Symplectic Geometry
Given a manifold M
a symplectic structure on M is a 2 -form $\omega \in \Omega^{2}(M)$
st. 1) ω is non-degenerate

$$
\text { (ie. } \left.\forall v \in T_{x} M, v \neq 0, \exists u \in T_{x} M \text {, st. } \quad \omega_{x}(v, u) \neq 0\right)
$$

2) $d \omega=0$
the study of symplectic manifolds (M, ω) grew out of classical mechanics, but now is a thriving area of study with interesting connections to (low-dinienscional) topology, Riemanniai geometry and many other subjects
this class will cover the basics of symplectic geometry and then focus on understanding when a manifold admits a symplectic structure (area of current research) if tine permits we will also discuss contact manifolds (an odd dimentiorial version of symplectic manifolds).
I Symplectic Linear algebra
a symplectic vector space is a (finite dimensional) real vector space V with a non-degenerate, skew-symmetric bilinear form

$$
\begin{aligned}
& \omega: V \times V \rightarrow \mathbb{R} \\
& \text { 1) } \omega(v, u)=-\omega(u, v) \\
& \text { 2) } \omega(v+c u, w)=\omega(v, w)+c \omega(u, w) \quad \forall c \in \mathbb{R}, v, u, w \in V
\end{aligned}
$$

3) $\omega(v, u)=0 \quad \forall u \in V \Rightarrow v=0$
lemma 1:
a bilinear pairing $\omega: V \times V \rightarrow \mathbb{R}$ is non-degenerate

$$
\Leftrightarrow
$$

the linear map $\phi_{\omega}: V \rightarrow V^{*}: v \mapsto\left(f_{v}: V \rightarrow \mathbb{R}: u \mapsto \omega(v, u)\right)$ is an isomorphism

Proof:
$\Leftrightarrow \phi_{\omega}(v)=0$ then $f_{v}: V \rightarrow \mathbb{D}: u \mapsto \omega(v, u)$
is the zeno map and $v=0$ by non-degeneracy
$\therefore \phi_{\omega}$ injective, \therefore isomorphism since $\operatorname{din} V=\operatorname{dimin} V^{*}$
\Leftrightarrow if $\omega(v, u)=0 \forall u \in V$ then $\phi_{\omega}(v)=0$ and $v=0$ since ϕ_{ω} an isomorphism
example:

$$
\begin{aligned}
& V=\mathbb{C}^{n}=\mathbb{R}^{2 n} \\
& h\left(v_{1} u\right)=\sum \overline{v_{2}} u_{j} \quad \text { for } \quad v=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right], u=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
\end{aligned}
$$

\uparrow Hermitian form

$$
\text { note: } h(v, u)=\overline{h(u, v)}
$$

set $\langle v, u\rangle=\operatorname{Re} h(v i u) \quad$ symmetric

$$
\begin{array}{ll}
\langle v, u\rangle=\operatorname{Re} h\left(v_{i} u\right) & \text { symmetric } \\
w(v, u)=\operatorname{lm} h(v, u) & \text { skew-symmetric }
\end{array}\left\{\begin{array}{l}
\text { both } \\
\text { non-degenerate }
\end{array}\right.
$$

so \langle,$\rangle is an inner product on V$
ω is a symplectz structure on V
note: $\omega(v, u)=\langle\imath v, u\rangle$
if $\left\{e_{1} \ldots e_{n}\right\}$ is the standard basis for V over \mathbb{C}
and $f_{j}=i e_{j}$
then $\left\{e_{1}, f_{1}, \ldots e_{n}, f_{n}\right\}$ is a basis for V over \mathbb{R} (positively oriented)
clearly $\omega\left(e_{j}, f_{j}\right)=-\omega\left(f_{j}, e_{j}\right)=\left\langle e_{j}, e_{j}\right\rangle=\left\langle f_{j}, f_{j}\right\rangle=1$ all other other pairs evaluate to 0 if $\left\{e_{1}^{*}, f_{1}^{*}, \ldots, e_{n}^{*}, f_{n}^{*}\right\}$ is the deal basis for $\left(\mathbb{R}^{2 n}\right)^{*}$

$$
\begin{array}{|c|}
\omega_{s+d}=\sum_{j=1}^{n} e_{j}^{*} \wedge f_{j}^{*}
\end{array} \begin{aligned}
& \text { standard symplectic } \\
& \text { structure on } \mathbb{R}^{2 n}
\end{aligned}
$$

If $\left(V, \omega_{v}\right),\left(W, \omega_{w}\right)$ are symplectic vector spaces then $V \oplus W$ has symplectic structure

$$
\omega=\pi_{v}^{*} \omega_{v}+\pi_{w}^{*} \omega_{w}
$$

Th "2:
If (V, ω) a symplectic vector space then \exists an isomorphism $\phi: V \rightarrow \mathbb{C}^{n}$ s.t where

$$
\phi^{*} \omega_{s t d}=\omega
$$

we can immediately conclude
Cor 3:

1) any symplectic vector space is even dimensional
2) a shew-symmetric bilinear form $\omega: V \times V \rightarrow V$ is non-degenerate $\Leftrightarrow \underbrace{\omega n \ldots 1 \omega}_{n \text { copies if }} \neq 0$
n copies if $\operatorname{dim} V=2 n$
3) any sympleitic rector space is cannoncially oriented (by wa...nw)
a) V, W symplectic \Rightarrow sympl. orientation on $V \oplus W$ is directsum orientation
b) symplectic orientation on \mathbb{C}^{n} is standard one
for the proof we need:

- (V, ω) symplectic vector space
- $W \subset V$ subspace
then $w^{\perp}=\{v \in V \mid \omega(v, u)=0 \quad \forall u \in W\}$
note: $\omega(v, v)=0$ so $\operatorname{dim} W=1 \Rightarrow W \subset W^{\perp}$ so quite different from inner product \perp but we still have
lemma 4:

$$
\operatorname{dim} W+\operatorname{dim} W^{\perp}=\operatorname{dim} V
$$

Proof: the map $\phi_{\omega}: V \rightarrow V^{*}$ is an isomorphism
so given $W \subset V$ the set $\phi_{\omega}\left(W^{\perp}\right) \subset V^{*}$ vanishes on W so we have induced map

$$
\tilde{\phi}_{w}: W^{\perp} \rightarrow(V / w)^{*}
$$

we claimi $\hat{\phi}_{\omega}$ is an isomorphism
if so $\operatorname{dim} W^{\perp}=\operatorname{dini}(V / W)^{*}=\operatorname{codim} W$ and done!
injectivity: if $\tilde{\phi}_{\omega}(w)=0$, then $\omega(w, v)=0 \quad \forall v \in V$

$$
\therefore w=0
$$

surjectivity: for any eft $y \in(Y / W)^{*}$ gives a linear map

$$
\eta: V \rightarrow \mathbb{R}
$$

that vanishes on W
so $\exists v \in V$ st. $\phi_{v}(v)=\eta$ and $v \in W^{\perp}$

$$
\therefore \widehat{\phi}_{\omega}(v)=\eta
$$

Cor 5:

$$
\left(W^{\perp}\right)^{\perp}=W
$$

Proof: $W \subset\left(W^{\perp}\right)^{\perp}$ and same dimension
some terminology: $W \subset(V, \omega)$
if $W \subset W^{\perp}$ then W is isotropic (dim $W \leq \frac{1}{2} \operatorname{dim} V$)
If $W \supset W^{\perp}$ then W is coisotropic (dim $W \geq \frac{1}{2} \operatorname{din} V$)
If $W=W^{\perp}$ then W is Lagrangian (dim $W=\frac{1}{2} \operatorname{dini} V$) if ω / W is non-degenerate, then W is a symplectic subspace
exercise: $W C(V, \omega)$ is a symplectic subspace

$$
\begin{aligned}
& \Leftrightarrow \\
& \quad \begin{array}{l}
\\
\\
\\
\Leftrightarrow \\
\\
w \oplus w^{\perp}=V
\end{array} \quad\left(\text { and } \quad \omega=\pi_{w}^{*}(\omega / w)+\pi_{w^{\perp}}^{*}\left(\left.\omega\right|_{w^{\perp}}\right)\right.
\end{aligned}
$$

also note W symplectic $\Longrightarrow W^{\perp}$ is symplectic
Proof of Th ${ }^{\text {m } 2: ~}$
Induct on dimension V
$\operatorname{dimi} V=0$: done
$\operatorname{dim} V>0$: then $\exists v \in V$ sit $v \neq 0$
ω non-degenerate $\Rightarrow \exists \tilde{u} \in V$ st. $\omega(v, \tilde{u}) \neq 0$

$$
\text { let } u=\frac{\tilde{u}}{\omega\left(v_{c} u\right)}
$$

note: $\omega(v, u)=1, \omega(v, v)=0, \omega(u, u)=0$
so $W=\operatorname{span}\left\{v_{1} u\right\}$ is a symplectic subspace of V v, u give isomorphism to ($\mathbb{C}, \omega_{\text {std }}$)

$$
\therefore V \cong\left(\mathbb{C}, \omega_{s+d}\right) \oplus\left(\mathbb{C}^{n-1}, \omega_{s t d}\right) \cong\left(\mathbb{C}^{n}, \omega_{s+d}\right)
$$

$\uparrow_{\text {by induction }}{ }^{-}$ slicice dim $W^{\perp}<\operatorname{dini} V$

If $\left(V, \omega_{v}\right),\left(W, \omega_{w}\right)$ are symplectic vector spaces then a linear map

$$
f: V \rightarrow W
$$

is symplectic if $f^{*} \omega_{w}=\omega_{V}$
note: f symplectic $\Rightarrow f$ is infective

$$
(v \in \operatorname{ker} f \Rightarrow f(v)=0 \perp w \Rightarrow v \perp V \Rightarrow v=0)
$$

Group of all symplectic linear maps of $\left(\mathbb{R}^{2 n}, \omega_{s+d}\right)$ is

$$
S_{p}(2 n, \mathbb{R})
$$

note: $U(n) \subset S_{p}(2 n, \mathbb{R})$ in fact maximal compact subgroup $U(n) \hookrightarrow S_{p}(2 n, \mathbb{R})$ a homotopy equivalence

Section II: Symplectic manifolds
recall a symplectic structure on a manifold M is a 2 -form $\omega \in \Omega^{2}(M)$
st. 1) ω is non-degenerate (0 each $T_{x} M$)
2) $d \omega=0$
note: any symplectic manifold M is

1) even dimensional
2) or rented
3) has canonical volume form $\Omega=\omega \wedge \ldots n \omega$
4) $\exists a \in H^{2}(M ; R)$ st. av... $v a \neq 0$ cup product

$$
M \text { closed } \bar{J} \text { since } d \omega=0 \Rightarrow[\alpha] \in H_{D R}^{2}(n) \cong H^{2}(M ; R)
$$

examples:
o) $S^{2 n}$ not symplectic if $n \neq 1$ $s^{2} \times s^{2 m}$ not symplectic if $m \neq 0,1$ and wan nw is a volume form so $\neq 0$ in $H_{R R}^{2 n}(M)$

1) $\mathbb{C}^{n}=\mathbb{R}^{2 n} \quad\left(x_{1}, y_{1}, \ldots x_{n}, y_{n}\right) \quad z_{j}=x_{j}+1 y_{j}$
$\omega_{s+d}=\sum_{j=1}^{n} d x^{i} 1 d y^{i}$ is a symplectic form, called the "standord"structure $\omega=d \lambda \quad$ where $\lambda=\frac{1}{2} \sum x_{j} d y_{j}-y_{j} d x_{j}=\frac{i}{2} \sum z_{j} d \bar{z}_{j}-\bar{z}_{j} d z_{j}$
2) Any oriented surface with an area form ω ($d w=0$ for dim. reasons)
a submanifold N of a symplectic manifold (M, ω) is
Lagrangian (isotropic, symplectici, coisotropic) if each $T_{x} N \subset T_{x} M$ is Lagrangian (isotropic, symplectici, coisotropii)
note: if $N c(\mu, \omega)$ is a symplectic submantold then $\left(N, \omega / T_{N}\right)$ is a symplectic manifdd.
examples:
3) any 1-dimiensional manifold is isotropic so curves in a surface are Legendrian

4) any codimiension 1 submantold is coisotropic
5) $\left(M_{1}, \omega_{1}\right),\left(M_{2}, \omega_{2}\right)$ symplectic
then $M_{1} \times M_{2}$ has symplectic structure $\pi_{M_{1}}^{*} \omega_{1}+\pi_{M_{2}}^{*} \omega_{2}$ moreover $M_{1} \times\{p\}$ and $\{q\} \times M_{2}$ are symplectic submanifolds
if $L_{i} \subset M_{1}$ a Lagrangian submanifold of $\left(\mu_{1}, \omega_{2}\right)$ then $L_{1} \times L_{2}$ a Lagrangian submantold of $M_{1} \times M_{2}$
e.g. if Σ_{1}, Σ_{2} surfaces w/area forms then $\Sigma_{1} \times \Sigma_{2}$ has lots of Lagrangian tori
$\left(M, \omega_{M}\right),\left(N, \omega_{N}\right)$ symplectic
a map $f: M \rightarrow N$ is called symplectic if $f^{*} \omega_{N}=\omega_{M}$
note: this miplies $d f_{x}$ injective $\forall x \in M$
$\therefore f$ an unimersion
a symplectii diffeomonohism f is called a symplectomorphism and is the natural equivalence relation on symp! manifolds (note, f^{-1} also symplectic)
example:
$\left(M_{1}, \omega_{1}\right),\left(M_{2}, \omega_{2}\right)$ symplectic
then $M_{1} \times M_{2}$ has symplectic structure

$$
\omega_{\lambda_{1}, \lambda_{2}}=\lambda_{1} \pi_{M_{1}}^{*} \omega_{1}+\lambda_{2} \pi_{\mu_{2}}^{*} \omega_{2}
$$

for any $\lambda_{1}, \lambda_{2} \in \mathbb{R}-\{0\}$
given a map $f: M_{1} \rightarrow M_{2}$, the graph of f is

$$
\Gamma_{f}=\left\{(x, f(x)): x \in \mu_{1}\right\} \subset \mu_{1} \times \mu_{2}
$$

exercise: a diffeomorphism $f: \mu_{1} \rightarrow \mu_{2}$ is a symplecto.

$$
\Leftrightarrow
$$

Γ_{f} is Lagrangian in $\left(\mu_{1} \times \mu_{2}, \omega_{1,-1}\right)$

Important example:
let M be any smooth manifold
$\pi: T^{*} M \rightarrow M$ the projection map
the Liouville 1 -form λ on $T^{*} M$

$$
\lambda \in \Omega^{\prime}\left(T^{*} M\right)
$$

is defined as follows: if $z \in T_{x}^{*} M$, then

$$
z: T_{\pi(x)} \mu \rightarrow \mathbb{R}
$$

if $v \in T_{z}\left(T^{*} M\right)$, then

$$
d \pi_{z}(v) \in T_{\pi(x)} M
$$

so $\lambda_{z}: T_{z}\left(T^{*} M\right) \rightarrow \mathbb{R}$

$$
v \longmapsto z\left(d \pi_{z}(v)\right)
$$

exercise:

1) if $q_{1}, \ldots q_{n}$ are local coordiniants on $U \subset M$ then any $z \in T^{*} U \subset T^{*} M$ can be written

$$
z=\sum_{i=1}^{n} p_{i} d q_{i} \quad \text { some } p_{1} \ldots p_{n} \in \mathbb{R}
$$

so $\left\{q_{1} \ldots q_{n}, p_{1} \ldots p_{n}\right\}$ are coordinants on $T^{*} U$

$$
\text { and } \pi\left(q_{1} \ldots q_{n}, p_{1} \ldots p_{n}\right)=\left(q_{1} \ldots q_{n}\right)
$$

note: $d q_{i}=\pi^{*} d q_{i}$
q_{1} coordinate q_{1} coordinate in our notation this makes seance but if confusing write on $T^{*} U$ on C
so $d q_{1} \in \Omega^{\prime}\left(T^{*} \cup\right)$
So $d_{\eta_{1}} \in \Omega^{\prime}(u)$ $d \tilde{q}_{i}=\pi^{*} d q_{i}$

Show $\lambda=\sum_{i=1}^{n} \rho_{1} d q_{i} \quad\left(=\sum_{i=1}^{n} \rho_{i} d \tilde{q}_{i}\right)$
so $\omega=-d \lambda$ is a symplectic form on $T^{*} M$
2) If $\alpha \in \Omega^{\prime}(M)$ then $\alpha: M \rightarrow T^{*} M$

Show ($\alpha^{*} \lambda=\alpha$ also called canonical $1-$ form)
3) image of zero section of $T^{*} M$ Lagrangian more generally, if $\alpha \in \Omega^{\prime}(\mu)$, then
image (α) Lagrangian $\Leftrightarrow d \alpha=0$
4) fibers of $\pi: T^{*} M \rightarrow M$ are Lagrangian
5) If $f: M \rightarrow N$ a diffeomorphism, then

$$
f^{*}: T^{*} N \rightarrow T^{*} M
$$

is a symplectomorphism
Remark: This means you can try to distinguish smooth manifolds using symplectic geometry of their cotangent bundles!
interesting research problem: can you use this distriguish erotic 4-manifolds?
other homeomorphic, but not-diffeomorphic pairs?
example: Abouzaid showed if M a $(4 n+1)$-manifold st. $T^{*} M$ and $T^{*} S^{4 n+1}$ are symplectomorphic then M a homotopy sphere that bounds a manifold with trivial tangent bundle
This \Rightarrow symplectic geometry of cotangent bundles can distinguish 6 of ? exotic smooth structures on s^{9} from standard 5^{9}
Major Open Question:
are $M_{1} N$ diffeomorphic
\Leftrightarrow
$T^{*} M$ and $T^{*} N$ are symplectomor phic
more Lagrangions in $\left(T^{*} M, d \lambda\right)$
If $S^{h} \subset M^{n}$ is a submanifold, then its conormal bundle is $N^{*} S=\left\{\eta \in T^{*} M: \pi(\eta) \in S, \eta(v)=0 \forall v \in T_{\pi(\eta)} S\right\}$
this is a bundle over S and a properly embedded submanifold of $T^{*} M$
exercise:
Hint: choose coordinates adapted to S at $x \in S$
$\left\{\right.$ 1) $\operatorname{dim} N^{*} S=n \quad$ (so fibers have dim $n-k$)
2) $N^{*} S$ is Lagrangrain (even more $2^{*} \lambda=0$ where $1: N^{*} S \rightarrow T^{*} M$)
example: if $x \in M$, then $N^{*}\{x\}=\pi^{-1}(x)$
note: if we have an isotopy S_{t} of S, then $N^{*} S_{t}$ undergoes a proper isotopy through Legendrian submanifolds
so symplectic invariants of the Legendrian isotopy class of $N^{*} S \subset T^{*} M$ are invariants of the smooth isotopy class of SCM!
So we see $T^{*} M$ contains lots of Lagrangcai submanifolds, but conjecturally
not lots of compact exact Lagrangeain submanitolds
a Lagrangian submanifald $L C\left(T^{*} M_{1} d \lambda\right)$ is exact if \exists a function $f: L \rightarrow \mathbb{R}$ such that $d f=2^{*} \lambda$ (where $2: L \rightarrow T^{*} M$ inclusion)
Major Open Question:
if yes to this then yes to question on previous page.
let M be a compact manifold if $L C\left(T^{*} M, d \lambda\right)$ a compact, orieñtable, exact Lagrangian then L can be deformed through exact Lagrangians to the zero section?
this is Arnold's "nearby Lagrangian conjecture"
for our next example we need a few more ideas recall an isotopy is a smooth map $\Phi: \mu \times(-a, a) \rightarrow M$ such that $\phi_{t}=\Phi(, t): M \rightarrow \mu$ is a diffeomorphism and $\phi_{0}=1 d_{M} \quad$ (a usually taken to be ∞) gwen ϕ_{t} we get a time dependent vector field

$$
v_{t}(p)=\left.\frac{d}{d s} \phi_{s}(q)\right|_{s=t} \quad \text { where } g=\phi_{t}^{-1}(p)
$$

ne.

$$
v_{t} \circ \phi_{t}=\frac{d \phi_{t}}{d t} *
$$

conversely given a time dependent vector field v_{t} (with compact support) then \exists ! isotopy $\Phi: M \times \mathbb{R} \rightarrow M$ satisfying * called the flow of v_{t} If v is time independent then flow satisfies

$$
\phi_{s} \cdot \phi_{t}=\phi_{s+t}
$$

exercise:
the Lie derivative, defined by $\mathcal{L}_{v_{t}} \eta^{k-\text { form } 2}=\left.\frac{d}{d t}\left(\phi_{t}\right)^{*} \eta\right|_{t=0}$,
satisfies
$\mathcal{L}_{v} \eta=l_{v} d \eta+d l_{v} \eta \quad$ Carton magic formula
and

$$
\frac{d}{d t} \phi_{t}^{*} \eta=\phi_{t}^{*} \mathcal{L}_{v_{t}} \eta
$$

now given a symplectic form ω on M, the linear isomorphism $\phi_{\omega_{x}}: T_{x} M \rightarrow T_{x}^{*}(M)$ gives an isomorphism

$$
\begin{gathered}
\Phi_{\omega}: X(M) \rightarrow \Omega^{\prime}(M) \\
P v c_{v} \omega
\end{gathered}
$$

vector fields on M
call a vector field r symplectic if $\iota_{v} \omega$ is closed
note: if v_{t} symplectic and ϕ_{t} its flow then

$$
\frac{d}{d t} \phi_{t}^{*} \omega=\phi_{t}^{*} \mathcal{L}_{v_{t}} \omega=\phi_{t}^{*}\left(c_{v_{t}} d \omega+d / v_{v_{\tau}} \omega\right)^{0}=0
$$

so ϕ_{t} preserves ω
i.e. $\phi_{t}: M \rightarrow M$ is a symplectomorphism
exercise:
if $\phi_{t}: M \rightarrow M$ flow of $\gamma_{t} \in X(M)$, then
ϕ_{t} a symplectomorphism $\forall t \Leftrightarrow V_{t}$ symplectic $\forall t$
a special type of symplectic vector field is a Hamiltonian vector field given a function $H: M \rightarrow \mathbb{R}$
get $d H \in \Omega^{\prime}(M)$ a closed 1 -form
let X_{H} be unique vector field such that

$$
l_{X_{H}} \omega=d H \quad\left(\text { ne. } \Phi^{-1}(d H)\right)
$$

X_{H} is called the Hamiltonian vector field of the energy (or Hamiltomicin) function H
note: If $\gamma(t)$ a flow line of X_{H}, then $\gamma^{\prime}(t)=X_{H}(\gamma(t))$
so

$$
\begin{aligned}
\frac{d}{d t}[H(\gamma(t))] & =d H_{\gamma(t)}\left(\gamma^{\prime}(t)\right)=\omega\left(X_{H}(\gamma(t)), \gamma^{\prime}(t)\right) \\
& =\omega\left(X_{H}(\gamma(t)), X_{H}(\gamma(t))\right)=0
\end{aligned}
$$

so flow of X_{H} tangent to level sets of H
1.e. energy is conserved along flow

Physics asside:
in local coordinates $\left(q_{1} \ldots q_{n}, p_{1} \ldots p_{n}\right)$ on $T^{*} \mathbb{R}^{n}=\mathbb{R}^{2 n}$
we have $\omega=-d \lambda=-\sum d p_{1} \wedge d q_{i}$

$$
d H=\sum\left(\frac{\partial H}{\partial p_{1}} d p_{1}+\frac{\partial H}{\partial q_{1}} d g_{i}\right)
$$

and

$$
c_{x_{H}} \omega=-\sum\left(d p_{i}\left(x_{H}\right) d q_{1}-d q_{1}\left(x_{H}\right) d p_{1}\right)
$$

so $p_{i}-\operatorname{coord}$ of $X_{H}=-\frac{\partial H}{\partial q_{i}}$
q_{1}-word of $X_{H}=\frac{\partial H}{\partial p_{i}}$
or if $\gamma(t)=\left(q_{1}(t), \ldots q_{n}(t), p_{1}(t), \ldots p_{n}(t)\right)$ is a flow line of X_{H} then

$$
\begin{aligned}
& \dot{p}_{1}=-\frac{\partial H}{\partial q_{i}} \\
& \dot{q}_{i}=\frac{\partial H}{\partial p_{i}}
\end{aligned}
$$

Hamilton's Equations
now if $V: M \rightarrow \mathbb{R}$ is some "potential energy" of some system exerts a "force" $F=-\nabla V$
then the "total energy" is $H(q, p)=\frac{\|p\|^{2}}{2 m}+V(p)$
in local coordinates get flow lines
satisfy

$$
\begin{aligned}
& \dot{q}_{1}=\frac{\partial H}{\partial \rho_{1}}=\frac{p_{1}}{m} \Rightarrow \rho_{1}=m \dot{q}_{i} \text { (momentum }=\text { mass } \times \text { velocity) } \\
& \dot{\rho}_{1}=-\frac{\partial H}{\partial q_{1}}=-\frac{\partial V}{\partial q_{1}} \Rightarrow m \ddot{q}_{2}=\dot{p}_{1}=-\nabla V=F
\end{aligned}
$$

Newton's equations!
now given a Hamiltonian $H: M \rightarrow \mathbb{R}$ for (M, ω)
from above X_{H} is tangent to level sets $H^{-1}(c)$ assume c a regular value so $H^{-1}(c)$ a manifold
Claim: X_{H} spans $\left(T\left(H^{-1}(s)\right)\right)^{\perp} \omega$
indeed $v \in T_{x}\left(H^{-1}(c)\right)$, then $\exists \gamma:(-\varepsilon, c) \rightarrow H^{-4}(c)$ st. $\gamma(0)=x, \gamma^{\prime}(0)=v$
and $0=\frac{d}{d t}(H(\gamma(t)))=d H_{\gamma(t)}\left(\gamma^{\prime}(t)\right)=\omega\left(X_{H}, v\right)$
so $\left.x_{H} \in\left(T H^{-4}(c)\right)\right)^{\perp}$
but $\operatorname{dim}\left(T H^{-1}(c)\right)^{\perp}=1$
also note flaw ϕ_{t}^{H} of X_{H} preserves ω
Important example:
recall complex projective space is
$\mathbb{C} P^{n}=\mathbb{C}^{n+1}-\{(0, \ldots, 0)\} / \mathbb{C}-\{0\}$ where $\mathbb{C}-\{0\}$ acts on \mathbb{C}^{n+1} by multiplication $\cong \int^{2 n+1} / S_{\leftarrow}^{\prime} \operatorname{unit}^{\prime}$ sphere in \mathbb{C} unit sphere in \mathbb{C}^{n+1}
now if we set $H: \mathbb{C}^{n+1} \rightarrow \mathbb{R}:\left(z_{0}, \ldots z_{n}\right) \mapsto \sum_{i=0}^{n}\left|z_{i}\right|^{2} \quad z_{j}=x_{j}+2 y_{j}$
then $S^{2 n+1}=H^{-1}(1)$ regular value
note $d H=\sum 2\left(x_{1} d x_{1}+y_{1} d y_{1}\right)$
so $X_{H}=2 \sum\left(-x_{1} \frac{\partial}{\partial y_{1}}+y_{1} \frac{\partial}{\partial x_{1}}\right)$
now if $\gamma(t)=e^{1 t}\left(x_{1}+1 y_{1}, \ldots\right)$ is an orbit of s^{\prime}-action
then $\gamma^{\prime}(0)=\left(-y_{1}+2 x_{1}, \ldots\right)$
so vector field generating s^{\prime}-action is $v=\sum-y_{1} \frac{\partial}{\partial y_{1}}+x_{1} \frac{\partial}{\partial y_{1}}$ since X_{H} proportional to v, orbits of X_{H} are orbits of S^{\prime} so $\mathbb{C} P^{n}=S^{2 n+1} /$ orbits of X_{H}
exercise:

1) If (V, ω) symplectic vector space and $W \subset V$ coisotropic ($W^{\perp} \subset W$) then ω induces a symplectic structure on $W / W \perp$
2) $x \in \mathbb{C} P^{n}$ and $z \in S^{2 n+1}$ st. $\pi(z)=x \quad\left(\pi: S^{2 n+1} \rightarrow \varangle \rho^{n}\right.$ projection $)$ then $T_{x} \subset P^{n} \cong T_{z} S^{2 n+1} / T_{z}\left(S^{\prime}\right.$-orbit) $=T_{z}\left(H^{-1}(1)\right) /\left(T_{z}\left(H^{-1}(1)\right)\right)^{1}$
gets a symplectic structure from ω_{z} since flow of X_{H} preserves ω show symplectic structure on $T_{x} \subset \rho^{\wedge}$ is independent of choice of z
this is an example of "symplectic reduction"
also show this gives a smooth closed 2-form $\omega_{F S}$ on $\mathbb{C P}{ }^{n}$ ie $\mathbb{C} P^{n}$ is a symplectic manifold

A
Fubini-Study
so $\left(C P^{n}, \omega_{F S}\right)$ symplectii manifold
$\mathbb{E} P^{n}$ is also a complex manifold and complex structure is "compatible "with $\omega_{F S}$ so any complex submanifold of $C P^{n}$ is a symplectic submanifold
example: given a collection of homogeneous complex polynomials in \mathbb{C}^{n+1}

$$
p(\lambda z)=\lambda^{d} \rho(z)
$$

they have a well-definied zero locus in $C P^{n}$
this is called a complex algebraic variety
if it is a man ifold then it is a symplectic manifold
e.g. $\left\{\Sigma z_{1}^{d}=0\right\}$ degree d hypersurfaces in $\mathbb{C} P^{n}$

Later we will consider many other constructions of symplectic manifolds but for now move onto the "local theory".

