Math 6458-Spring 2009 Homework 2

Work all the problems, but carefully write up and turn in Problems 3, 5, 6, 7

1. Recall we denote $\underbrace{T M \otimes \ldots \otimes T M}_{l \text { times }} \otimes \underbrace{T^{*} M \otimes \ldots \otimes T^{*} M}_{k \text { times }}$ by $T_{l}^{k} M$ and $\Gamma\left(T_{l}^{k} M\right)$ denotes sections of this bundle. Given a tensor $\tau \in \Gamma\left(T_{l}^{k} M\right)$ we get a map

$$
L_{\tau}: \underbrace{\mathcal{X}(M) \times \ldots \times \mathcal{X}(M)}_{k \text { times }} \rightarrow \underbrace{\mathcal{X}(M) \times \ldots \times \mathcal{X}(M)}_{l \text { times }}
$$

that is multilinear over $C^{\infty}(M)$ by setting

$$
L_{\tau}\left(v_{1}, \ldots, v_{k}\right)(p)=\tau_{p}\left(v_{1}(p), \ldots, v_{k}(p)\right)
$$

for all points $p \in M$ and vector fields v_{i}. (Here of course we are plugging the $i^{\text {th }}$ vector into the $i^{\text {th }}$ covector slot.)

Show that any map

$$
L: \underbrace{\mathcal{X}(M) \times \ldots \times \mathcal{X}(M)}_{k \text { times }} \rightarrow \underbrace{\mathcal{X}(M) \times \ldots \times \mathcal{X}(M)}_{l \text { times }}
$$

that is multilinear over $C^{\infty}(M)$ is of the form L_{τ} for some $\tau \in \Gamma\left(T_{l}^{k} M\right)$. In other words show that sections of the tensor bundle $T_{l}^{k} M$ are in one-to-one correspondence with such multilinear maps.
2. Work problem 4-2 in Lee's book.
3. Work problem 4-4 in Lee's book.
4. Work problem 4-5 in Lee's book.
5. Work problem 5-2 in Lee's book.
6. Work problem 5-4 in Lee's book.
7. Work problem 5-6 in Lee's book.
8. Work problem 5-9 in Lee's book.

