Math 6457 - Fall 2008 Homework 4

Work all the problems, but carefully write up and turn in Problems 2, 4, 5 and 8.

1. Let M be a smooth manifold with boundary. Let N_1 and N_2 be two components of ∂M . Suppose

 $f: N_1 \to N_2$

is a diffeomorphism. Show that the quotient space M_f obtained from M by identifying $x \in N_1$ with $f(x) \in N_2$ is a smooth manifold. (If $M = M_1 \cup M_2$ is the union of two disjoint manifolds and $N_i = \partial M_i$ then M_f is usually denoted $M_1 \cup_f M_2$.)

2. Two diffeomorphisms $f_0, f_1: M \to N$ are called *isotopic* if there is a smooth map

$$H: M \times [0,1] \to N$$

such that $H(x,0) = f_0(x), H(x,1) = f_1(x)$ and for each fixed $t, f_t(x) = H(x,t)$ is a diffeomorphism from M to N. With the notation as in the previous problem show that if f_0 and f_1 are isotopic then M_{f_0} and M_{f_1} are diffeomorphic.

HINT: In class we proved that every neighborhood of ∂M contains a collar neighborhood of ∂M .

3. Recall if $f: M \to M$ is a diffeomorphism then the mapping torus of f, denoted T_f , is the quotient space of $M \times [0, 1]$ obtained by identifying (x, 0) with (f(x), 1). From above we know T_f is a smooth manifold. Show that T_f is a fiber bundle of S^1 with fiber M. Show there are infinitely many different T^2 bundles over S^1 .

HINT: For the last part recall that in class we computed $\pi_1(T_f)$. You can take as a fact (or if you are industrious try and show) that any diffeomorphism of T^2 is isotopic to the map induced on T^2 by the matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

with $ad - bc = \pm 1$ and we think of the matrix as a map on \mathbb{R}^2 . Compute $\pi_1(T_f)$ for various matrices, and maybe abelianize if things are not obvious.

4. Let D_1 and $D_2 = \{(r, \theta) \in \mathbb{R}^2 : |r| \leq 1\}$. Let $f : \partial D_1 \to \partial D_2 : (1, \theta) \to (1, -\theta)$. (You should easily be able to check $D_1 \cup_f D_2$ is diffeomorphic to S^2 , but you don't need to do this for the exercise.) Now let $M_i = D_i \times \mathbb{R}^2$, i = 1, 2 and for $n \in \mathbb{Z}$ let

$$F_n: \partial M_1 \to \partial M_2: (1, \theta, z) \to (1, -\theta, e^{in\theta}z)$$

here we are thinking of \mathbb{R}^2 as \mathbb{C} . Prove that $E_n = M_1 \cup_{F_n} M_2$ is a vector bundle over S^2 .

5. With notation form the previous problem, show that E_n is not isomorphic to E_m as a vector bundle for $|n| \neq |m|$.

HINT: If the where isomorphic as bundles then the complements of their zero sections would be diffeomorphic. Compute π_1 of the complements of their zero sections. To do this notice $\mathbb{R}^2 \setminus \{(0,0)\}$ retracts onto S^1 , so you can reduce this computation to a computation for S^1 bundles over S^2 .

- 6. TS^2 is an vector bundle over S^2 . Which E_n is it bundle isomorphic to? HINT: Maybe think of stereographic coordinates.
- 7. Prove that the diffeomorphism group of a connected manifold acts transitively. That is given two point p and q in a manifold there is a diffeomorphism taking p to q. HINT: Prove the set of point that p maps to under all diffeomorphism is open and closed. To this end if p and q are in a coordinate chart prove there is a diffeomorphism taking p to q. You don't have to use vector fields and flows for this, but it is probably the easiest way.
- 8. Let $f : M \to N$ be a smooth map and let v and w be vector fields on M and N respectively. Also assume that $df_x(v(x)) = w(f(x))$ for all $x \in M$. Let $\Psi : M \times \mathbb{R} \to M$ and $\Phi : N \times \mathbb{R} \to N$ be the flows of v and w respectively (we assume the flow exists for all time, this is not essential to do). Show $f(\Psi(x,t)) = \Phi(f(x),t)$.
- 9. In this exercise we prove: If $f : M \to N$ is a smooth surjective map of compact manifolds and df_x is surjective for all $x \in M$, then $f : M \to N$ is a fiber bundle. Given a point $x_0 \in N$ let (U, V, ϕ) be a coordinate chart around x. Let $\frac{\partial}{\partial x^i}, i = 1, \ldots, n$, be the coordinate vector fields on $V \subset \mathbb{R}^n$ (we may think of them as coordinate vector field s on U too). Let Ψ_i be the flow of $\frac{\partial}{\partial x^1}$.
 - (a) Show the flow commute. That is $\Psi_i(\Psi_j(x,t),s) = \Psi_j(\Psi_i(x,s),t)$. (HINT: just do this in \mathbb{R}^n .) Show $\Psi : \mathbb{R}^n \to U$ given by

$$\Psi(t^1,\ldots,t^n) = \Psi_1(\Psi_2(\ldots,\Psi_{n-1}(\Psi_n(x_0,t^n)t^{n-1}),\ldots,t^2),t^1)$$

is a diffeomorphism near the origin. Actually show this is the identity map if we think of it as a map $\mathbb{R}^n \to V$.

(b) One can find vector fields e_i on $f^{-1}(U)$ such that $df_x(e_i) = \frac{\partial}{\partial x^i}$ (you don't have to show this, but it is not hard using a partition of unity argument). Given the e_i let Φ_i be their flow. Let $F = f^{-1}(x_0)$ and define

$$\Phi: F \times \mathbb{R}^n \to M: (x, (t^1, \dots, t^n)) \mapsto \Phi_1(\Phi_2(\dots \Phi_{n-1}(\Phi_n(x, t^n)t^{n-1}), \dots, t^2), t^1).$$

Show $dF_{(x,(t^1,\ldots,t^n))}$ is an isomorphism for all $x \in F$ and hence conclude that $dF_{(x,(t^1,\ldots,t^n))}$ is an isomorphism for all sufficiently small t^i . Conclude that F is a local diffeomorphism for t^i sufficiently small.

- (c) Show F is injective for t^i sufficiently small.
- (d) Conclude F, when restricted to a small enough neighborhood of F is a diffeomorphism onto its image and

$$f \circ F(x, (t^1, \dots, t^n)) = (t^1, \dots, t^n).$$

In other words F gives a local trivialization of $f: M \to N$.