Math 6452-Fall 2014
 Homework 2

Work all these problems and talk to me if you have any questions on them, but carefully write up and turn in only problems 4, 5, 8, 9, 12. Due: In class on September 24.

1. If S^{2} is the unit sphere in \mathbb{R}^{3} and $N=(0,0,1)$ and $S=(0,0,-1)$ then we have the two stereographic coordinate maps $\pi_{N}:\left(S^{2}-N\right) \rightarrow \mathbb{R}^{2}$ and $\pi_{S}:\left(S^{2}-S\right) \rightarrow \mathbb{R}^{2}$. If p is a point in S^{2} not equal to N or S then we can use the first to express a tangent vector in $T_{p} S^{2}$ in terms of the basis $\left\{\frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}\right\}$ (where we are using Cartesian coordinates $\left(x^{1}, x^{2}\right)$ on \mathbb{R}^{2}) as

$$
v=v^{1} \frac{\partial}{\partial x^{1}}+v^{2} \frac{\partial}{\partial x^{2}}
$$

Similarly we can use the second to express the same vector in terms of the basis $\left\{\frac{\partial}{\partial y^{1}}, \frac{\partial}{\partial y^{2}}\right\}$ (where we are using Cartesian coordinates $\left(y^{1}, y^{2}\right)$ on \mathbb{R}^{2}) as

$$
v=w^{1} \frac{\partial}{\partial y^{1}}+w^{2} \frac{\partial}{\partial y^{2}}
$$

Write the w^{i} in terms of the v^{i} (and the coordinate transform $\pi_{S} \circ \pi_{N}^{-1}$).
In particular if $\pi_{N}(p)=(1,0)$ and $v=\frac{\partial}{\partial x^{1}}$ then express v in the other coordinate system.
2. Let M and N be two smooth manifolds.
(a) Show that for $(p, q) \in M \times N$ we have

$$
T_{(p, q)}(M \times N)=\left(T_{p} M\right) \times\left(T_{q} N\right) .
$$

(b) If $\pi: M \times N \rightarrow M:(p, q) \mapsto p$ is the projection map then

$$
d f_{(p, q)}: T_{(p, q)}(M \times N) \rightarrow T_{p} M
$$

is the projection map $(v, w) \mapsto v$.
(c) Fix a point $q_{0} \in N$ and let $f: M \rightarrow M \times N: p \mapsto\left(p, q_{0}\right)$ then show that

$$
d f_{p}: T_{p} M \rightarrow T_{\left(p, q_{0}\right)}(M \times N)
$$

is given by $v \mapsto(v, 0)$.
3. Let $f: M \rightarrow N$ be a smooth map between smooth manifolds and define $F: M \rightarrow$ $(M \times N): p \mapsto(p, f(p))$. Show that $d F_{p}(v)=\left(v, d f_{p}(v)\right)$. (Here we are of course using Problem 3 (a) to write the tangent bundle of $M \times N$ as a product.)
4. If $f: M \rightarrow N$ is a submersion, then show f is an open map. (That is show that for any open set U in M the image $f(U)$ is open in N.)
5. If M is a compact smooth manifold and N is a connected smooth manifold, then show that any smooth submersion $f: M \rightarrow N$ is surjective. Is there a submersion from S^{2} to any \mathbb{R}^{n}, with $n>0$?
6. Let M be a compact smooth manifold and N a connected smooth manifold. If they both have the same dimension and are non-empty show that any embedding $f: M \rightarrow N$ is a diffeomorphism.
7. Show that $\mathbb{C} P^{1}$ is diffeomorphic to S^{2}.

Hint: Using Stenographic coordinates on S^{2} and our "standard" coordinates on $\mathbb{C} P^{1}$ we see both manifolds can be covered by 2 coordinate charts. Study the transition functions between these coordinate charts and see if you can define a map using the coordinate charts.
8. Define the map

$$
f: \mathbb{C} P^{n} \rightarrow \mathbb{C} P^{m}
$$

by

$$
f\left(\left[x^{0}: \cdots: x^{n}\right]\right)=\left[x^{0}: \cdots: x^{n}: 0: \cdots: 0\right]
$$

where $n \leq m$. Show that f is a smooth embedding. (Notice that this says that S^{2} is submanifold of $\mathbb{C} P^{2}$, or any $\mathbb{C} P^{n}$ with $n>0$ for that matter. Later we will see that this is a "non-trivial" S^{2}.)
9. With f as in the previous problem show that $\mathbb{C} P^{n+1}-f\left(\mathbb{C} P^{n}\right)$ is diffeomorphic to \mathbb{C}^{n+1}. (So for example $\mathbb{C} P^{2}$ is the union of $\mathbb{C} P^{1} \cong S^{2}$ and \mathbb{C}^{2}. Thus we can think of $\mathbb{C} P^{2}$ is the compactification of \mathbb{C}^{2} by an " S^{2} at infinity".)
10. A smooth map $f:\left(\mathbb{C}^{n+1}-\{(0, \ldots, 0)\}\right) \rightarrow\left(\mathbb{C}^{k+1}-\{(0, \ldots, 0)\}\right)$ is called homogeneous of degree k if $f(\lambda p)=\lambda^{k} f(p)$ for all $\lambda \neq 0$ and $p \in\left(\mathbb{C}^{n+1}-\{(0, \ldots, 0)\}\right)$. Show that f induces a map

$$
\tilde{f}: \mathbb{C} P^{n} \rightarrow \mathbb{C} P^{k}
$$

Show this map is smooth.
11. Define the map

$$
f: \mathbb{C} P^{n} \times \mathbb{C} P^{m} \rightarrow \mathbb{C} P^{n m+n+m}
$$

by

$$
f\left(\left[x^{0}: \cdots: x^{n}\right],\left[y^{0}: \cdots: y^{m}\right]\right)=\left[x^{0} y^{0}: x^{0} y^{1}: \cdots: x^{0} y^{m}: x^{1} y^{0}: \cdots: x^{n} y^{m}\right]
$$

Show f is a smooth map and that f it is an embedding. (Notice that this shows, for example, that $S^{2} \times S^{2}$ is a submanifold of $\mathbb{C} P^{3}$).
Note: The last 4 problems could also have been carried out for real projective spaces.
12. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a homogeneous polynomial. This implies that there is some integer k such that

$$
f\left(t x^{1}, \ldots, t x^{n}\right)=t^{k} f\left(x^{1}, \ldots, x^{n}\right)
$$

for all $\left(x^{1}, \ldots, x^{n}\right)$. Prove that $f^{-1}(a)$, for $a \neq 0$, is an $(n-1)$-dimensional manifold. Moreover show that if a and b are both positive then $f^{-1}(a)$ and $f^{-1}(b)$ are diffeomorphic and similarly if a and b are both negative. Finally show that if a and b have different signs that $f^{-1}(a)$ and $f^{-1}(b)$ do not have to be diffeomorphic by considering $f(x, y, z)=$ $x^{2}+y^{2}-z^{2}$.
Hint: It might be good to use the famous Euler identity for homogeneous functions

$$
\sum_{i=1}^{n} x^{i} \frac{\partial f}{\partial x^{i}}=k f
$$

(you don't need to prove this identity, though feel free to if you like) to prove that 0 is the only critical point of f. To find the diffeomorphism consider the map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ obtained by multiplication by an appropriate root of a / b.

