D. Fiber bundles

$$\begin{array}{l} \text{ consider } \mathbb{R}^{q} \quad \text{with } \omega = dx_{i}, dx_{i} + dx_{i}, dx_{i} \\ \text{ let } g_{i} \quad \text{ be translation by 1 in } x_{i} direction \quad \text{ for } z=1,2,3 \\ g_{i}(x_{i}, x_{i}, x_{i}, x_{i}) = (x_{i} + x_{i}, x_{i}, x_{i}, x_{i} + 1) \\ \text{ clearly } g_{i}^{*} \omega = \omega \quad \text{for } z=1,2,3 \\ g_{i}^{*} \omega = (dx_{i} + dx_{i}), dx_{i} + dx_{i}, dx_{i} = \omega \\ \text{ so let } E = \mathbb{R}^{q}/G \quad \text{this is a symplectic manifold with } \overline{\pi}(E) = G \\ \text{ let's figure out what } H_{i}(E) = G/_{EG,GJ} \quad \text{ is } \\ \text{ consider } \overline{\pi} : \mathbb{R}^{q} \rightarrow \mathbb{R}^{3}: (x_{i}, x_{i}, x_{i}, x_{i}) \mapsto (x_{i}, x_{i}, x_{i}, x_{i}) \\ \text{ let } \overline{g}_{i} = id_{R^{3}} \quad \overline{g}_{i} = \text{translation in } x_{i} \text{ direction } \\ \mathbb{R}^{q} \stackrel{\overline{g}_{i}}{=} id_{R^{3}} \quad \overline{g}_{i} = \text{translation in } x_{i} \text{ direction } \\ \mathbb{R}^{q} \stackrel{\overline{g}_{i}}{=} id_{R^{3}} \quad \overline{g}_{i} = \text{translation } m x_{i} \text{ direction } \\ \mathbb{R}^{q} \stackrel{\overline{g}_{i}}{=} id_{R^{3}} \quad \overline{g}_{i} = \text{translation } m x_{i} \text{ direction } \\ \mathbb{R}^{q} \stackrel{\overline{g}_{i}}{=} id_{R^{3}} \quad \overline{g}_{i} = \text{translation } m x_{i} \text{ direction } \\ \mathbb{R}^{q} \stackrel{\overline{g}_{i}}{=} id_{R^{3}} \quad \overline{g}_{i} = \text{translation } m x_{i} \text{ direction } \\ \mathbb{R}^{q} \stackrel{\overline{g}_{i}}{=} id_{R^{3}} \quad \overline{g}_{i} = \text{translation } m x_{i} \text{ direction } \\ \mathbb{R}^{q} \stackrel{\overline{g}_{i}}{=} id_{R^{3}} \quad \overline{g}_{i} = \text{translation } m x_{i} \text{ direction } \\ \mathbb{R}^{q} \stackrel{\overline{g}_{i}}{=} id_{R^{3}} \quad \overline{g}_{i} = 0 \quad \int \mathbb{R}^{3} \quad \overline{\pi} \circ g_{i}(x_{i}, x_{i}, x_{i}, x_{i}) = (x_{i}, x_{i}, x_{i}) = \overline{g}_{i} \\ \text{ for } g_{i}(x_{i}, x_{i}, x_{i}, x_{i}) = \overline{g}_{i} \\ \mathbb{R}^{3} \stackrel{\overline{g}_{i}}{=} \mathbb{R}^{3} \quad \overline{g}_{i} \text{ for } g_{i}(x_{i}, x_{i}, x_{i}, x_{i}) = \overline{g}_{i} \\ \text{ for } x_{i} \in E \rightarrow T^{3} \\ \text{ so we have an induced map } \\ \overline{\pi}_{i} \in E \rightarrow T^{3} \\ \text{ so } \pi_{i} \text{ onto and } g_{i} \text{ infinite order for } 1=23.4 \\ \text{ and no relations omong them } \\ \text{ also } (x_{i}, x_{i}, x_{i}, x_{i}) \stackrel{\overline{g}_{i}}{=} (x_{i}, x_{i} + x_{i}, x_{i}, x_{i}) \stackrel{\overline{g}_{i}}{=} (x_{i}, x_{i} + x_{i}, x_{i}, x_{i}) \stackrel{\overline{g}_{i}}{=} (x_{i} + x_{i} + x_{i}, x_{i}) \stackrel{\overline{g}_{i}}{=} (x_{i} + x_{i} + x_{i}, x_{i}) \\ \frac{g_{i}^{3}}{$$

50
$$g_1 = [g_2, g_T]$$
 : $g_1 = 0$ in $H_1(E)$
 $\therefore H_1(E) = \mathbb{Z}^3$

we have established most of the following

Th 4 (Thurston ~70's, Kodaira inpublished ~50):

there are symplectic manifolds that are not Kähler (they can even have a complex structure, of course not compatible with sympl str.)

Remark: This was first such example Proof: for a Kähler mandold b_{2n+1} even but $b_1(E) = 3$ Note: $p: \mathbb{R}^4 \rightarrow \mathbb{R}^2: (x, x_1 x_3 x_4) \mapsto (x_3 x_4)$ gives E the structure of a T^2 bundle over T^2 with sympl. fibers generalizing this we have The 5 (Thurston): Given a symplectic manifold (M, ω_m) and a compact bundle $E \stackrel{p}{\rightarrow} M$ with fiber Σ assume a) if dim $\Sigma = 2$, $\exists x \in H_{OR}^2(E)$ st. $\int_{Z_X} x > 0 \quad \forall x \in M \text{ where } Z_X = p^{-1}(x)$ $[equivalently [F_X] = 0 \text{ in } H_2(E; \mathbb{R})]$

> b) if $\dim \mathbb{Z} > 2$, \exists symplectic form $\omega_{\mathbb{Z}}$ on \mathbb{Z} such that the structure group of Eacts by symplectomorphisms (so $\exists \omega_x$ on each \mathbb{Z}_x) and $\exists x \in H_{DR}^2(E)$ st. $x|_{\mathbb{Z}_x} = [\omega_x]$

Then $\exists a \text{ symplectic form } \omega_E \text{ on } E \text{ st.}$ $\omega_E \Big|_{L_x} \text{ symplectic } \forall x$

Moreover, the image of any prechosen section Can be assumed to be symplectic Remarks:

1) Surface bundles over surfaces (all orientable) have
symplectic structures with symplectic fibers

$$\iff [I_x] \neq 0$$

note: if \exists section $\sigma: M \rightarrow E$ then $[I_x] \neq 0$ since $\sigma(M) \cdot I_x = pt$
2) $S^3 \times S^1 \xrightarrow{-} S^2$ where $\pi = Hopf$ map $\circ \pi_{SS}$
is a T^3 -bundle over S^2
but no symplectic structure
3) More generally, $[I_x] \neq 0$ is automatic unless $\Sigma = T^2$
to see this suppose $\sum_{i=1}^{2} \xrightarrow{-} E$ is a bundle
 M^{en}
let $I_y = T_y I_x$ for $y \in I_x, x \in M$
so $I \subset TE$ and I an oriented R^2 -bundle on E
so $I \subseteq U(I) \neq 0$, then I_x pairs non-trivially with something
in cohomology.

Claim:
$$\exists a closed 2-form $\eta \in \Omega_{pq}^{2}(E)$ st. $\omega|_{\mathbb{Z}_{pq}} = \begin{cases} area form & case a \\ \omega_{q} & case b \end{cases}$$$

given this consider
$$\omega_t = \pi^* \omega_M + t\gamma \quad t > 0$$

note: $\omega_t |_{Z_X} = t\gamma$ so Z_X symplectic $\forall x$
now let's check ω_t is symplectic
 $d \omega_t = d\pi^* \omega_M + td\gamma = \pi^* d\omega_M + 0 = 0$
choose any metric on E and note $T_Y E = T_Y Z_X^{\oplus} T_Y Z_X^{\perp}$ where
 $\pi(y) = x$
now $d\pi_y$ is an isomorphism from $T_Y Z_X^{\perp}$ to $T_X M$
so $\pi^* \omega_M$ non-degenerate on $T_Y Z_X^{\perp}$

:. ω_t non-degenerate on $T_y Z_x^{\perp}$ for small t (non-degen is open condition and E compact) but we already noticed ω_t non-degen. on $T_y Z_x$ $\therefore \omega_t$ non-degen on E i.e. ω_t symplectic! now if $\sigma: M \rightarrow E$ a section then $\sigma^*(\pi^* \omega_m) = \omega_m$ so $\sigma^*(\omega_t) = \omega_m + t \sigma^* \eta$ which is symplectic for small t.

Proof of Claim:

Cover the base M by local trivializations $\{(U_{i}, \phi_{i})\}$ with U_{i} contractible and transition maps symplectos $\pi^{-1}(U_{i}) \xrightarrow{\phi_{i}} U_{i} \times \Sigma \xrightarrow{\pi_{i}} \Sigma$ in case b) $\pi^{-1}(U_{i}) \xrightarrow{\phi_{i}} U_{i} \times \Sigma \xrightarrow{\pi_{i}} \Sigma$

let $\{P_i\}$ be a partion of unity subordinate to $\{U_i\}$ In case a) let w_z be any area form st. $\int_z w_z = \int_z x_z$ now set $\eta_i = \varphi_1^* \pi_z^* w_z$ on $\pi^{-1}(U_i)$

 $so \left. \frac{\eta_i}{z_*} = \omega_x \quad \text{in case b} \right.$ let $S \in \Omega^2(E)$ represent $\alpha \in H_{OR}^2(E)$

$$\begin{split} & y_{2} - S|_{\pi^{-1}(U_{1})} \text{ is closed and note } \pi^{-1}(U_{1}) \cong \Sigma_{x} \text{ since } \\ & \left[\gamma_{1} - S|_{\pi^{-1}(U_{1})} \right] = \left[\omega_{x} \right] - \left[\omega_{x} \right] = 0 \quad (\text{ some } \omega \text{ case } a) \text{ by } S \text{ above}) \\ & \text{so } \left[\gamma_{1} - S|_{\pi^{-1}(U_{1})} \right] = 0 \quad \text{in } H_{DR}^{2}(\pi^{-1}(U_{1})) \\ & \therefore \exists 1 - \text{ forms } \Theta_{2} \in \mathcal{L}^{1}(\pi^{-1}(U_{1})) \quad \text{s.t. } d\Theta_{2} = \gamma_{1} - S|_{\pi^{-1}(U_{1})} \\ & \text{ finally set } \eta = S + d\left(\Sigma(\rho_{1} \circ \pi) \Theta_{1} \right) \\ & \quad C|early \text{ well-defined and } d\eta = 0 \end{split}$$

$$\begin{split} \eta|_{\Sigma_{x}} &= \left. S\right|_{\Sigma_{x}} + \left. \sum \left(\rho_{1} \circ T \right) d \theta_{1} \right|_{\Sigma_{x}} = \left. S\right|_{\Sigma_{x}} + \left. \sum \left(\rho_{1} \circ T \right) \left(\eta_{1} \right|_{\Sigma_{x}} - S\right|_{\Sigma_{x}} \right) \\ & \text{ constant on } \Sigma_{x} \\ &= \left. S\right|_{\Sigma_{x}} - \left. \frac{1}{\sum_{x}} \sum \left(\rho_{1} \circ T \right) + \left. \sum \left(\rho_{1} \circ T \right) \eta_{1} \right|_{\Sigma_{x}} \right. \\ &= \left\{ \left. \sum \left(\rho_{1} \circ T \right) \left(\operatorname{area form} \right) \right. \\ \left. \sum \left(\operatorname{ase a} \right) \right. \\ \left. \sum \left(\operatorname{area form} \right) \right. \\ \left. \sum \left(\operatorname{ase b} \right) \right. \\ &= \left\{ \left. \begin{array}{c} \operatorname{area form} \\ \omega_{x} \end{array} \right. \\ \left. \sum \left(\operatorname{ase b} \right) \right. \\ \left. \right\} \right\} \end{split}$$

E. Lefschetz Pencils and Fibrations Briefly a lefschetz pencil is simply a fibration over S² except the types of "singularities" are allowed for a lefschetz fibration only one type is allowed. More rigorously, a (topological) Lefschetz pencil on a compact, oriented manifold M²ⁿis <u>n=2 automotic</u> called base locus i) a codimensión 4 compact submanifold B < M and 2) a smooth map $T: (M-B) \rightarrow CP' = 5^2$ such that a) for each pEB there are orientation preserving coordinates about p where B is z= Z= D in C and I in the compliment of B is $(\mathcal{Z}_1, \ldots, \mathcal{Z}_n) \mapsto [\mathcal{Z}_1; \mathcal{Z}_2] \in \mathbb{CP}^{\vee}$ (r.e. To on each filter of normal bundle is projectivization) b) there are a finite number of critical points {c1,... c2} such that fore each ci there are orientation preserving coordinates about C, and T(C,) in which π is given by $(z_1, \dots, z_n) \mapsto z_1^2 + \dots + z_n^2$

(can assume image of c, disjoint)

a <u>Lefschetz</u> <u>Fibration</u> is a lefschetz pencil with B=Ø <u>Remarks</u>: 1) for a Lefschetz fibration we can have TT: M-75

2) The requirement for the critical points is really just that they are non-dependent, then a complex version of the Morse lemma gives the desired form <u>exercise</u>: find a complex change of coordinates taking $z_1^2 - z_2^2$ to $z_1^2 + z_2^2$ or to $z_1 z_2$

3) Nobed of critical points <u>N=Z case</u>: from above assume $T(Z_1, Z_2) = Z_1 Z_2$ TT- (0) = C × {0} v {0} × C with singular point 0 - T⁻⁽(0) $\pi^{-1}(\varepsilon) \cong 5' \times \mathcal{R} \quad \text{indeed} \quad 5' \times \mathcal{R} \to \pi^{-1}(\varepsilon)$ (0, +) ~ (e+10, Ee-+-10) is a diffeomorphism D² thundble T⁻⁽(0) as $\varepsilon \to O$, $T^{-1}(\varepsilon) \to T^{-1}(o)$ note there is an s' c T-'(E) that collapses to 0 as E-10 this S' is called a vanishing cycle the union of thes 5' as E-10 and critical point is a D² called the thimble

50 generic fiber in this nebd is an annulus and its generator in homology vanishes when included in nond exercise: in higher dimensions show generic fiber is T*S", vanishing cycle is an S" and thimble is D" 4) If B= @ (so a lefschet fibration) then generic fiber is a (2n-2)-monifold <u>note</u>: $\pi \mid : \pi^{-1}(\pi(\{c_i\})) \rightarrow (S^{-} \pi(\{c_i\}))$ a fiber bundle м schematically we write M) 5² to indicate its a singular fiber bundle 5) Now let's consider B <u>N=2 case</u>, B= {b,...bk} b, has noted C² where This complement of b, is $C^2 - \{(b, o)\} \rightarrow CP'$ $(\mathcal{Z}_{l_1},\mathcal{Z}_{l_2}) \longmapsto \{\mathcal{Z}_{l_1}:\mathcal{Z}_{l_2}\}$ 50 T-12) in this ubbd is a complex line - (6.0) so the closure of TT-'(2) is just a copy of C _ ____ C^z-{(0.0] thus T'(z) CM has closure a surface going throug all b,

so $\pi:(M-B) \to CP^2$ is a fibration with fibers Σ_z being punctured surfaces whose closures Zz in M is an embedded surfuce containg B thus a lefschetz pencil fills M with (singular) surfaces all disjoint except at B schematically note: it we blow up each point of B we get sections then T extends over blow up ubbd to give a Lefschetz fibration M# CP' -> CP' and we have k sections which are the ap' c TP2 exercisé: in higher dimensional case B has a noted that is a C² bundle over B we can replace this with a (CP2-B4) - bundle over B

and extend TT to a lefschetz fibration of this new manifold (we "blow up B", ie o "parameterized blow up")

let's now see some examples where lefschetz pencils naturally arrise

<u>examples</u>: 1) Case where we have no critical points complex projective lines CP' through a point B in CP2 exercise: 1) for each [to:t,] E CP' show $\mathcal{L}_{[t_{1}:t_{1}]} = \left\{ [x:y:z] \in \mathbb{Q}^{2} : t_{0}x = t_{1}y \right\}$ is a well-defined copy of CP' in CP2 all of which contain B= [0:0:1] $\begin{array}{l} \underbrace{\text{Hint: for } t_1 \neq 0 \quad \text{consider } \mathcal{Q}^1 \longrightarrow \mathcal{Q}^2}_{\left[\overline{c}_1 : \overline{c}_2 \right]} \longleftrightarrow \left[\overline{c}_1 : \overline{c}_2 : \overline{c}_2 \right] \xrightarrow{\ell} \left[\overline{c}_2 : \overline{c}_2 : \overline{c}_2 : \overline{c}_2 \right] \xrightarrow{\ell} \left[\overline{c}_2 : \overline$ 2) for distinct points [to:ti] *[5:5,] $L_{[t_0:t_i]} \cap L_{[s_0:s_i]} = \{B\}$ 3) for any P + B in OP2]! [t:t,] st. P [[::ti] from above we have a map $\mathcal{T}:(\mathbb{CP}^2-\{\mathcal{B}\})\to\mathbb{CP}'$ P I for til St P & Litortil in coords about B we see TT is $\left(\mathbb{C}^{2},\left\{(0,o)\right\}\right)\longrightarrow \mathbb{C}^{p'}$ $(z_1, z_2) \longmapsto [z_1: z_2]$ so this is a Lefschetz pencil! It we blow up base locus B we get a lefschetz fibration $\mathcal{C}^{2} \# \overline{\mathcal{C}}^{2} \to \mathcal{C}^{\prime}$ with no singular fibers 2.e. 52-bundle over 52 exercisé: CP2 # EP2 is not diffeomorphic to 5 × 52 2) (ubic pencil of CP² and the elliptic surface E(1)

everyse:
i) If
$$P(z_1, z_2, z_3)$$
 is a non-constant homogeneous
polynomial, then
 $V_p = \{[z_0: z_1: z_2] \in \mathbb{C}^{p^2}: P(z_0, z_1, z_2)=0\}$
is well-defined
z) for a generic P, V_p is a surface of genus
 $g = \frac{(d-1)(d-2)}{z}$

now consider 2 generic degree 3 polynomials
$$p_0, p_1$$

For $[t_0:t_1] \in \mathbb{CP}^1$, let
 $V_{[t_0:t_1]} = \{ [t_0:t_1:t_2] \in \mathbb{CP}^2 : t_0 p_0(t_0,t_1,t_2) + t_1, p_1(t_0,t_1,t_2) = 0 \}$

$$\frac{exercise}{1}$$

$$i) \quad V_{[0;i]} \land V_{[1,0]} = \{9 \text{ points }\} = B$$
and any $V_{[t_0:t_i]} \text{ contains } B$

$$z) \quad if \quad [t_0:t_i] \neq [s_0:s_i] \quad then \quad V_{[t_0:t_i]} \land V_{[s_0:s_i]} = B$$

$$3) \quad for \quad ony \quad P \notin B, \quad \exists ! \quad [t_0:t_i] \quad s \notin \quad P \in V_{[t_0:t_i]}$$

$$E \quad i \quad i \quad a \quad a \quad T \quad i \in \mathbb{N} \text{ for any } f \notin B, \quad d \in \mathbb{N} \text{ for any } f \notin B,$$

Fact: for most po, p,, T_{Eto:t},] will be smooth tori except for 12 points from above we have a map

$$\widehat{T}:(\mathcal{C}P^2-\mathcal{B})\to\mathcal{C}P'$$

that near pts in B looks like

$$\begin{pmatrix} \mathcal{C}^2 \cdot \{(0,o)\} \end{pmatrix} \longrightarrow \mathcal{O}' \begin{pmatrix} \overline{c}_1, \overline{c}_2 \end{pmatrix} \longmapsto \begin{bmatrix} \overline{c}_1 \colon \overline{c}_2 \end{bmatrix}$$

more over T has 12 non-degenerate critical points

50 TT is a lefschetz pencil of Ω^{p^2} if we blow up B we get a lefschetz fibration $T: \Omega^{p^3} tt_{\overline{q}} \overline{\Omega}^{p^2} \rightarrow \Omega^{p^1}$ with elliptic (T^{e}) fibers we call this manifold E(l)from construction E(l) is symplectic and to torus fibers are also symplectic <u>exercise</u>: Show E(l) - (regular fiber) is simply connected <u>Hint</u>: consider section coming from blow up <u>Remark</u>: Existence of E(l) completes proof of Cor 3 about realizing all finitely presented groups as T_l of a symplectic manifold.

Thm (Donaldson):

(M, ω) a symplectic manifold suppose [ω] ∈ H²_{DR}(M) is an integral class For sufficiently large integers K there is a topological Lefschets pencil on M whose fibers are symplectz and homologous to the Poincaré dual of k[ω]

We will prove this later, but for now we turn to

Thm 6

I) Any 4-manifold with a Lefschetz pencil (such that each irreducible component of each fiber intensects the base locus non-trivially) has a symplectic structure with symplectic fibers

I) A 4-manifold M with a lefschetz fibration has a symplectic structure with symplectic fibers
$$\Leftrightarrow$$
 a generic fiber is non-trivial in H2(M;IR)

$$\frac{\operatorname{Proof}}{\operatorname{let}(\pi, B) \operatorname{be} a \operatorname{lefschetz} \operatorname{pencil} of M \quad \operatorname{over} S = 5^{2} \qquad (I)}$$
or a Lefschetz fibration of M over a surface S (I)
in both cases a "regular fiber" is a surface Z
denote: $\overline{\pi^{-1}(x)}$ by $\overline{Z_{x}}$ for $x \in S$
so $\overline{E_{x}}$ is $\left(\begin{array}{c} 0 \\ 0 \end{array}\right) \qquad \left(\begin{array}{c} 0 \end{array}\right) \qquad \left(\begin{array}{c} 0 \\ 0 \end{array}\right) \qquad \left(\begin{array}{c} 0 \end{array}\right) \qquad \left(\begin{array}{c} 0 \\ 0 \end{array}\right) \qquad \left(\begin{array}{c} 0 \end{array}\right)$ \qquad \left(\begin{array}{c} 0 \end{array}\right) \

<u>Step 1</u>: $\exists x \in H_{DR}^{2}(M)$ s.t. $\int_{\Sigma} x > 0 \quad \forall \; \Sigma \; "components" of <math>\Sigma_{x}$ <u>Step 2</u>: Define form near base locus B and critical points $\{c_{i}\}$

Step 3: Define form near fibers
Step 3: Define form near fibers
Step 5: Alter form near B to get desired symplectic structure
Proof of 1:
case I) let d = Poincaré dual of
$$[\Sigma_x]$$
, x regular value
now if $\Sigma \subset \Sigma_x$, then $\Sigma \cap \Sigma_x \neq \emptyset$ subset B
and all \cap pts positive so
 $S_{\Sigma} \ll = \Sigma_x \cdot \Sigma > 0$
cose II) let $\widetilde{\omega} \in H_{DR}^2(M)$ st. $\langle d, \{\Sigma_x\} \} = 1$, for \times regular value
 $(ok since [\Sigma_x] \neq 0)$
if x' withial, $\Sigma_x := \Sigma_i \cup \Sigma_x$ and for say Σ_i ,
 $\langle \widetilde{x}, \Sigma_i \rangle = 0$
then note
 $\Sigma_i \cdot \Sigma_z = 1$ (recall $\Sigma_i \cap \Sigma_z$ transverselly)
so let $\alpha = \mathcal{A} + c:Poincaré Pual[I_x]$ some small c
now $\langle u, \Sigma_x \rangle = \langle \widetilde{u}, \Sigma_x \rangle + c(\Sigma_i \cdot \Sigma_x) = 1 - c > 0$
 $\langle \alpha, \Sigma_z \rangle = \langle \widetilde{u}, \Sigma_x \rangle + c(\Sigma_i \cdot \Sigma_z) = 1 - c > 0$
 $\langle \alpha, \Sigma_z \rangle = \langle \widetilde{u}, \Sigma_x \rangle - \langle \widetilde{u}, \Sigma_z \rangle = 1 - c > 0$
 $freef of 2:$
 $kt U_i$ be noteds of points $b_i \in B$ from definition of
Lefschetz Pencil
 V_i \cdots writical points C_i \cdots "
and set $V = (U_i) \cup (UV_i)$

$$\begin{pmatrix} \gamma_{y} - S |_{W_{1}} \end{pmatrix} (\Sigma_{y}) = \alpha (\Sigma_{y}) - \alpha / \Sigma_{y}) = 0$$

since $H^2(W_{\gamma}) \cong H^2(T_{\gamma})$ we see $\gamma_{\gamma} - S|_{W_{\gamma}} = 0$ in $H^2(W_{\gamma})$: 3 Qy st. day= 1/y - Jlwy I a finite number {U, ... U} of U, covering S note $d(\Theta_{Y_i} - \Theta_{Y_i}) = (M_{Y_i} - S|_{W_{Y_i}}) - (M_{Y_i} - S|_{W_{Y_i}}) = \omega_{V_i} - \omega_{V_i}$ near B : in ubhd of B $\exists f_2 st. df_2 = \Theta_y - \Theta_y$ (cut off f, outside small nbhd) replace Θ_{Y_i} with Og-df So we can assume $\Theta_{y_i} = \Theta_{y_j}$ in nond of B $\forall i'_{jj}$ let {p.} be a partition of unity subordinate to {U} set $M = S + d \Sigma (P_2 \circ T) \Theta_{y_1}$ on $M - B_{y_2}$ M closed 2-form and M/ E,-B, ymplectic Hy ES near B, $\eta = S + d\varphi_{y_0} = S + \eta_{y_0} - S|_{W_{y_0}} = \eta_{y_0} = \omega_v$:. If can be extended over B by ω_v near critical points of T only one Pito : M=S+do = Wy near critical point 50 M global closed 2-form M/E symplectri near Buscil is w Set wy = n * wy + t 9 t > 0 small Note: only defined on M-B! Tarca form on S just as in proof of Theorem 5 we symplectic outside of V

Near o critical point we have a chart
$$C^2$$
 and C st
 $\Re(z_1,z_2) = z_1^2 + z_2^2$
and $\omega_t = T^* \omega_t + t \omega_{t^2}$
if J is almost complex str on C^2 and C
then $d T \circ J = J \circ d T$ since T is holomorphic
So $\omega_t(v, Jv) = \omega_t(dT(v), dT(Jv)) + t \omega_{t^2}(v, Jv)$
 $= \omega_t(dT(v), JdT(v)) + t \omega_{t^2}(v, Jv)$
 $T = \omega_t(dT(v), JdT(v)) + t \omega_{t^2}(v, Jv)$
 $z_0 \to 0$ if $\sigma \pm 0$
Near be B we have a chart C^2 st.
 $\Re(C^2 - [(co)]) \to CP'$
 $(z_p z_1) t \to [z_1; z_1]$
 $\omega_t = T^* \omega_{c0} + t \omega_{c1}$
Singular at $(0,0)$
so ω_t symplectic on M -B and diverges at B
Proof of 5:
Consider $C^2 - S(a_0) \to CP'$
Let L denote any C^2 (me. in C^2 through 0
now $T_p((f) + S^3) = T_p L \oplus T_2^{-1} = L \oplus L^{-1}s$ where g is std
metric on C^2
 $L n((int s^3) = S' there is a vector field T generating
 $S' - action on all frits''$$

on any L,
$$\beta_{L} = d\sigma$$

so $\omega_{e^{2}}|_{L} = rdr \wedge \beta_{L} = d(\frac{1}{2}r^{2}) \wedge \beta_{L}$
now $T_{p}(ijxs^{3}) = L^{2}9 \oplus son \delta \sigma^{3}$
so $T^{*}\omega_{goi}|_{I} = \omega_{e^{2}}$ on L^{\perp} (by definition of ω_{goi})
interval $\delta_{Y}r^{3} \circ T^{*} = T^{*}$ and (mult $\delta_{Y}r^{3} dx_{z} = rdx;$
(mult $\delta_{Y}r^{3} \circ T^{*} = T^{*} and (mult $\delta_{Y}r^{3} \circ dx_{z} = rdx;$
(mult $\delta_{Y}r^{3} \circ dx_{z} = rdy;$
 \vdots on L^{\perp} , $\omega_{e^{2}} = T^{*}\omega_{goi}|_{ii} = (mult \delta_{Y}r^{3} \circ (T^{*}\omega_{Gri}))|_{Yixy3}$
 $= r^{2}T^{*}\omega_{goi}$
and on L, $T^{*}\omega_{Gpi} = O$
finally we have $\omega_{e^{2}} = r^{2}T^{*}\omega_{goi} + d(\frac{1}{2}r^{3})\Lambda\beta$
thus $\omega_{e} = T^{*}\omega_{goi} + t \omega_{e^{2}}$
 $= (1+tr^{2})T^{*}\omega_{goi} + t d(\frac{1}{2}r^{3})\Lambda\beta$
if we set $R = 1+tr^{2}$ then
 $\omega_{e} = R^{*}T^{*}\omega_{goi} + d(\frac{1}{2}R^{*})\Lambda\beta$
so on $B^{4} = 53 \omega_{e}$ is symplectomorphic to $\omega_{e^{2}}$ on
 $M^{*} = \delta^{*}$ to $M^{*}B$ and extend ω_{e} over B^{*}
 $b_{Y} \omega_{e^{2}}$$