Math 7338-Fall 2011 Homework 3

Work all these problems and talk to me if you have any questions on them, but carefully write up and turn in only problems 1, 5, 9, 12, 14. Due: In class on November 3.

1. Show that l^{1} is not isometric to a quotient of l^{2}.
2. Let V be a normed linear space and W a linear subspace of it. As in class we define the distance from $v \in V$ to W to be

$$
d(v, W)=\inf _{w \in W}\|v-w\| .
$$

Show that the distance also equals

$$
\sup |l(v)|
$$

where the supremum is taken over all $l \in V^{*}$ such that $\|l\| \leq 1$ and $W \in \operatorname{ker} l$.
3. Recall c_{0} is the set of sequences that converge to 0 and we use the $\|\cdot\|_{\infty}$ norm on c_{0}. Show that there is a sequence $\left\{x_{n}\right\}$ in c_{0} that does not converge to 0 but for every continuous linear function $l: c_{0} \rightarrow \mathbb{R}$ we have $\lim l\left(x_{n}\right)=0$. (Paraphrasing we say that linear functionals on c_{0} cannot detect convergence.)
Hint: We proved that $\left(c_{0}\right)^{*}=l^{1}$.
4. Show that a sequence $\left\{x_{n}\right\}$ in l^{1} converges to 0 if and only if for every continuous linear map $l: l^{1} \rightarrow \mathbb{R}$ we have $\lim l\left(x_{n}\right)=0$. (Paraphrasing we say that linear functionals on l^{1} can detect convergence to zero. Or weak and strong convergence are the same for l^{1})
Warning: The non-trivial implication is fairly hard.
5. From class we know that there is some closed linear subspace V of l^{1} such that $c_{0}=$ l^{1} / V. Show that V is not complemented in l^{1}.
6. For a reflexive Banach space V, show that for any functional $l \in V^{*}$ with $\|l\|=1$ there is some $v \in V$ with $\|v\|=1$ and $l(v)=1$.
7. Show that there is a Banach space V and a functional $l \in V^{*}$ such that $\|l\|=1$ but there is no element $v \in V$ with $\|v\|=1$ and $l(v)=1$.
Hint: Try $V=c_{0}$ and $\left\{1 / n^{2}\left(\sum_{k=1}^{\infty} 1 / k^{2}\right)^{-1}\right\} \in l^{1}$.
8. In class we constructed an isometry $l^{1} \rightarrow\left(c_{0}\right)^{*}$ and $l^{\infty} \rightarrow\left(l^{1}\right)^{*}$. We can use these to get an isometry $l^{\infty} \rightarrow\left(c_{0}\right)^{* *}$. Show that the natural embedding $c_{0} \rightarrow\left(c_{0}\right)^{* *}$ is just the inclusion of c_{0} into l^{∞} under the above isometry.
9. Let V be a normed vector space (not necessarily complete). Let \bar{V} be its completion. Show that V^{*} and \bar{V}^{*} are isometric.
10. Recall s^{*} is the set of sequences that have only finitely many non-zero terms. Give s^{*} the norm $\|\cdot\|_{\infty}$. Determine the dual space of s^{*}.
11. Let V be a separable Banach space. Show there is an isometric embedding $T: V^{*} \rightarrow$ l^{∞}.
12. For $1<p<\infty$ show that a sequence $\left\{v_{n}\right\}$ in l^{p} converges weakly to v if and only if $\left\{\left\|v_{n}\right\|\right\}$ is bounded and if we write out each v_{n} as the sequence $\left\{v_{n}(k)\right\}_{k=1}^{\infty}$ and v as $\{v(k)\}_{k=1}^{\infty}$ then for each k we have $v_{n}(k) \rightarrow v(k)$ as $n \rightarrow \infty$.
13. Let V be a normed vector space and let $M \subset V^{*}$ be a total set (recall a set of functions is total if its span is dense in V^{*}). Show that a sequence $\left\{v_{n}\right\}$ weakly converges to v if and only if the sequence $\left\{\left\|v_{n}\right\|\right\}$ is bounded and for every $l \in M$ we have $l\left(v_{n}\right) \rightarrow l(v)$ as $n \rightarrow \infty$.
14. Show a weakly closed set in a normed vector space is closed.
15. Let $T: V \rightarrow W$ be a bounded linear map between two normed linear spaces. If $\left\{v_{n}\right\}$ is a sequence in V that weakly converges to v then show that $\left\{T\left(v_{n}\right)\right\}$ weakly converges to $T(v)$ in W.

