Math 7338 - Fall 2011 Homework 4

Work all these problems and talk to me if you have any questions on them, but carefully write up and turn in only problems 2, 6, 7, 9, 11. Due: In class on December 1.

- 1. Let V be a topological vector space and $E \subset V$. Show that E is bounded if and only if for every sequence $\{v_n\}$ in E and every sequence of numbers $\{a_n\}$ that converges to 0, we have $a_n v_n \to 0$ as $n \to \infty$.
- 2. Show that a compact subset of a topological vector space is bounded.
- 3. Let V be a topological vector space and let \mathcal{B} be a neighborhood basis for 0. We say a sequence $\{v_n\}$ in V is Cauchy if for every $U \in \mathcal{B}$ there is some N such that for all $n, m \geq N$ we have that $v_n - v_m \in U$. Suppose that the topology on V is given by a translation invariant metric d. Then show that the definition of Cauchy just given is equivalent to the normal definition of Cauchy for a metric space.
- 4. Let S be some subset of a vector space V. The convex hull of S is the set containing all sums $t_1v_1 + \ldots + t_nv_n$ where $v_i \in S$ and $t_i \geq 1$ satisfy $\sum t_i = 1$ (where n is arbitrary). Show that if V is a topological vector space and S is open then the convex hull of S is also open.
- 5. Show that for two subsets A and B of a topological vector space A + B is compact if A and B are compact.

Let C([0,1]) be the space of continuous complex valued functions on [0,1]. Let

$$d(f,g) = \int_0^1 \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} \, dx.$$

This is a metric on C([0, 1]) and so it defines a topology we denote S. Let \mathcal{T} be the topology of pointwise convergence on C([0, 1]), that is the topology generated by the semi-norms $\{\|\cdot\|_x\}_{x\in[0,1]}$ where

$$||f||_x = |f(x)|.$$

- 6. Show that a set in C([0,1]) is bounded in the \mathcal{T} topology is also bounded in the \mathcal{S} topology. Conclude that the identity map $id : (C([0,1]), \mathcal{T}) \to (C([0,1]), \mathcal{S})$ is a bounded map (that is takes bounded sets to bounded sets).
- 7. Show that $id : (C([0,1]), \mathcal{T}) \to (C([0,1]), \mathcal{S})$ is not continuous. Notice that this shows that for topological vector spaces bounded is not equivalent to continuous for linear maps (though continuous does still imply bounded). Also notice by a theorem from class we know that \mathcal{T} does not come from a metric. So this is an example of a topological vector space where the topology is not induced by a metric, norm or inner-products (or even a countable collection of semi-norms).
- 8. Show that \mathcal{T} does not have a countable neighborhood basis for $0 \in C([0, 1])$. (Note this also shows that \mathcal{T} does not come from a metric.)

- 9. Let V be a Banach space. On V we have the strong topology, induced from the norm, and the weak topology, induced from the bounded linear functionals as in class. Show that a set E in V is strongly bounded if and only if it is weakly bounded. Hint: You might need Hahn-Banach and the Uniform Boundedness Principle.
- 10. Let H be a Hilbert space. Suppose that $\{x_n\}$ is a sequence in H that converges weakly to x. Show that $\{x_n\}$ converges strongly to x if and only if $\{||x_n||\}$ converges to ||x||.
- 11. Let V be a Banach space. Show that the weak* topology on V^* is complete.