Symplectic Geometry

Given a manifold M a <u>symplectric structure</u> on M is a 2-form $\omega \in \Omega^2(M)$ S.t. 1) ω is non-degenerate (i.e. $\forall v \in T_X M, v \neq 0, \exists u \in T_X M, s \notin ..., \omega_x(v, u) \neq 0$) 2) $d\omega = 0$

this class will cover the basics of symplectic geometry and then focus on understanding when a manifold admits a symplectic structure (area of current research) if time permits we will also discuss contact manifolds (an odd dimentional version of symplectic manifolds).

I Symplectic Linear algebra

a <u>symplectic vector space</u> is a (finite dimensional) real vector space V with a non-degenerate, skew-symmetric bilinear form

$$\omega: \bigvee \times \bigvee \rightarrow \mathbb{R}$$

1)
$$\omega(\sigma, u) = -\omega(u, \sigma)$$

2) $\omega(\sigma + cu, w) = \omega(\sigma, w) + c\omega(u, w) \quad \forall c \in \mathbb{R}, \sigma, u, w \in \mathbb{V}$
3) $\omega(\sigma, u) = 0 \quad \forall u \in \mathbb{V} \implies \sigma = 0$

lemma 1:

a bilinear pairing
$$\omega: V \times V \to \mathbb{R}$$
 is non-degenerate
(=)
the linear map $\varphi_{\omega}: V \to V^*: \upsilon \mapsto (f_{\upsilon}: V \to \mathbb{R}: u \mapsto \omega(\upsilon, u))$
is an isomorphism

Proof:
(⇒)
$$\phi_{\omega}(v) = 0$$
 then $f_{v}: V \to M: u \mapsto \omega(v, \omega)$
is the zero map and $v = 0$ by non-degeneracy
 $\vdots \phi_{\omega}$ injective, \vdots isomorphism since $\dim V = \dim V^*$
((=) if $\omega(v, \omega) = 0$ ∀ $u \in V$ then $\phi_{\omega}(v) = 0$ and $v = 0$ since
 ϕ_{ω} an isomorphism

example:
$$\forall = \mathcal{C}^{n} = \mathcal{R}^{2n}$$

 $h(v; u) = \sum \overline{v}_{i} u_{j}$ for $v = \begin{bmatrix} v_{i} \\ v_{n} \end{bmatrix}$, $u = \begin{bmatrix} u_{i} \\ u_{n} \end{bmatrix}$
 $h(v; u) = \sum \overline{v}_{i} u_{j}$ form
 $note: h(v, u) = \overline{h(u,v)}$
 $set \langle v, u \rangle = \mathcal{R}e h(v; u)$ symmetric $\int both$
 $w(v; u) = \mathcal{R}e h(v; u)$ shew-symmetric $\int non degenerate$
 $so \langle , \rangle$ is an unar product on V
 w is a symplect structure on V
 $note: w(v; u) = \langle vv, u \rangle$
if $\{e_{1}...e_{n}\}$ is the standard basis for V over C
and $f_{j} = ie_{j}$
then $\{e_{i}, f_{i}, ..., e_{n}, f_{u}\}$ is a basis for V over \mathcal{R}
 $(positively oriented)$
 $clearly $w(e_{j}, f_{j}) = -w(f_{j}, e_{j}) = \langle e_{j}, e_{j} \rangle = \langle f_{j}, f_{j} \rangle = 1$
 $all other other pairs evaluate to 0$
if $\{e_{1}^{*}, f_{1}^{*}, ..., e_{n}^{*}, f_{n}^{*}\}$ is the dual basis for $(\mathbb{R}^{2n})^{*}$
 $w_{uu} = \sum_{j=1}^{n} e_{j}^{*} h f_{j}^{*}$$

If
$$(V, \omega_v), (W, \omega_w)$$
 are symplectic vector spaces then $V \oplus W$
has symplectic structure
 $\omega = \pi_v^* \omega_v + \pi_w^* \omega_w$ where
 $\overline{Th^{e^2}2}$:
If (V, ω) a symplectic vector space
then \exists an isomorphism $\phi: V \to \mathbb{C}^n$ s.t
 $\phi^* \omega_{std} = \omega$

we can immediately conclude

for the proof we need:
•
$$(V, \omega)$$
 symplectic vector space
• $W \in V$ subspace
then $w^{\perp} = \{ v \in V \mid \omega(v, u) = 0 \forall u \in W \}$
note: $\omega(v, v) = 0$ so dim $W = 1 \Rightarrow W \subset W^{\perp}$
so quite different from inner product \perp
but we still have

lemma 4:

 $\dim W + \dim W^{\perp} = \dim V$

Proof: the map
$$\phi_{\omega}: V \to V^*$$
 is an isomorphism
so given $W = V$ the set $\phi_{\omega}(v^{\perp}) \in V^*$ vanishes on W
so we have induced map
 $\tilde{\phi}_{\omega}: W^{\perp} \to (Y_{\omega})^*$
we claim $\tilde{\phi}_{\omega}$ is an isomorphism
if so duin $W^{\perp} = \dim(Y_{\omega})^* = \operatorname{codim} W$ and done!
upertively: if $\tilde{\phi}_{\omega}(w) = 0$, then $\omega(w,v) = 0$ $\forall v \in V$
 $\vdots w = 0$
surjectively: for any elt $\Psi \in (Y_{\omega})^*$ gives a linear map
 $\Psi: V \to \mathbb{R}$
that vanishes on W
so $\exists v \in V$ st $\phi_{\omega}(v) = \Psi$ and $v \in W^{\perp}$
 $\vdots \tilde{\phi}_{\omega}(v) = \Psi$
for any elt $\Psi = \operatorname{dim} (v \in W^{\perp})^{\perp}$
that vanishes on W
so $\exists v \in V$ st $\phi_{\omega}(v) = \Psi$ and $v \in W^{\perp}$
 $\vdots \tilde{\phi}_{\omega}(v) = \Psi$
Reoof: $W \in (W^{\perp})^{\perp}$ and same dimension
for W = U then W is isotropic (dim $W = \frac{1}{2} \dim V)$
if $W = W^{\perp}$ then W is *Lagrangian* (dim $W = \frac{1}{2} \dim V$,
if $w = w^{\perp}$ then W is *Lagrangian* (dim $W = \frac{1}{2} \dim V$,
if $w|_{W}$ is non-depenerate, then W is a symplectzi

If
$$(V, \omega_v)$$
, (W, ω_w) are symplectic vector spaces then a linear map $f: V \rightarrow W$

is <u>symplectic</u> if $f^* \omega_w = \omega_V$ <u>note</u>: f symplectic \Rightarrow f is injective $(v \in \ker f \Rightarrow f(v) = 0 \perp W \Rightarrow v \perp V \Rightarrow v = 0)$ Group of all symplectic linear maps of $(\mathbb{R}^{2n}, \omega_{stel})$ is $Sp(2n, \mathbb{R})$ <u>note</u>: $U(n) \subset Sp(2n, \mathbb{R})$ <u>in fact</u> maximial compact subgroup $U(n) \hookrightarrow Sp(2n, \mathbb{R}) = 0$

Section II: Symplectic manifolds
recall a symplectic structure on a manifold M is a 2-form
$$\omega \in S^{2}(M)$$

st. 1) ω is non-degenerate (on each $T_{n}M$)
2) $d\omega = 0$
note: any symplectic manifold M is
1) even dimensional
2) or iented
3) has canonical volume form $\Omega_{-1}^{-1} \omega_{n-1}A \omega$
 $H = 3 a C H^{2}(M)B$ st. $a u = u^{-1}A O$ and $\omega_{-1}A \omega$
 $H = 3 a C H^{2}(M)B$ st. $a u = u^{-1}A O$ and $\omega_{-1}A \omega$
 $H = 3 a C H^{2}(M)B$ st. $a u = u^{-1}A O$
 $H = 3 a C H^{2}(M)B$ st. $a u = u^{-1}A O$
 $H = 3 a C H^{2}(M)B$ st. $a u = u^{-1}A O$
 $H = 3 a C H^{2}(M)B$ st. $a u = u^{-1}A O$
 $H = 3 a C H^{2}(M)B$ st. $a u = u^{-1}A O$
 $H = 3 a C H^{2}(M)B$ st. $a u = u^{-1}A O$
 $H = 3 a C H^{2}(M)B$ st. $a u = u^{-1}A O$
 $H = 3 a C H^{2}(M)B$ st. $a u = u^{-1}A O$
 $M = 3 a C H^{2}(M)B$ st. $a u = u^{-1}A O$
 $S^{2n} S^{2m}$ not symplectic if $m \pm 0, \pm$
 $S^{2n} S^{2m}$ not symplectic if $m \pm 0, \pm$
 $S^{2n} S^{2m}$ not symplectic if $m \pm 0, \pm$
 $S^{2n} S^{2m}$ not symplectic if $m \pm 0, \pm$
 $S^{2n} S^{2m}$ not symplectic if $m \pm 0, \pm$
 $S^{2n} S^{2m}$ not symplectic if $m \pm 0, \pm$
 $S^{2n} S^{2m}$ not symplectic if $m \pm 0, \pm$
 $S^{2n} S^{2m}$ not symplectic if $m \pm 0, \pm$
 $S^{2n} S^{2m}$ not symplectic if $m \pm 0, \pm$
 $S^{2n} S^{2m}$ not symplectic if $m \pm 0, \pm$
 $S^{2n} S^{2m}$ not symplectic if $m \pm 0, \pm$
 $S^{2n} S^{2m}$ not symplectic if $m \pm 0, \pm$
 $S^{2n} S^{2m}$ not symplectic if $m \pm 0, \pm$
 $S^{2n} S^{2m} N = 3 symplectic form, called the "standord" structure $\omega = d\lambda$ where $\lambda = \frac{1}{2} \Sigma x_{2} d x_{2} - \overline{s} d x_{2}$
 $S^{2n} A ny or iented surface with an oreo form ω
 $(d\omega = 0 for dim. reasons)$
a submonifold N of a symplectic manifold (M, \omega) is
Lagranguin (isotropic, symplectic, coisotropic) if each $T_{n} N \in T_{n} M$
is Lagranguin (isotropic, symplectic submanifold then (M, $\omega|_{T_{n}})$
is a symplectic manifold.
Bramples:$$

1) any 1-dimensional manifold is isotropic 50 curves in a surface are Legendrian

2) any codimiension 1 submanifold is coisotropic

s)
$$(M_{i}, \psi), (M_{i}, \psi)$$
 symplectic
then $M_{i} M_{i}$ has symplectic structure $T_{i}^{M} \psi_{i} + T_{i}^{M} \psi_{i}$
more over $M_{i}(p)$ and $p_{i} * M_{i}$ are symplectic
submanifolds
if $L_{i} \subset M_{i}$ a Lagrangian submanifold of (M_{i}, ψ_{i})
then $L_{i} \times L_{i}$ a Lagrangian submanifold of $M_{i} \times M_{i}$
eg. if Z_{i}, Z_{i} surfaces Varea forms then
 $Z_{i} \times Z_{i}$ has lots of Lagrangian tori
 $(M_{i} \psi_{i}), (M_{i} \psi_{i})$ symplectric
a map $f: M \rightarrow N$ is called symplectric if $f^{*} \psi_{i} = \psi_{i}$
note: this unplies dt_{i} injective $\forall x \in M$
 \therefore f an inimersion
a symplectric diffeomorphism f is called a symplectomorphism
and is the natural equivalence relation on symple manifolds
 $(note, f^{-1} also symplectric)$
example:
 $M_{i}, \psi_{i}, (M_{i}, \psi_{i})$ symplectric
then $M_{i} \times M_{i}$ has symplectic structure
 $\psi_{i,h} = \lambda_{i} T_{i}^{*} \psi_{i} + \lambda_{i} T_{i}^{*} \psi_{i}$
for any $\lambda_{i}, \lambda_{i} \in R$ -fol
given a map $f: M_{i} \rightarrow M_{i}$, the graph of f is
 $\Gamma_{f}^{*} = \{ (x, f w_{i}) : x \in M_{i} \} \subset M_{i} \times M_{i}$
 F_{f} is Lagrangian in $(M_{i} \times M_{i}, \psi_{i,i})$

Important example:

let M be any smooth manifold

$$T: T^*M \to M \text{ the projection map}$$
the Liouville I-form λ on T^*M
 $\lambda \in \mathcal{SL}'(T^*M)$
is defined as follows:
if $z \in T_x^*M$, then
 $z: T_{T(M)}M \to R$
if $v \in T_z(T^*M)$, then
 $dT_z(v) \in T_{T(M)}M$
So $\lambda_z: T_z(T^*M) \to R$
 $v \longmapsto 2(dT_z(v))$

$$\frac{\partial \mathcal{R} erc_{1}(s\dot{e}:}{1) \text{ if } q_{1,1} \cdots q_{n} \text{ ore local coordinants on UCM}}$$

$$\frac{\partial \mathcal{R} erc_{1}(s\dot{e}:)}{\partial \mathcal{R} erc_{1}(s, \alpha)} = \int_{1}^{\infty} \mathcal{R} erc_{1}(s, \alpha) = \int_{1}^{\infty} \mathcal{R}$$

2) If $\alpha \in \mathcal{L}'(M)$ then $\alpha : M \to T^*M$ Show $x^* \lambda = \alpha$ (λ also called canonical 1- form) 3) image of zero section of T*M Lagrangian more generally, if XES'(M), then image(d) Lagrangian (=) da=0 4) fibers of $\pi: T^*M \rightarrow M$ are Lagrangian 5) If f: M-IN a diffeomorphism, then $f^*:T^*N\to T^*M$ is a symplectomorphism Kemark: This means you can try to distinguish smooth manifolds using symplectic geometry of their cotangent bundles! interesting research problem: can you use this distinguish exotic 4-manifolds. other homeomorphic, but not-diffeomorphic pairs? example: Abouzaid showed if M a (4n+1)-manifold St. T'M and T*5"ntl are symplectomorphic then M a homotopy sphere that bounds a manifold with trivial tangent bundle This => symplectic geometry of cotangent bundles can distinguish 6 of 7 exotic smooth structures on 5 from standard 59 Major Open Question: are M. N diffeomorphic T*M and T*N are symplectomorphic

more Lagrangions in $(T^*M, d\lambda)$ if Sc Mis a submanifold, then its conormal bundle is $N^*S = \{ q \in T^*M : \pi(q) \in S, q(r) = 0 \forall r \in T_{\pi(q)} S \}$ this is a bundle over S that vanish on S and a properly embedded submanifold of T"M exercise: <u>Hinit: choose</u> 1) dim N*5 = n (so fibers have dim n-k) coordinates 2) N*5 is Lagrangian (even more 1*7=0 where 1:N*5→T*M) adapted to S at xes example: if x ∈ M, then N* [x] = T - (x) note: if we have an isotopy St of S, then N*St undergoes a proper isotopy through Legendrian submanifolds so symplectic invariants of the Legendrian isotopy class of N*S CT*M are invariants of the smooth isotopy class of SCM! So we see T*M contains lots of Lagrangian submanifolds, but conjecturally not lots of compact exact Lagrangian submanifolds a Lagrangian submanifold $LC(T^*M, d\lambda)$ is <u>exact</u> if $\underline{A}a$ function $f: L \rightarrow R$ such that $df = 1^*\lambda$ (where $2: L \rightarrow T^*M$ inclusion) Major Open Question: let M be a compact manifold if yes to this $f L c(T^*M, d\lambda)$ a compact, orientable, exact Lagrangian then yes to question on previous page. then L can be deformed through exact Lagrongians

this is Arnold's "nearby Lagrangian conjecture"

to the zero section?

for our next example we need a few more ideas recall an isotopy is a smooth map $\overline{\Phi}: M \times (-a,a) \rightarrow M$ such that $\phi_{\xi} = \overline{\Phi}(\cdot, \epsilon): M \rightarrow M$ is a diffeomorphism and $\phi_0 = id_M$ (a usually taken to be oo) given ϕ_{ξ} we get a time dependent vector field $U_{\xi}(\rho) = \frac{ol}{ds} \frac{\phi_s}{g}(q) \Big|_{s=t}$ where $q = \phi_t^{-1}(\rho)$ 19. $U_{\xi} \circ \phi_{\xi} = \frac{ol}{dt} \frac{\phi_{\xi}}{dt}$

conversely given a time dependent vector field
$$\pi_{i}$$
 (with compart support)
then $\exists !$ isotopy $\overline{E}: M \times R \to M$ satisfying \Re called the flow of $\overline{v_{i}}$
if \overline{v} is time independent then flow satisfies
 $\frac{\Psi_{i} \cdot \Psi_{i}}{\Psi_{i} = \frac{\Psi_{i}}{\Psi_{i}} = \frac{\Psi_{i$

$$note: If XH = flow line of X_{H, then} X'(t) = X_{H}(XH)$$

$$S^{0} = \frac{d}{dt} [H(XH)] = dH_{X(H)}(X'(H)) = \omega(X_{H}(XH), X'(H))$$

$$= \omega(X_{H}(XH), X_{H}(XH)) = 0$$

$$S^{0} = flow of X_{H, tangent to level sets of H}$$

$$1.e. energy is conserved along flow$$

$$Physics asside:$$

$$in local coordinates (q_1 ... q_n, p_1 ... p_n) \text{ on } T^{4}R^{n} = R^{2n}$$

$$we have \omega = -d\lambda = \sum dp_{1} dq_{1}$$

$$dH = \sum (\frac{2H}{\partial p_{1}} dp_{1} + \frac{2H}{\partial q_{1}} dq_{1})$$

$$and$$

$$(\chi_{H} \omega = -\sum (df_{1}(X_{H}) dq_{1} - dq_{1}(X_{H}) dq_{1})$$

$$S^{0} = f_{1} - coord of X_{H} = -\frac{2H}{\partial q_{1}}$$

$$or \quad if X(t) = (q_{1}(t), ... q_{n}(t), p_{1}(t), ... p_{n}(t)) \text{ is a flow line of } X_{H} + then$$

$$\vec{p}_{1} = \frac{2H}{\partial q_{1}}$$

$$Hamilton's Equations$$

Now if $V: M \rightarrow R$ is some "potential energy" of some system exerts = a "force" $F = -\nabla V$ then the "total energy" is $H(q,p) = \frac{\|p\|^2}{2m} + V(p)$ in local coordinates get flow lines satisfy $\dot{q}_1 = \frac{\partial H}{\partial p_1} = \frac{p_1}{m} \Rightarrow p_2 = m\dot{q}_1$ (momentum = mass x velocity) $\dot{p}_1 = -\frac{\partial H}{\partial q_1} = -\frac{\partial V}{\partial q_1} \Rightarrow m \ddot{q}_2 = \dot{p}_2 = -\nabla V = F$ Newfords equations!

now given a Hamiltonian
$$H: M \rightarrow \mathbb{R}$$
 for (M, ω)
from above X_H is tangent to level sets $H^{-1}(c)$
assume c a regular value so $H^{-1}(c)$ a manifold
Claimi: X_H spans $(T(H^{-1}(c)))^{\perp \omega}$
indeed $v \in T_{x}(H^{-1}(c))$, then $\exists v: (-\varepsilon, c) \rightarrow H^{-1}(c) \leq t$. $V(o) = v$.

ond
$$0 = f_{1}^{2} (H(S(Y)) = dH_{Y0}(Y(Y)) = \omega(K_{H_{1}}Y)$$

so $X_{H_{1}} \in (TH^{-1}(x))^{1}$
but divit $(TH^{-1}(x))^{1} = 1$
also note fixe f_{1}^{0} of $X_{H_{1}}$ preserves ω
[Important example:
recall complex projective space is
 $CP^{n} = C^{n+1} \cdot f(n_{-1}0)^{1} \cdot c_{-1}(s)$ where $C^{-1}(s)$ acts on C^{n+1} by multiplication
 $\cong \frac{S^{n+1}}{s}$, $f_{1}^{-1} = \frac{S^{n}}{s}$, $f_{1}^{-1} = \frac{S^{n}}{s} = \frac{S^{n}}{s} + TY_{1}^{n}$
then $S^{n+1} = H^{-1}M_{1}^{-1}$ regular value
note $dH = \Sigma^{n}(s, dx, y, dy_{1})$
so $X_{H} = \Sigma^{n}(-x, \frac{S^{n}}{s}_{H_{1}} + Y_{1}) \frac{S^{n}}{s}_{H_{1}}^{n}$
How if $Y(t) = G^{t+1}(X_{1}+Y_{1}, ...)$ is an orbit of S^{1} -action
then $S^{1}(0) = (Y_{1}+1X_{1}, ...)$
so vector field generating S^{1} action is $\tau = \Sigma^{-1}Y_{1}\frac{S}{S}_{H_{1}} + X_{1}\frac{S}{S}_{Y_{1}}^{n}$
Since X_{H} proportion for T , orbits of X_{H} are orbits of S^{1}
so $CP^{M} = S^{2m+1}$ orbits of X_{H}
Exercise:
1) If (N, ω) symplectic vector space and $W \in V$ cobsorps $(W^{-1}cW)$
then $T_{w} GP^{m} = T_{w} S^{2m+1}/T_{w}^{n}(T_{w})$
 $T_{W}(T_{w})^{1} = T_{w} GP^{m}$
 $T_{w} GP^{m} = T_{w} S^{2m+1}/T_{w}^{n}(T_{w})$
 $T_{W}(T_{w})^{1} = T_{w} S^{2m+1}/T_{w}^{n}(T_{w})$
 $T_{W}(T_{w})^{1} = T_{w} S^{2m+1}/T_{w}^{n}(T_{w})^{1} = T_{w}^{n}(T_{w})^{1} = T_{w}^{n}(T_{w})^{1} = T_{w}^{n}(T_{w})^{n}$
 $T_{W}(T_{w})^{1} = T_{w}^{n}(T_{w})^{1} = T_{w}^{n}(T_{w})^{n} = T_$

so $(CP_{1}^{n}, \omega_{FS})$ symplectic manifold and complex structure is "compatible" with ω_{FS} so any complex submanifold of CP^{n} is a symplectic submanifold <u>example</u>: given a collection of homogeneous complex polynomials in C^{n+1} $p(\lambda z) = \lambda^{d}p(z)$ they have a well-defined zero locus in CP^{n} this is called a <u>complex algebraic variety</u> if it is a manifold then it is a symplectic monifold $e.g. \{ Z z_{1}^{d} = 0 \}$ degree d hypersurfaces in CP^{n}

Later we will consider many other constructions of symplectic manifolds but for now move onto the "local theory".