Math 6458 - Spring 2009 Homework 2

Work all the problems, but carefully write up and turn in Problems 3, 5, 6, 7

1. Recall we denote $\underbrace{TM \otimes \ldots \otimes TM}_{l \text{ times}} \otimes \underbrace{T^*M \otimes \ldots \otimes T^*M}_{k \text{ times}}$ by $T_l^k M$ and $\Gamma(T_l^k M)$ denotes sections of this bundle. Given a tensor $\tau \in \Gamma(T_l^k M)$ we get a map

$$L_{\tau}: \underbrace{\mathcal{X}(M) \times \ldots \times \mathcal{X}(M)}_{k \text{ times}} \to \underbrace{\mathcal{X}(M) \times \ldots \times \mathcal{X}(M)}_{l \text{ times}}$$

that is multilinear over $C^{\infty}(M)$ by setting

$$L_{\tau}(v_1,\ldots,v_k)(p)=\tau_p(v_1(p),\ldots,v_k(p))$$

for all points $p \in M$ and vector fields v_i . (Here of course we are plugging the i^{th} vector into the i^{th} covector slot.)

Show that any map

$$L: \underbrace{\mathcal{X}(M) \times \ldots \times \mathcal{X}(M)}_{k \text{ times}} \to \underbrace{\mathcal{X}(M) \times \ldots \times \mathcal{X}(M)}_{l \text{ times}}$$

that is multilinear over $C^{\infty}(M)$ is of the form L_{τ} for some $\tau \in \Gamma(T_l^k M)$. In other words show that sections of the tensor bundle $T_l^k M$ are in one-to-one correspondence with such multilinear maps.

- 2. Work problem 4-2 in Lee's book.
- 3. Work problem 4-4 in Lee's book.
- 4. Work problem 4-5 in Lee's book.
- 5. Work problem 5-2 in Lee's book.
- 6. Work problem 5-4 in Lee's book.
- 7. Work problem 5-6 in Lee's book.
- 8. Work problem 5-9 in Lee's book.