Math 6452-Fall 2014
 Homework 4

Work all these problems and talk to me if you have any questions on them, but carefully write up and turn in only problems 4, 5, 6, 8, 12. Due: In class on November 5.

1. (Problem 2 from Section 1.5 in Guillemin and Pollack) Which of the following spaces intersect transversely?

- The $x y$-plane and the z-axis in \mathbb{R}^{3}.
- The $x y$-plane and the plane spanned by $(3,2,0)$ and $(0,4,-1))$ in \mathbb{R}^{3}.
- The spaces $\mathbb{R}^{k} \times\{0\}$ and $\{0\} \times \mathbb{R}^{l}$ in \mathbb{R}^{n}. (This depends on k, l, and n.)
- The spaces $\mathbb{R}^{k} \times\{0\}$ and $\mathbb{R}^{l} \times\{0\}$ in \mathbb{R}^{n}. (This depends on k, l, and n.)
- The spaces $V \times\{0\}$ and the diagonal in $V \times V$, where V is a vector space.
- The symmetric $\left(A^{t}=A\right)$ and skew-symmetric $\left(A^{t}=-A\right)$ matrices in $M(n)$.

2. For which values of r does the sphere $x^{2}+y^{2}+z^{2}=r$ and $x^{2}+y^{2}-z^{2}=1$ intersect transversely? Draw the intersection for representative values of r.
3. A space X is called contractible if the identity map is homotopic to a constant map (that is there is some point $p \in X$ such that the map $i d: X \rightarrow X: x \mapsto x$ is homotopic to the map $c: X \rightarrow X: x \mapsto p)$. Show that if X is contractible then for any space Y any two maps $Y \rightarrow X$ are homotopic. Also show that \mathbb{R}^{n} is contractible for any n.
4. A space X is called simply connected if every map from S^{1} to X is homotopic to a constant map. Show a contractible space is simply connected. Moreover show that the n-sphere S^{n} is simply connected if $n>1$.
Hint: Given a smooth map $S^{1} \rightarrow S^{n}$ use Sard's theorem to say it misses a point and then think about stereographic projection.
5. Show that $S^{n} \times S^{1}$ is not simply connected for $n \geq 0$.

Hint: Consider the submanifold $S=S^{n} \times\{p\}$ for some $p \in S^{1}$ and the map $f: S^{1} \rightarrow$ $S^{n} \times S^{1}: \theta \mapsto(x, \theta)$ for some $x \in S^{n}$.
Notice that problems 4 and 5 imply that S^{3} and $S^{1} \times S^{2}$, which are both S^{1} bundles over S^{2}, are not diffeomorphic.
6. If M and N are submanifolds of \mathbb{R}^{n} then show that for almost every $x \in \mathbb{R}^{n}$ the translate $M+x$ is transverse to N. (Here almost everywhere means "off of a set of measure zero" and $M+x=\{y+x: y \in M\}$.)
7. Suppose that $f: M \rightarrow N$ is transverse to the submanifold S in N. Show that $T_{p} f^{-1}(S)$ is give by $\left(d f_{p}\right)^{-1}\left(T_{f(p)} S\right)$. In particular if S_{1} and S_{2} are submanifolds of N and they intersect transversely then $T_{p}\left(S_{1} \cap S_{2}\right)=\left(T_{p} S_{1}\right) \cap\left(T_{p} S_{2}\right)$.
8. If $f: M \rightarrow N$ has p as a regular value and $S=f^{-1}(p)$ show that the normal bundle to S in M is trivial.
9. Let M and N be manifolds of the same dimensions with M compact and N connected. Prove that if $f: M \rightarrow N$ has $\operatorname{deg}_{2}(f) \neq 0$ then f is surjective.
10. Let $f: M \rightarrow \mathbb{R}$ be a smooth function. A critical point of f is a point $p \in M$ such that $d f_{p}=0$. We say that p is non-degenerate in the coordinate chart $\phi: U \rightarrow V$ if the matrix

$$
H=\left(\frac{\partial^{2} F}{\partial x^{i} \partial x^{j}}(q)\right)
$$

is non-singular where $F=f \circ \phi^{-1}$ and $\phi(p)=q$. Show that a critical point is nondegenerate in one coordinate chart if and only it if is non-degenerate in any coordinate chart. Thus it makes sense to talk about non-degenerate critical points independent of coordinate charts.
Note: The matrix H is not well-defined independent of the coordinate chart, but whether it is non-singular or not is.
11. Show that non-degenerate critical points of a function $f: M \rightarrow \mathbb{R}$ are isolated (that is each such critical point has a neighborhood containing no other critical points).
Hint: Work in local coordinate so the function is of the form $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ and one can then think of $d f$ as a function $d f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$. Prove $d f$ is a local diffeomorphism near a non-degenerate critical point.
A function $f: M \rightarrow \mathbb{R}$ is called a Morse function if all of its critical points are nondegenerate.
12. Show that the function $\mathbb{R}^{n+1} \rightarrow \mathbb{R}:\left(x^{1}, \ldots, x^{n+1}\right) \mapsto x^{n+1}$ restricted to S^{n} is a Morse function with exactly two critical points. (This function is sometimes called the height function.)
13. Suppose that M is a submanifold of \mathbb{R}^{k+1}. The set of $v \in S^{k}$ for which the map $f_{v}: M \rightarrow$ $\mathbb{R}: x \mapsto v \cdot x$ is not a Morse function has measure zero. (So every manifold has a lot of Morse functions.)
14. Suppose that M is a submanifold of \mathbb{R}^{k+1}. The set of points $p \in \mathbb{R}^{k+1}$ for which the map $f_{p}: M \rightarrow \mathbb{R}: x \mapsto\|x-p\|^{2}$ is not a Morse function has measure zero.

