Knot Groups and Colorings
A Knot Groups
recall a knot K is the image of an embedding

$$
f: S^{\prime} \rightarrow \mathbb{R}^{3}
$$

(or $S^{3}=\mathbb{R}^{3} \cup\{\infty\}$, recall stereographic coordinates show $s^{3}-\{p t\} \cong \mathbb{R}^{3}$)
given a knot K we can consider a "tube" about K

k

2.e. think of a knot as a piece of string then. the tube is a thickening" of the string
note: $N_{K} \cong S^{1} \times D^{2}\left(=K \times D^{2}\right)$
Remark: such tubes don't always exist! but if f is differentiable they do If tube doesn't exist the knot is called wild

we will not study wild knots so for us "knot" means "non-wild knot" (tame)
let $X_{k}=\overline{S^{3}-N_{k}}$ (use S^{3} because we like compact things but not important for most of what is below)
exercise:

1) X_{k} is a compact 3-manifold with boundary
2) $\partial X_{k}=T^{2}$
recall we are interested in knots upto isotopy
Fact: For tame knots: K_{1} isotopic to K_{2}
called
ambient $\left\{\exists\right.$ an isotopy $\phi: S^{3} \times[0,1] \rightarrow S^{3}$
ambient $\left\{\right.$ such that $\phi_{0}=i d_{s} 3$ and $\phi_{1}\left(K_{1}\right)=K_{2}$
note that given an ambient isotopy ϕ, and a parametrization
$\gamma: s^{\prime} \rightarrow s^{3}$ of K_{1}, then $\phi_{t} 0 \gamma$ is an isotopy from K_{1} to K_{2}
so (\Leftrightarrow) is easy
\Leftrightarrow) is much more difficult, but true
note: $\phi_{1}:\left(s^{3}-K_{1}\right) \rightarrow\left(s^{3}-k_{2}\right)$ is a homeomorphism
lemma 1:

$$
x_{k} \simeq s^{3}-k
$$

homotopy equivalent
Remark: by above discussion if K_{1} is is otopic to K_{2} then $X_{k_{1}} \cong X_{k_{2}}$
so if we can show $X_{K_{1}} \not \neq X_{K_{2}}$ then K_{1} and K_{2} are different!
Proof: $D^{2}-\{p t\} \simeq s^{\prime}$

exercise: $f \circ g=i d_{s^{\prime}}$ and $g \circ f \simeq i d_{D^{2}-\{p t\}}$
now $N_{K}-K \cong\left(D^{2}-\{p+\}\right) \times S^{1} \simeq s^{\prime} \times s^{1}=T^{2}$
so $s^{3}-K=X_{K} U_{T^{2}}\left(N_{K}-K\right) \simeq X_{K} U_{T^{2}}\left(T^{2}\right)=X_{K}$
X_{k} is called the knot complement of K we want to compute the fundamental group of X_{K} for this we consider knot diagrams
recall, we discussed these at start of the course. they are projections to $x y$-plane in \mathbb{R}^{3} (and remember over and under crossing info.)

note: if the diagram for K has $n(n>0)$ crossings, then it also has n arcs $a_{1} \ldots a_{n}$ (lable crossings $c_{1} \ldots c_{n}$)

we lable a_{r} consecutively as we go around K and c_{i} is tip of a_{i}
Th m 2 (Wirtinger Presentation):
If D_{k} is a diagram of K with arcs a_{1}, \ldots, a_{n} and crossings c_{1}, \ldots, c_{n}, then

$$
\pi_{1}\left(x_{k}, x_{0}\right) \cong\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{n-1}\right\rangle
$$

where for each crossing c_{i} we get a relation r_{i}. as follows

$$
\begin{array}{ll}
a_{i}-\prod_{a_{k}}^{c_{i+1}} & a_{i}-{ }_{a_{i+1}}^{\stackrel{c_{i}}{\longrightarrow}} \\
a_{k} a_{i} a_{k}^{-1}=a_{1+1} & a_{k}^{-1} a_{i} a_{k}=a_{1+1}
\end{array}
$$

examples:
1)

$$
u=a_{1}^{a_{1}} \quad \pi_{1}\left(x_{0}\right) \cong\left\langle a_{1} \mid\right\rangle \cong \mathbb{Z}
$$

2) $u=0 a^{a_{1}} \quad \pi_{1}\left(x_{0}\right) \cong\left\langle a_{1} \mid\right\rangle \cong \mathbb{Z}$
3)

$$
\begin{gathered}
\pi_{1}\left(X_{u}\right) \cong\left\langle a_{1}, a_{2} \mid a_{2} a_{1} a_{2}^{-1}=a_{2}\right\rangle \\
a_{2}^{-1} a_{2} a_{1} a_{2}^{-1}=e \\
a_{1} a_{2}^{-1}=e \\
a_{1}=a_{2}
\end{gathered}
$$

so $\pi_{1}\left(X_{v}\right) \cong\left\langle a_{1} \mid\right\rangle \cong \mathbb{Z}$
4)

$$
\begin{aligned}
& T=a_{a_{1}}^{a_{1}} \int_{c_{3}}^{c_{2}} a_{2} \\
& \pi_{1}\left(X_{T}\right) \cong\left\langle a_{1}, a_{2}, a_{3}\right| a_{3}^{-1} a_{1} a_{3} a_{2}, \\
& a_{1}^{-1} a_{2} a_{1} a_{3}^{-1}> \\
& \text { note: } a_{2}=a_{3}^{-1} a_{1}^{-1} a_{3} \\
& \begin{array}{c}
s 0 \\
\pi_{1}\left(X_{T}\right) \cong\left\langle a_{1}, a_{3} \mid a_{1}^{-1} a_{3}^{-1} a_{1}^{-1} a_{3} a_{1} a_{3}\right\rangle
\end{array} \\
& a_{1} a_{3} a_{1}=a_{3} a_{1} a_{3}
\end{aligned}
$$

Proof: given a knot diagram in the $x y$-plane

in \mathbb{R}^{3} we can take almost all of K to be in $\{z=1\}$ with only undercrossings in $\{z=0\}$ (and arcs connecting then)
if you look from above diagram same

single crossing
look at N_{k} near one of the under crossings

note: $\{z= \pm \varepsilon\}$ intersects N_{k} near crossing in a disk
let $B=\left\{(x, y, z) \in \overline{\mathbb{R}^{3}-N_{k}}: z<\varepsilon\right\}$

$$
A=\left\{(x, y, z) \in \mathbb{R}^{3}-N_{K}: z>-\varepsilon\right\}
$$

Identify B: If we did not remove N_{k} from B we would have an open ball $B^{3}=\{Z<\varepsilon\}$ for each crossing we remove

so $B=B^{3}-(U$ balls as above)
exercise: $B \cong B^{3}$
so $\pi_{1}(B)=\{e\}$
Identify $A \cap B$: in \mathbb{R}^{3} we see

$$
\begin{aligned}
A \cap B & =\left(\mathbb{R}^{2} \times(-\varepsilon, \varepsilon)\right)-\left(U\left(D^{2} \times(-\varepsilon, \varepsilon)\right)\right. \\
& =\left(\mathbb{R}^{2}-U D^{2}\right) \times(-\varepsilon, \varepsilon) \simeq \mathbb{R}^{2}-U D^{2}
\end{aligned}
$$

T one for each crossing

$$
\simeq \bigcirc
$$

wedge of n circles W_{n}

So $\left.\pi_{1}(A \cap B) \cong \pi_{1}\left(w_{n}\right) \cong\left\langle c_{1}, \cdots, c_{n}\right\rangle\right\rangle$ free group on n generators
Identify A : If we did not remove N_{k} from A we would have an open ball $B^{3}=\{z>-\varepsilon\}$
for each arc a_{i} in diagram we remove a tube from B^{3} (ie. make a" worm hole")
So $A=B^{3}$ with n worm holes
note: each worm hole has a disk under it that is disjoint from other worm holes (and disks)

so removing a worm hole is the same as the following: take disjoint arcs on $\{z=-\{ \}$, push interiors in to $\{z>-\varepsilon\}$, and removing a nbhd of it exercise: If you isotop the arcs on $\{z=-\varepsilon\}$ and then push interiors up and remove nbhs then you get homeomorphic spaces
eg

so

$$
\begin{aligned}
& \cong=A Q Q=\left(D^{2}-\prod_{i=1}^{n} D^{2}\right) \times(0,1) \\
& \simeq D^{2}-\prod_{i=1}^{n} D^{2}\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right) \simeq \text { wedge of } n \text {-circles }
\end{aligned}
$$

so $\pi_{1}(A)=\left\langle a_{1}, \ldots, a_{n} \mid\right\rangle$ free group on n generators
to use Serfert-Van Kampen need to see
$\pi_{1}(A \cap B) \rightarrow \pi_{i}(B)=\{e\} \quad$ trivial map

$$
\pi_{1}(A \cap B) \rightarrow \pi_{1}(A)
$$

let c_{2} be one of the generators of $\pi_{1}(A \cap B)$
c_{i} in $\pi_{1}(A)$ is

note this is homotopic to

$$
\begin{aligned}
c_{2} & \simeq \eta_{1} \bar{\alpha}_{2+1} \alpha_{k} \alpha_{2} \bar{\alpha}_{h}^{\prime} \bar{\eta}_{1} \\
& \left.\simeq\left(\eta_{1} \bar{\alpha}_{2+1} \bar{\eta}_{2}\right) \dot{\eta}_{2} \alpha_{h} \bar{\eta}_{3}\right)\left(\eta_{3} \alpha_{2} \bar{\eta}_{4}\right)\left(\eta_{4} \bar{\alpha}_{k}^{\prime} \bar{\eta}_{1}\right) \\
& \simeq a_{2+1}^{-1} \alpha_{h} \alpha_{2} \alpha_{h}^{-1}
\end{aligned}
$$

so $\pi_{1}\left(\mathbb{R}^{3}-N_{k}\right) \cong\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{n}\right\rangle$
where relations are as above
exercise: Show r_{n} is a consequence of the other r_{i} so it is not needed
(you can also do this by taking a different decomposition of \mathbb{R}^{3})
We applied Sectert-Van Kampen wrong!
we were not careful with base point need to take base point $y_{0} \in A \cap B$ not $x_{0}=(0,0,2)$ like we did
(just did this because easier to visualize, and we can fix if !)
let η be a path from x_{0} to y_{0}, then we get isomorphism

$$
\Phi_{\eta}: \pi_{r}\left(A_{1} y_{0}\right) \rightarrow \pi_{r}\left(A, x_{0}\right)
$$

now for generators c_{i} of $\pi_{1}\left(A \cap B_{1} y_{0}\right)$ we take

$$
z=0
$$

$$
\begin{aligned}
& c_{2}=\eta_{2} l_{i} \bar{\eta}_{1} \\
& \text { let } y_{2}=l_{1} \cap \eta_{i}
\end{aligned}
$$

let γ_{1} be path x_{0} to y_{i}
note $\gamma_{1} l_{1} \bar{\gamma}_{2}$ are the loops we used above for c_{1}. in $\pi_{r}\left(A, x_{0}\right)$ (call them c_{i}^{\prime} now)
so $\Phi_{\eta}\left(c_{1}\right)=\Phi_{\eta}\left(\eta_{2} l_{1} \bar{\eta}_{1}\right)=\eta \eta_{1} l_{2} \bar{\eta}_{2} \bar{\eta}$

let $\beta_{i}=\gamma_{2} \bar{\nu}_{2} \bar{\zeta} \in \pi_{1}\left(A_{1} x_{0}\right)$

correct use of Seifert-Van Kampen is

$$
\begin{aligned}
\pi_{1}\left(x_{k}, y_{0}\right) & \cong \Phi_{n}^{-1}\left(\pi_{1}\left(A, x_{0}\right)\right) *\{e\} /\left\langle c_{1}, \ldots, c_{n}\right\rangle \\
& \cong \pi_{1}\left(A, x_{0}\right) /\left\langle\Phi_{3}\left(c_{1}\right), \ldots, \Phi_{\eta}\left(c_{n}\right)\right\rangle \\
& =\pi_{1}\left(A, x_{0}\right) /\left\langle\bar{\beta}_{1} c_{1}^{\prime} \beta_{1}, \ldots, \bar{\beta}_{n} c_{n}^{\prime} \beta_{n}\right\rangle
\end{aligned}
$$

exercise: $\left\langle g_{1}, \ldots, g_{k}\right\rangle=\left\langle h, g, h_{1}^{-1}, \ldots, h_{k} g_{k} h_{h}^{-1}\right\rangle$ normal subgroups gen by elements
so

$$
\begin{aligned}
\pi_{1}\left(x_{k}, y_{0}\right) & \cong \pi_{1}\left(A, x_{0}\right) /\left\langle c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right\rangle \\
& \cong\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{n}\right\rangle
\end{aligned}
$$

recall

$$
\begin{aligned}
& U=\bigcirc \text { has } \pi_{1}\left(X_{v}\right) \cong \mathbb{Z} \\
& T=\bigcap \text { has } \pi_{1}\left(X_{T}\right) \cong\left\langle a_{11} a_{3} \mid a_{3} a_{1} a_{3} a_{1}^{-1} a_{3}^{-1} a_{1}^{-1}\right\rangle
\end{aligned}
$$

Is $\pi_{l}\left(x_{\nu}\right) \cong \pi_{l}\left(x_{k}\right)$?
as earlier, could try to abelianize (ie. look at H_{1}), but
Corollary 3:

$$
H_{1}\left(X_{k}\right) \cong \Downarrow \text { for any knot } K
$$

Proof: each crossing

$$
a_{i}-\uparrow \xrightarrow{a_{h}}
$$

gives a relation $a_{i} a_{k} a_{i+1}^{-1} a_{k}^{-1}=e$
after we abelionize this is $a_{2}=a_{1+1}$
so $H_{1}\left(X_{k}\right)$ has one generator and no relations
so $H_{1}\left(K_{k}\right) \cong \mathbb{Z}$
next try
Claim: $\pi_{1}\left(X_{K}\right)$ non-abelcan
Iso not $\cong \pi_{1}\left(X_{U}\right)$, so T and U are not isotopic)
to show this, we look for a group G we know is
non-abelian and try to find a homomorphism $\phi: \pi_{1}\left(X_{k}\right) \rightarrow G$ onto G.
(since $\exists g_{1}, g_{2} \in G$ st. $g_{1} g_{2} \neq g_{2} g_{1}$
and $h_{1}, h_{2} \in \pi_{1}\left(X_{T}\right)$ s.t. $\phi\left(h_{i}\right)=g_{i}$
we know $h_{1} h_{2} \neq h_{2} h_{1}$ and $\pi_{1}\left(x_{\tau}\right)$ non-abelcan)
recall $S_{3}=$ group of permutations of $\{1,2,3\}$
$\left|S_{3}\right|=6$ and S_{3} non-abelian
define $\phi: \pi_{1}\left(X_{T}\right) \rightarrow S_{3}$ by \rightarrow recall, this means

$$
\begin{aligned}
& a_{1} \longmapsto\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right] \\
& a_{3} \longmapsto\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

$$
3 \mapsto 3
$$

this gives a homomorphism since

$$
a_{3} a_{1} a_{3} a_{1}^{-1} a_{3}^{-1} a_{1}^{-1}=1
$$

becomes

$$
\begin{aligned}
& {\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right]\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right]^{-1}\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]^{-1}\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right]^{-1}} \\
& =\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right]^{-1}\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]^{-1}\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right]^{-1} \\
& =\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]=i d
\end{aligned}
$$

mage ϕ contains $a_{1} \longmapsto\left[\begin{array}{lll}2 & 1 & 3\end{array}\right]$

$$
\begin{aligned}
& a_{3} \longmapsto\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right] \\
& a_{1} a_{3} \longmapsto\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right] \\
& a_{3} a_{1} \longmapsto\left[\begin{array}{llll}
2 & 3 & 1
\end{array}\right] \\
& a_{1} a_{3} a_{1} \longmapsto\left[\begin{array}{llll}
1 & 3
\end{array}\right] \\
& e \longmapsto\left[\begin{array}{lll}
1 & 2
\end{array}\right]
\end{aligned}
$$

so ϕ is onto $\therefore \pi_{1}\left(X_{T}\right)$ non-abelian

$$
\therefore \pi_{1}\left(x_{T}\right) \neq \pi_{1}\left(x_{U}\right)
$$

so K and U not isotopic!
How good is $\pi_{1}\left(X_{k}\right)$ at determining X_{k} ?
Facts:

1) if $\pi_{1}\left(X_{k}\right) \cong \mathbb{Z}$, then K is the unknot.
2) if

then $\pi_{1}\left(X_{k_{1}}\right) \cong \pi_{1}\left(X_{k_{2}}\right)$
bat k_{1} is not isotopic to k_{2}
3) so $\pi_{1}\left(X_{k}\right)$ is a good invariant of K but not perfect
but $\pi_{1}\left(X_{k}\right)+$ tiny bit extra determines K down side is it can be hard to determine when two group presentations are the same group!
So try to "extract" more" computable" information from $\pi_{1}\left(X_{K}\right)$
B. Coloring Knots Grime

Recall a p-labeling (or coloring) of a knot diagram is an assignment of an element of \mathbb{Z}_{p} to each edge of the diagram so that

1) at least 2 lables are used and
2) at each crossing

We saw you can dis tinguish the unknot, figure 8 knot, and trefoil using 3 and 5 colorings
egg.

3-colorable
not 3-colorable
What does this have to do with $\pi_{1}\left(X_{k}\right)$?
Thㅡㅡㄴ:

1) Every p-labeling of a diagram of K gives a surjective homomorphism

$$
\pi_{1}\left(X_{K}\right) \longrightarrow D_{\rho}
$$

2) Every surjective homomorphism $\pi_{1}\left(X_{K}\right) \rightarrow D_{p}$ gives a p-labeling of a diagram of K

Recall $D_{p}=$ dihedral group

$$
=\text { symmetries of regular } n \text {-gon }
$$

$$
\cong\left\langle x, y \mid x^{n}, y^{2}, x y x y\right\rangle
$$

Proof: If a diagram D_{k} for K has n crossings c_{1}, \ldots, c_{n}
and n arcs a_{1}, \ldots, a_{n} (labeled as above)
then $T^{2}{ }^{2} 2$ says

$$
\pi_{1}\left(X_{k}\right) \cong\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{n-1}\right\rangle
$$

where r_{i} is $a_{k} a_{2} a_{n}^{-1} a_{1+1}^{-1}$ if c_{i} is $\left.a_{i}\right|^{a_{k}} a_{1+1}$ and $a_{k}^{-1} a_{1} a_{k} a_{i+1}^{-1} \quad$ if c_{i} is $a_{i}{\underset{a}{a_{k}}}_{\longrightarrow}^{\longrightarrow}$
a p-coloring is a map

$$
\left\{a_{1}, \ldots, a_{n}\right\} \xrightarrow{c} \mathbb{Z}_{p}
$$

satisfying

given c define

$$
\begin{aligned}
\phi_{c}: \pi_{1}\left(X_{K}\right) & \longrightarrow D_{p} \\
a_{i} & \longmapsto y x^{c\left(a_{i}\right)} \quad \text { write } c_{i}=c\left(a_{1}\right)
\end{aligned}
$$

this will give a homomorphism if the relations r_{i} are respected:

$$
a_{k}^{-1} a_{1} a_{k} a_{1+1}^{-1}
$$

becomes:

$$
\begin{aligned}
& \left(y x^{c_{k}}\right)^{-1}\left(y x^{c_{i}}\right)\left(y x^{c_{k}}\right)\left(y x^{c_{1+1}}\right)^{-1} \\
& =x^{-c_{k}} y^{-1} y x^{c_{i}} y x^{c_{k}} x^{-c_{2+1}} y^{-1} \\
& =x^{c_{1}-c_{k}} y x^{c_{k}-c_{2+1}} y^{-1} \\
& =x^{c_{i}+c_{2+1}-2 c_{k}} y y^{-1}=x^{c_{1}+c_{2+1}-2 c_{k}} \\
& =x^{l \rho}=e
\end{aligned}
$$

similarly for $a_{i} \gg a_{n}$
so ϕ_{c} is a homomorphism
Claim: ϕ_{c} is onto
since at least 2 labels are used there is a crossing sit. $c_{1} \neq c_{1+1} \bmod p$

$$
2 c_{h} \equiv c_{2}+c_{1+1} \bmod p
$$

$c_{1} \neq c_{2+1} \bmod p \Rightarrow c_{2+1}-c_{2} \neq 0 \bmod p$
so $c_{i+1}-c_{i}$ is represented by an integer between l and $p-1$
so $\left(C_{2+1}-C_{2}\right)$ is relatively prime to p (since p prime)
Algebra Fact: \exists integers m, m such that

$$
\begin{aligned}
& m\left(c_{1+1}-c_{1}\right)+m^{\prime} p=1 \\
& \text { ie. } \quad m\left(c_{1+1}-c_{1}\right) \equiv 1 \bmod p
\end{aligned}
$$

now $\phi_{c}\left(\left(a_{i} a_{i+1}\right)^{m}\right)=\left(y x^{c_{i}} y x^{c_{i+1}}\right)^{m}=\left(y^{2} x^{c_{i+1}-c_{i}}\right)^{m}$

$$
=x^{m\left(c_{2+1}-c_{1}\right)}=x^{1}=x
$$

and $\phi_{c}\left(a_{i}\left(\left(a_{1} a_{1+1}\right)^{m}\right)^{-c_{i}}\right)=y x^{c_{i}} x^{-c_{i}}=y$
so ϕ_{c} onto
Now given $\phi: \pi_{1}\left(X_{k}\right) \rightarrow D_{p}$ surjective
then for a diagram D_{k} let the arcs be a_{1}, \ldots, a_{n}
note: $\phi\left(a_{i}\right)=x^{b_{1}} y x^{b_{2}} y \ldots y x^{b_{k_{i}}}=y^{\xi_{i}} x^{c_{i}}$
where $\varepsilon=0$ or 1 and $c_{1} \in\{0, \ldots, p-1\}$

Claim: $\varepsilon_{2}=1$ for all i
if not, then for some i we have $\varepsilon_{i}=0$
now conside

$$
\begin{aligned}
\phi\left(a_{k}^{-1} a_{i} a_{k} a_{l+1}^{-1}\right) & =x^{-c_{k}} y^{\varepsilon_{k}} x^{c_{i}} y^{\varepsilon_{k}} x^{c_{k}} x^{-c_{i+1}} y^{\varepsilon_{+1}} \\
& =y^{2 \varepsilon_{k}+\varepsilon_{z+1}} x^{?}=y^{\varepsilon_{z+1}} x^{?}
\end{aligned}
$$

since this must be e, we must have $\varepsilon_{r t 1}=0$
inducting we see all $\varepsilon_{k}=0$
thus y is not in the image of $\phi \$$
thus we see $\phi\left(a_{i}\right)=y x^{c_{i}} \forall i$
define $c:\left\{a_{1}, \ldots, a_{n}\right\} \longrightarrow \mathbb{Z}_{p}: a_{i} \longmapsto c_{i}$
exercise: check this is a p-labeling

