Math 6457 - Fall 2008 Homework 3

Work all the problems, but carefully write up and turn in Problems 4, 5, 10 and 11.

1. Let S^3 be the unit sphere in \mathbb{C}^2 . Fix a point $(z, w) \in S^3$. and define the map

 $\gamma: \mathbb{R} \to S^3: t \mapsto (e^{it}z, e^{it}w).$

Express γ in stereographic coordinates and show γ is smooth. (Try to visualize the image of γ for certain choices of (z, w).) Compute $d\gamma_x : T_x \mathbb{R} \to T_{\gamma(x)} S^3$. (Notice that γ induces a map $S^1 \to S^3$ so γ is describing a loop in S^3 .)

2. Let S^3 be the unit sphere in \mathbb{C}^2 and S^2 be the unit sphere in \mathbb{R}^3 . Define the map

$$f: S^3 \to S^2$$

by

$$f(z,w) = (z\overline{w} + w\overline{z}, iw\overline{z} - iz\overline{w}, z\overline{z} - w\overline{w})$$

Express the map using $z = x^1 + iy^1$ and $w = x^2 + iy^2$. Express this map in stereographic coordinates and check that it is smooth. Compute df. (Notice that with γ as above, $f \circ \gamma$ is constant. You might like to show that the inverse image of a point under f is the image of γ for some choice of (z, w).)

- 3. Show that $\mathbb{C}P^1$ is diffeomorphic to S^2 .
- 4. Let G be a Lie group. Consider the map

$$m: G \times G \to G: (g, h) \mapsto gh.$$

Show

$$dm_{(I,I)}(v,w) = v + w$$

where I is the identity in G. (Hint: compute $dm_{(I,I)}(v,0)$ and $dm_{(I,I)}(0,w)$ by representing tangent vectors with paths). Compute

$$di_I(v) = -v$$

where

$$i: G \to G: g \mapsto g^{-1}.$$

5. Define the map

$$f:\mathbb{C}P^n\to\mathbb{C}P^m$$

by

$$f([x^0:\cdots:x^n]) = [x^0:\cdots:x^n:0:\cdots:0]$$

where $n \leq m$. Show f is smooth and injective. Show df is injective at every point. Thus f is an embedding. (Notice that this shows, for example, that S^2 is a submanifold of $\mathbb{C}P^2$.)

- 6. With f as in the previous problem show that $\mathbb{C}P^{n+1} f(\mathbb{C}P^n)$ is diffeomorphic to \mathbb{C}^{n+1} . (So for example $\mathbb{C}P^2$ is the union of $\mathbb{C}P^1 \cong S^2$ and \mathbb{C}^2 . Thus we can think of $\mathbb{C}P^2$ is the compactification of \mathbb{C}^2 by an " S^2 at infinity".)
- 7. A smooth map $f : (\mathbb{C}^{n+1} \{(0, \dots, 0)\}) \to (\mathbb{C}^{k+1} \{(0, \dots, 0)\})$ is called homogeneous of degree k if $f(\lambda p) = \lambda^k f(p)$ for all $\lambda \neq 0$ and $p \in (\mathbb{C}^{n+1} \{(0, \dots, 0)\})$. Show that f induces a map

$$\tilde{f}: \mathbb{C}P^n \to \mathbb{C}P^k.$$

Show this map is smooth.

8. Define the map

$$f:\mathbb{C}P^n\times\mathbb{C}P^m\to\mathbb{C}P^{nm+n+m}$$

by

$$f([x^0:\cdots:x^n],[y^0:\cdots:y^m]) = [x^0y^0:x^0y^1:\cdots:x^0y^m:x^1y^0:\cdots:x^ny^m].$$

Show f is a smooth map and that f is one-to-one. Show df is injective at every point. Thus f is an embedding. (Notice that this shows, for example, that $S^2 \times S^2$ is a submanifold of $\mathbb{C}P^3$).

Of course the last 4 problems could also have been carried out for real projective spaces.

- 9. For what values of a does $x^2 + y^2 z^2 = 1$ and $x^2 + y^2 + z^2 = a$ intersect transversely? Determine the intersection for each value of a.
- 10. Let $f: M \to N$ be a smooth map that is transverse to the submanifold S of N, and set $W = f^{-1}(S)$. Show that $T_x W$ is $df^{-1}(T_{f(x)}S)$.
- 11. Let M be a smooth submanifold of \mathbb{R}^n . Show that there is a linear map $L : \mathbb{R}^n \to R$ such that $L|_M : M \to \mathbb{R}$ is a Morse function.
- 12. The function

$$f: \mathbb{C}P^n \to \mathbb{R}: [z^0: \dots: z^n] \mapsto \frac{\sum_{k=0}^n (k+1)|z_k|^2}{\sum_{k=0}^n |z_k|^2}$$

is well defined on $\mathbb{C}P^n$. Show that it is smooth and a Morse function. Compute its critical points and their index.