=$ union of images of simplicies in ∂z
since C, A are compact \exists some r sit $d(x, y)>r \quad \forall x \in C$ any $y \in A$

by compactness of A we can find finitely many closed r-balls B_{1}, \ldots, B_{k} that cover A and $C \cap B_{1}=\varnothing$
let $K=U B_{i}$
note z defines an element $\alpha_{k} \in H_{j}\left(\mathbb{R}_{1}^{n} \mathbb{R}^{n}-K\right)$ that maps to $\alpha \in H_{i}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-A\right)$ by inclusion
since B_{q} are convex, if $1>n$, then $\alpha_{k}=0 \therefore \alpha=0$
If $i=n$ and σ a section of \mathbb{R}_{R}^{n} then $\exists \alpha_{k} \in H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-k\right)$

$$
\text { st. } \eta_{x}^{x}\left(\alpha_{k}\right)=\sigma(x) \quad \forall x \in K
$$

but $H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-K\right) \underbrace{\stackrel{l n}{\rightarrow} H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-A\right) \xrightarrow{l_{x}^{x}}}_{\imath_{x}^{x}} H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-\{k\}\right)$
so $\alpha=\eta_{*}\left(\alpha_{k}\right)$ is desired element
now suppose $\alpha_{1} \alpha^{\prime}$ are two such elements
then $\tau_{*}^{x}\left(\alpha-\alpha^{\prime}\right)=0 \quad \forall x \in A$
if $y \in K$ then \exists some B_{i} and $x \in A \cap B_{i}$ st. $y \in B_{i}$
then

$$
\begin{gathered}
H_{n}\left(\mathbb{R}_{1}^{n}, \mathbb{R}^{n}-\{x\} ; R\right) \\
\\
\\
I_{*}^{x} \uparrow \cong \\
H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-B_{1} ; R\right) \\
\text { so } \quad \tau_{*}^{y}\left(\alpha-\alpha^{\prime}\right)=I_{*}^{y}\left(l_{*}^{x}\right)^{-1}(0)=0 \\
\therefore \\
I_{*}^{y}\left(\alpha-\alpha^{\prime}\right)=0
\end{gathered} \quad \forall y \in R,
$$

$$
H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-\{y\} ; R\right)
$$

\therefore from above $\alpha-\alpha^{\prime}=0$ and we have uniqueness
Remark: a fundamental class $[M, \partial M]$ can similarly be considered for compact manifolds with boundary
C. Algebraic limits and Proof of Duality
a set I is a directed set if \exists a partial order $1 \leq 1^{\prime}$ defivied on certain pairs in I sit. $\forall 1,1^{\prime} \in I, \exists z^{\prime \prime} \in I$ sit. $1 \leq \imath^{\prime \prime}$ and $1^{\prime} \leq \imath^{\prime \prime}$
examples: 1) $I=$ subsets of a set X
\leq given by inclusion
2) $I=Z$ with \leq standard inequality
now suppose $\left\{\mu_{2}\right\}_{1 \in I}$ is a family of R-modules indexed by a directed set I st. $\forall 2 \leq 2 \prime, \exists$ a homomorphism

$$
\phi_{i, 2}: M_{1} \rightarrow M_{2}
$$

st. $\phi_{i, t^{\prime}} \circ \phi_{i, t}=\phi_{i, 2}$ if $2 \leq 2^{\prime} \leq 7^{\prime \prime}$
and $\phi_{1,2}=i_{M_{i}}$
this is called a directed system of modules
the direct limit of $\left\{M_{i}\right\}_{i \in I}$ is a module M together with homomorphisms

$$
\phi_{1}: M_{2} \rightarrow M
$$

st. $\quad \phi_{1} \circ \circ \phi_{1,2}=\phi_{i} \quad \forall i \leq i^{\prime}$
and for any module N and maps $\Psi_{i}: M_{1} \rightarrow N$ satisfying $\Psi_{1^{\prime}} \cdot \phi_{1,1^{\prime}}=\Psi_{i}$
I! homeomorphism $\psi: M \rightarrow N$ sit $\psi_{1}=\psi \circ \phi_{i}$

exercise: any two direct limits are isomorphic we denote the direct lunit by $\xrightarrow{\operatorname{limin}} M_{i}$
lemma 16: direct limits exist

Proof: let $M^{+}=\oplus M_{i}$
and $\phi_{1}^{+}: M_{2} \rightarrow M^{+}$
$x \mapsto I$-tuple with $1^{t h}$ cpt $=x$ others 0
let $J=$ submodule of M^{+}generated by $\left\{\phi_{1,+}^{+} \circ \phi_{1, t}(x)-\phi_{1}^{+}(x)\right\} \forall x \in M_{i}$ and $1,1^{\prime} \in I$
set $M=M^{+} / \sigma$
and $\phi_{1}=\pi \circ \phi_{1}^{+}$where $\pi: M^{+} \rightarrow M$ is the quotient map
exercise: check $\left(M, \phi_{i}\right)$ is the direct product
exercises:

1) if M_{i} are all submodules of M and $1 \leq i^{\prime} \Rightarrow \phi_{1, i}: M_{1} \rightarrow M_{1}$, is inclusion then $\underset{\lim }{ } M_{1}=U M_{i}$
2) if $\exists m \in I$ s.t $1 \leq m \forall 2 \in I$, then $\phi_{m}: M_{m} \rightarrow \xrightarrow{\lim _{\rightarrow}} M_{i}$ is an isomorphism
3) suppose $\forall_{1} \in I, M_{1}=N_{1} \oplus P_{i}$ and $\phi_{i, 1}=\psi_{i, 1} \oplus P_{i, 1} \quad \forall 1 \leq 1^{\prime}$
let $N=\lim N_{i}, P=\underset{\longrightarrow}{\lim } P_{i}, M=\lim M_{i}$
then we get $\psi: N \rightarrow M$ and $\rho: P \rightarrow M$ sit.

$$
\psi_{\circ} \psi_{1}=\phi_{1} l_{N} \quad, \rho \circ \rho_{2}=\phi_{1} l_{\rho}
$$

and $\psi \oplus P: N \oplus P \rightarrow M$ is an isomorphism
4) a subset $J \subset I$ is called final if $\forall>\in I, \exists \jmath \in J$ st. $1 \leq j$ applying definition to $\phi_{J}: M_{J} \rightarrow M$ we get a homomorphism

$$
\lambda: \underset{J}{\lim } M_{J} \rightarrow \underset{I}{\operatorname{limi}_{I}} M_{i}
$$

Show λ is an isomorphism
5) if $\left\{A_{1}\right\}_{t \in I},\left\{B_{1}\right\}_{2 \in I},\left\{C_{1}\right\}_{1 \in I}$ are directed systems and \forall_{i} we have

$$
A_{1} \xrightarrow{\lambda_{i}} B_{1} \xrightarrow{P_{1}} C_{i}
$$

sf. $\forall_{2} \leq q^{\prime}$

$$
A_{i} \xrightarrow{\lambda_{1}} B_{1} \xrightarrow[B]{P_{1}} C_{1}
$$

$\phi_{i,}^{A} \downarrow \downarrow \phi_{i n}^{B} \downarrow_{i, i}^{c}$ is commutative

$$
A_{1^{\prime}} \xrightarrow{\lambda_{n^{\prime}} B_{1^{\prime}}}{ }_{l_{1}}
$$

then in the list we get homomorphisms

$$
\lim _{\rightarrow} A_{1} \xrightarrow{\lambda} \lim _{\rightarrow} B_{1} \xrightarrow{\rho} \lim C_{i}
$$

Show if $*$ is exact at $B_{1} \forall_{i}$, then $* *$ is exact
lemma 17:
let $\left\{U_{\alpha}\right\}$ be a directed system of subsets of X st. any compact set $K C X$ is in some U_{α}
Then

$$
\lim _{\rightarrow} H_{i}\left(U_{\alpha} ; R\right) \cong H_{i}(X ; R)
$$

Proof. Clearly we have inclusion maps $H_{i}\left(V_{\alpha} ; R\right) \rightarrow H_{2}(X ; R) \quad \forall \alpha$
\therefore get map lime $H_{1}\left(V_{\alpha} ; R\right) \rightarrow H_{1}(X ; R)$
if $[\sigma] \in H_{2}(X ; R)$ then in $\sigma \subset U_{\alpha^{\prime}}$ some α^{\prime} so $H_{1}\left(U_{\alpha^{\prime}} ; R\right) \rightarrow H_{1}(X ; R)$ hits $[\sigma]$
but $H_{1}\left(v_{\alpha} ; R\right) \longrightarrow H_{2}(x ; R)$
$\lim _{\rightarrow} H_{1}\left(U_{a} ; R\right)$ so map surjective
exercisé: check injective (similar)
now if M is an n-manifold
let $I=\{$ all compact subsets of $M\}$ directed by inclusion
note: $K \leq K^{\prime} \Rightarrow\left(M, M-K^{\prime}\right)^{2} \rightarrow(M, M-K)$ inclusion

$$
\Rightarrow H^{q}(M, M-K ; R) \xrightarrow{R^{*}} H^{q}\left(M, M-K^{\prime} ; R\right)
$$

$\therefore\left\{H^{q}(M, M-K ; R)\right\}$ is a directed system of R-modules
define $H_{c}^{q}(\mu ; R)=\lim _{\rightarrow} H^{q}(\mu, \mu-K ; R)$
note: 1) if M is compact, then M is final in I

$$
\therefore \quad H^{q}(M ; R) \cong H_{c}^{q}(M ; R)
$$

2) you can think of elements of $H_{c}^{q}\left(M_{i} R\right)$ as cochains that vanish off of some compact subset of M so we call $H_{c}^{q}\left(M_{i} R\right)$ the q-cohomology with compact support fix an Reorientation on M
recall this means a section $\sigma: M \rightarrow M_{R}$ st. $\sigma(x)$ generates

$$
H_{n}(M, M-\{x\})
$$

let K be a compact set in M
then lemma 15 ques a class $\alpha_{k} \in H_{n}(M, M-K ; R)$
st. $l_{x}^{x}\left(\alpha_{k}\right)=\sigma(x)$ where $\imath^{x}:(\mu, \mu-k) \rightarrow(M, M-\{x\rangle)$
the cap product gives

$$
H_{n}(M, M-K ; R) \times H^{P}(M, M-K ; R) \longrightarrow H_{n-p}(M ; R)
$$

So $\alpha_{K} \cap$ gives a map

$$
\begin{aligned}
H^{\rho}(M, M-K ; R) & \rightarrow H_{n-p}(M ; R) \\
\gamma & \longmapsto \alpha_{k} \cap \gamma
\end{aligned}
$$

if $K C K^{\prime}$ then
so we get a map

$$
H_{c}^{p}(M ; R) \xrightarrow{D_{M}} H_{n-p}(M ; R)
$$

Thn 18 (Pornicaré Duality Revised):
If M is an R-oriented n-manifold, then

$$
D_{m}: H_{c}^{p}(M) \rightarrow H_{n-p}(M)
$$

is an isomorphism
Clearly $T^{m}{ }^{m} 2$ part 1) follows from this since if M compact $H_{c}^{\rho}(M ; R) \cong H^{\rho}(M ; R)$ and map is given one since $\alpha_{M}=[M]$

Proof:
Step I: If the true for open sets U, V, and $U \cap V$ in M then true for UUV
StepII: let $\left\{u_{1}\right\}$ be a system of open sets totally ordered by inclusion set $U=U U_{i}$. If th ${ }^{\underline{m}}$ true for all U_{i} then true for U
Step III: th ${ }^{m}$ true for any open $U \subset$ coordinate chart of M. once we have established Steps I - III we are done as follows: recall Zorn's lemma: if P is a partially ordered set such that every Chain has an upper bound, then P has a
maximal element some lt greater than lore equal to)
$\begin{aligned} & \text { totally ordered } \\ & \text { subset } \\ & \text { all elis in chain } \\ & \text { this is equivalent to the } \\ & \text { axiom of choice }\end{aligned}$
now by Step II and Zorn's lemma there is a maximal element U in M for which th it is true
if $M \neq U$, then let $x \in M-U$
\exists an open set V sf. $x \in V<x-U$ st. V is in a coord. chart $\cong \mathbb{R}^{n}$
\therefore th ${ }^{m}$ true for UUV by Step $I \otimes$ maximiality of U
$\therefore U=M$ and we are done
step III is heart of proof
Proof of Step III: suffices to prove for open set in \mathbb{R}^{n}
Case A: let U be convex open set in \mathbb{R}^{n}
exercise: U homeomorphic to \mathbb{R}^{n}
so by naturality of everything just need to check for \mathbb{R}^{n}
let K_{r} be the closed (compact) ball of radius r in \mathbb{R}^{n} (centered at 0)
$\left\{K_{r}\right\}_{r \in(0, \infty)}$ is finial in all compact sets in π^{n}

$$
\therefore \quad H_{c}^{p}\left(\mathbb{R}^{n}\right) \cong \lim _{\overrightarrow{k_{r}}} H^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-k_{r}\right)
$$

and each $H^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-K_{r}\right) \cong 0 \quad \forall p \neq n$
$\therefore H_{c}^{\rho}\left(\mathbb{R}^{n}\right)=0$ for $\rho \neq n$
also $H_{n-p}\left(\mathbb{R}^{n}\right)=0 \quad \forall p \neq n \quad \therefore$ th ${ }^{n}$ true if $p \neq n$
for $p=n$ we get $H_{c}^{n}\left(\mathbb{R}^{n}\right) \cong R$ and $H_{0}\left(\mathbb{R}^{n}\right) \cong R$
now consider $\quad \alpha_{k_{r}} \cap: H^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-k_{r}\right) \rightarrow H_{0}\left(\mathbb{R}^{n}\right)$
recall $H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-K_{r}\right) \times H^{n}\left(\mathbb{R}_{1}, \mathbb{R}^{n}-K_{r}\right) \rightarrow H_{0}\left(\mathbb{R}^{n}\right)$

$$
(\alpha, \beta) \longmapsto \beta(\alpha)=\beta(\alpha)
$$

val on front n-face
now $\alpha_{R_{r}}$ is a generator of $H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-R_{r}\right)$
(or couldn't map to generator $\sigma(x)$ of $\left.H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \cdot\{x\}\right)\right)$
\therefore its dual β in $\operatorname{Hom}\left(H_{n}\left(\mathbb{R}^{n} \mathbb{R}^{n}-K_{r}\right) ; \mathbb{R}\right) \cong H^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-K_{r}\right)$
evaluates to 1 on $\alpha_{k_{r}}$
so β generates $H^{n}\left(\mathbb{R}_{1}^{n}, \mathbb{R}^{n}-K_{r}\right)$
and α_{k}, n. is an isomorphism : D an isomorphism,
Case B: General open $\cup \subset \mathbb{R}$
let $\left\{b_{1}\right\}$ be a countable dense set in U
let U_{1} be balls centered at b_{i} contained in U
so $U=U U_{i}$
set $V_{1}=U_{1} \quad$ and $V_{1}=V_{2-1} \cup U_{i} \quad \forall 2>1$
th ${ }^{m}$ true for each V_{i} by following clam
Claim: th "y true for any finite union of convex sets

Proof of Claim: induct on number of convex sets
true for 1 set by Case
assume true for union of any 1 convex sets for $2<k$
now given A_{1}, \ldots, A_{k}
We know th' ${ }^{\text {n }}$ true for $A_{1} \cup \ldots \cup A_{k-1}$ by induction
A_{k} by Case A and $A_{k} \cap\left(A_{1} \cup \ldots \cup A_{k-1}\right)=\left(A_{\Omega} \cap A_{1}\right) \cup \ldots \cup\left(A_{k} \cap A_{k-1}\right)$
each convex only $k-1$ sets so by adduction
\therefore Step $I \Rightarrow$ th m true for $A_{1} \cup \ldots \cup A_{k}$
now th ${ }^{\text {m }}$ true for U by Step II
Proof of Step II:
from lemma $17 \xrightarrow{\operatorname{limin}_{\rightarrow}} H_{n-p}\left(U_{1}\right) \rightarrow H_{n-p}(U)$ adduced by inclusion is an isomorphism
similarly if $U_{1} \subset U_{j}$ and $K \subset U_{1}$ compact, then excision gives an isomorphism

$$
H^{p}\left(v_{j}, v_{j}-k\right) \rightarrow H^{p}\left(v_{\imath}, v_{i}-k\right)
$$

the riverse give maps $H^{p}\left(u_{1}, v_{1}-K\right) \rightarrow H^{p}\left(v_{j}, v_{j}-K\right) \rightarrow H_{c}^{p}\left(U_{j}\right)$
\therefore we get a map $H_{c}^{\rho}\left(U_{i}\right) \rightarrow H_{c}^{\rho}\left(U_{j}\right)$
Clavi: $\underset{i}{\lim _{i}} H_{c}^{\rho}\left(U_{i}\right)=H_{c}^{\rho}(U)$ and $D_{U}=\lim _{i \rightarrow} D_{U_{i}}$
note that given the claim since $D_{U_{i}}: H_{c}^{\rho}\left(U_{i}\right) \rightarrow H_{n-p}\left(U_{1}\right)$ an isomorphism $\forall_{i}, \quad D_{v}: H_{c}^{\rho}(U) \rightarrow H_{n-p}(U)$ an isomorphic too
Proof of Claim: as above we get maps $H_{c}^{p}\left(U_{\imath}\right) \rightarrow H_{c}^{p}(U)$ \therefore we have a map $\underset{i}{\operatorname{linin}_{i}} H_{c}^{p}\left(U_{i}\right) \xrightarrow{G} H_{c}^{P}(U)$
now for amy compact set $K \subset U \quad \exists J$ ss. $K \subset U_{2} \quad \forall 2 \geq j$
so we get a map $H^{\rho}\left(U_{1} U-K\right) \rightarrow H^{\rho}\left(U_{2}, U_{1}-K\right) \rightarrow H_{c}^{p}\left(U_{i}\right)$

$$
\rightarrow \lim _{i} H_{c}^{p}\left(U_{i}\right)
$$

\therefore we have a map $H_{c}^{p}(U) \xrightarrow{H} \lim _{\rightarrow \rightarrow} H_{c}^{p}\left(v_{z}\right)$
exercise: show G and H are uverses of eachother. also check claim about Du,
Proof of Step I:
let K be any compact set in U
L " " V
set $B=U \cap V$ and $Y=U \cup V$
note: $(Y, Y-(K \cap L))=(Y, Y-K) \cup(Y, Y-L)$

$$
(Y, Y-(K \cup C))=(Y, Y-K) \cap(Y, Y-L)
$$

so Mayer-Viétoris for $(Y, \cup-K)$ and $(Y, Y-L)$ gives

$$
\begin{aligned}
& H^{\rho}(Y, Y-(K \wedge L)) \rightarrow H^{\rho}(Y, Y-K) \oplus H^{\rho}(Y, Y-K) \rightarrow H^{\rho}(Y, Y-(K \cup L)) \stackrel{\delta}{\rightarrow} H^{\rho+1}(Y, Y-(K U L))
\end{aligned}
$$

$$
\begin{aligned}
& H_{n-p}(B) \rightarrow H_{n-p}(U) \oplus H_{n-p}(V) \longrightarrow H_{n-p}(Y) \xrightarrow{\partial} H_{n-p-1}(B)
\end{aligned}
$$

exercué: 1) first two squares commute (easy since all maps are inclusions or cap products)
2) last square commutes upto sign

Hint: a) recall ∂ is defined as follows:
The III. 19 given $Z \in H_{n-p}(Y)$ you can write $z=a+b$ for $a \in C_{n-p}(v), b \in C_{n-p}(V)$
then $\partial[z]=[\partial a]$
b) as in proof of TheII.II can use Lebesgue number and barycentric subdivision to find chains

$$
\alpha_{K}, \alpha_{L,} \alpha_{K \cap L} \quad \text { st. } \alpha_{K U L}=\alpha_{K}+\alpha_{L}+\alpha_{K \cap L}
$$

you can now compute $\partial \circ\left(\alpha_{\text {KL }} \cap\right)$
similarly compute $\left(\alpha_{k \cap L} \cap\right) \cdot \delta$
note any compact set in $B=U \cap V$ is $K \cap L$ for some $K \& L$ as above and similarly for $Y=U U V$
$s 0$ above gives the following diagram commutes upto sign

$$
\begin{aligned}
& H_{c}^{\rho}(B) \xrightarrow{\Phi} H_{c}^{\rho}(U) \oplus H_{c}^{\rho}(V) \xrightarrow{\Psi} H_{c}^{\rho}(Y) \xrightarrow{S} H_{c}^{\rho_{+1}(B)} \\
& \cong \downarrow D_{B} \quad \cong \downarrow \Phi_{0} \oplus D_{V} \Phi^{\prime} \downarrow D_{Y} \cong \downarrow D_{B} \\
& H_{n-p}(B) \xrightarrow{\Phi^{\prime}} H_{n-p}(v) \oplus H_{n-p}(V) \xrightarrow{\Phi} H_{n-p}(Y) \xrightarrow{\partial} H_{n-\rho+1}(B)
\end{aligned}
$$

Claim: D_{Y} is isomorphism
indeed if $\alpha \in H_{c}^{P}(Y)$ and $D_{Y} \alpha=0$
then $0=\partial D_{Y} \alpha=D_{B} \delta \alpha \Rightarrow \delta \alpha=0$

$$
\therefore \exists(a, b) \text { st. } \Phi(a, b)=\alpha
$$

and $\Psi^{\prime}\left(D_{v}, D_{v} b\right)=D_{Y} \Psi(a, b)=D_{r} \alpha=0$

$$
\therefore \exists c \text { s.t. } \Phi^{\prime}(c)=\left(D_{v}, D_{v} b\right)
$$

and c^{\prime} st $D_{B} c^{\prime}=C$
now $D_{v} \otimes D_{V}\left(\Phi\left(c^{\prime}\right)\right)=\Phi^{\prime}\left(D_{B} c^{\prime}\right)=\left(D_{v} a_{i} D_{v} b\right)$
and $\Phi\left(c^{\prime}\right)=(a, b)$ since $D_{\cup} \oplus D_{V}$ an \cong
finally $\alpha=\Psi(a, b)=\Psi\left(\Phi\left(c^{\prime}\right)\right)=0$ and D_{y} infective
exercise: Show D_{Y} surjeitive

Next steps in algebraic topology
I) Homotopy Groups
recall $\pi_{n}\left(X, x_{0}\right)=\left[S^{n}, X\right]_{0}^{¿ h o m o t o p y ~ c l a s s e s ~ o f ~ b a s e d ~ m a p s ~}$ and $f: X \rightarrow Y$ induces a homomorphism $f_{x}: \pi_{n}\left(X, x_{0}\right) \rightarrow \pi_{n}\left(Y, f\left(x_{0}\right)\right) \quad \forall n$

- Whitehead Them: if $f: X \rightarrow Y$ is a map between CW complexes and $f_{k}: \pi_{n}(X) \rightarrow \pi_{n}(Y)$ an isomorphism $\forall n$ then f is a homotopy equivalence!
- for $n \geq 2, \pi_{n}\left(x, x_{0}\right)$ is an abeliani group
- hard to compute in general eg

$n=$	1	2	3	4	5	6	7	8	9	10	\cdots

- Given any abeliain group G and integer n, \exists a space $K(G, n)$ such that

$$
\pi_{k}(K(G, n)) \cong \begin{cases}G & k=n \\ 0 & k \neq n\end{cases}
$$

for such a space we have

$$
H^{n}(x ; G) \equiv[x, K(G, n)]
$$

Brown representation the relates homotory and whomology!

- Huremicz T_{h} - if $\pi_{k}(x)=0 \quad \forall k<n$, then $\tilde{H}_{k}(x)=0 \quad \forall k<n$

$$
\text { and } \pi_{n}(x) \cong H_{n}(x)
$$

- a map $p: E \rightarrow B$ is a fibration if it has the homotopy lifting property le. If $f_{t}: x \rightarrow B$ is a homotopy and \tilde{f}_{0} is a lift of f_{0}
then \exists a left \tilde{f}_{t} for all t
all fiber bundles are fibrations
if $p: E \rightarrow B$ a fibration, then there is a long exact sequence

$$
\ldots \rightarrow \pi_{n}\left(F_{1} x_{0}\right) \rightarrow \pi_{n}\left(E_{1} x_{0}\right) \xrightarrow{P_{y}} \pi_{n}\left(B, \rho\left(x_{0}\right)\right) \rightarrow \pi_{n-1}\left(F_{1} x_{0}\right) \rightarrow \ldots
$$

where $x_{0} \in E, F=\rho^{-1}\left(p\left(x_{0}\right)\right)$
II) Spectral sequences
computing the homology of a fibration is much harder!
a group Cor module) is bigradded is a collection of groups $E=\left\{E_{s, t}\right\}$ indexed by pairs of integers
a map d: $E \rightarrow E$ has bidegree (a, b) if $d\left(E_{s, t}\right) \subset E_{s+a, t+b} \quad \forall s, t$ if $d^{2}=0$, then it is called a differential and we can consider its homology

$$
H_{s, t}(E, d)=\frac{\operatorname{ker}\left\{d: E_{s, t} \rightarrow E_{s+a, t+b}\right\}}{\operatorname{in}\left\{d: E_{s-a, t-b} \rightarrow E_{s, t}\right\}}
$$

a spectral sequence, is a sequence $\left\{E^{r}, d^{r}\right\}$ sit.

1) each E^{r} is a bimodule, d^{r} a differential of degree $(-r, r-1)$
2) $E^{r+1}=H\left(E^{r}\right)$

Leray-Hirsh The if $p: E \rightarrow B$ a fibration
B simply connected CW complex
then \exists a spectral sequence with $E_{s, t}^{2}=H_{s}\left(B ; H_{t}(F)\right)$ and "ED" more or less giving $H_{*}(E)$
can use spectral sequences for many other things too
III Obstruction Theory (and characteristic classes) given a fibration $\rho: E \rightarrow B$
there are many problems that can be phrased as the e terce of a section (egg. does a manifold have a smooth structure...)
if B is a CW complex the there is a systematic way to try to construct a section skeletal by skeleta
Obstruction theory says : given a section $f: B^{(k-1)} \rightarrow E$ there is a

$$
\text { cocycle } \sigma(f) \in C^{k}\left(B ; \pi_{k-1}(F)\right) \text { s.t. } \sigma(f)=0
$$

Chern classes: "primiary" obstruction to a $\mathbb{C} n-k+1$ frame over

(here F is $p^{-c}(p t)$)
$2 k$ skeleton of B (here E a \mathbb{C}^{l}-bundle)
these are called characteristic classes (also have Stiefel-Whitney, Pontryagin Classes ...)

