Math 6452-Fall 2014
 Homework 5

Work all these problems and talk to me if you have any questions on them, but carefully write up and turn in only problems 6, 7, 10, 14, 16. Due: In class on November 24.

1. For any finite dimensional vector space show that there are canonical isomorphisms $V \otimes$ $\mathbb{R} \cong V \cong \mathbb{R} \otimes V$.
2. For finite dimensional vector spaces V and W show there is a canonical isomorphism $V^{*} \otimes W \cong \operatorname{Hom}(V, W)$.
3. Let $\omega^{1}, \ldots, \omega^{k}$ be covectors in V^{*}. Show they are linearly dependent if and only if $\omega^{1} \wedge$ $\cdots \wedge \omega^{k}=0$.
4. If $\left\{\omega^{1}, \ldots, \omega^{k}\right\}$ and $\left\{\eta^{1}, \ldots, \eta^{n}\right\}$ are linearly independent covectors in V^{*}, then show they have the same span if and only if $\omega^{1} \wedge \cdots \wedge \omega^{k}=c \eta^{1} \wedge \cdots \wedge \eta^{k}$ for some real number c.
5. Define the 1 -form ω on $\mathbb{R}^{2}-\{(0,0)\}$ by

$$
\omega(x, y)=\left(\frac{-y}{x^{2}+y^{2}}\right) d x+\left(\frac{x}{x^{2}+y^{2}}\right) d y
$$

(a) Compute $\int_{C} \omega$ where C is a circle of radius r about the origin.
(b) Compute $\int_{C} \omega$ where C is any circle in ω on $\mathbb{R}^{2}-\{(0,0)\}$.
(c) Is ω the differential of a function on $\mathbb{R}^{2}-\{(0,0)\}$? Explain why or why not.
6. Prove that a 1-form α on S^{1} is the differential of a function if and only if $\int_{S^{1}} \alpha=0$.
7. Prove that the first De Rham cohomology of S^{1} is $H_{D R}^{1}\left(S^{1}\right) \cong \mathbb{R}$.

Hint: Show that is show that if α is a fixed 1 -form on S^{1} such that $\int_{S^{1}} \alpha \neq 0$ then for any other 1-form ω there is a real number c such that $\omega=c \alpha+d f$ for some function f.
8. Given a vector space V and a vector $v \in V$ define the interior product

$$
\iota_{v}: \Lambda^{k}(V) \rightarrow \Lambda^{k-1}(V)
$$

as follows: given $\omega \in \Lambda^{k}(V)$ define $\iota_{v} \omega$ to be the $(k-1)$ form:

$$
\iota_{v} \omega\left(v_{1}, \ldots, v_{k-1}\right)=\omega\left(v, v_{1}, \ldots, v_{k-1}\right)
$$

If $\omega \in \Lambda^{k}(V)$ and $\eta \in \Lambda^{l}(V)$ then show that

$$
\iota_{v}(\omega \wedge \eta)=\left(\iota_{v} \omega\right) \wedge \eta+(-1)^{k} \omega \wedge\left(\iota_{v} \eta\right)
$$

9. On $\mathbb{R}^{2 n}$ with coordinates $\left(x^{1}, y^{1}, \ldots, x^{n}, y^{n}\right)$ define the 1 -form $\lambda=\frac{1}{2} \sum\left(x^{i} d y^{i}-y^{i} d x^{i}\right)$. Compute $d \lambda$ and $(d \lambda)^{n}$ (this means take the wedge product of $d \lambda$ with itself n times, for example $\left.(d \lambda)^{3}=(d \lambda) \wedge(d \lambda) \wedge(d \lambda)\right)$. The 2-form $d \lambda$ is called the standard symplectic form on $\mathbb{R}^{2 n}$.
10. Let $a: S^{n} \rightarrow S^{n}$ be the antipodal map, that is the map $a(x)=-x$ when we think of S^{n} as the unit sphere in \mathbb{R}^{n}. Show that a is orientation preserving if and only if n is odd.
11. Show that $\mathbb{R} P^{n}$ is orientable if and only if n is odd.
12. Suppose that M and N are oriented manifolds and $f: M \rightarrow N$ is a local diffeomorphism. If M is connected then show that f is either orientation preserving or orientation reversing.
13. On $\mathbb{R}^{n}-\{0\}$ consider the $(n-1)$-form

$$
\omega=\frac{1}{\|x\|^{n}} \sum_{i=1}^{n}(-1)^{i-1} x^{i} d x^{1} \wedge \ldots \wedge \widehat{d x^{i}} \wedge \ldots \wedge d x^{n}
$$

Compute $d \omega$.
14. Let S^{2} be the unit sphere in \mathbb{R}^{3} and ω the 2 -form from the the previous exercise. If $i: S^{2} \rightarrow \mathbb{R}^{3}$ is the inclusion map then compute

$$
\int_{S^{2}} i^{*} \omega .
$$

Is there and 1-form η on $\mathbb{R}^{3}-\{0\}$ such that $d \eta=\omega$? Explain why or why not. Notice that this and the previous exercise imply that $H_{D R}^{2}\left(\mathbb{R}^{3}-\{0\}\right) \neq 0$.
If you feel like it maybe try to work this problem again for S^{n-1} (this is not required to be turned in).
15. Use Stokes theorem to prove the classical Green's formula: Give a region R in \mathbb{R}^{2} with smooth boundary $\partial R=\gamma$ then show

$$
\int_{\gamma} f d x+g d y=\int_{R}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d x d y
$$

16. Given any embedding $f: T^{2} \rightarrow S^{3}$ show that for any closed 2-form ω on S^{3} we have

$$
\int_{T^{2}} f^{*} \omega=0
$$

Hint: Show that there is a smooth homotopy $H: S^{2} \times[0,1] \rightarrow S^{3}$ from f to a constant map. Now use Stokes theorem.
17. Show there is some embedding $f: T^{2} \rightarrow T^{3}$ and a closed 2-form ω on T^{3} such that

$$
\int_{T^{2}} f^{*} \omega \neq 0
$$

Notice that this problem together with the previous one implies that S^{3} is not diffeomorphic to T^{3}.

