D. Fiber bundles
consider \mathbb{R}^{4} with $\omega=d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{4}$
let g_{2} be translation by 1 in x_{2}-direction for $2=1,2,3$

$$
g_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{2}, x_{2}, x_{3}, x_{4}+1\right)
$$

clearly $g_{2}^{*} \omega=\omega$ for $z=1,2,3$

$$
g_{4}^{*} \omega=\left(d x_{1}+d x_{2}\right) \wedge d x_{2}+d x_{3} \wedge d x_{4}=w
$$

so let $E=\mathbb{R}^{4} / G$ this is a symplectic manifold with $\pi_{l}(E)=G$
let's figure out what $H_{l}(E)=G /[G, G]$ is
consider $\pi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}:\left(x_{1} x_{2} x_{3} x_{4}\right) \longmapsto\left(x_{2} x_{3} k_{4}\right)$
let $\bar{g}_{1}=i d_{R^{3}} \quad \bar{g}_{i}=$ translation in x_{i} direction

egg.

$$
\begin{aligned}
& \pi \circ g_{1}\left(x_{1}, x_{3}, x_{3}, x_{4}\right)=\left(x_{2}, x_{3}, x_{4}\right)=\bar{g}_{1} \\
& \pi \circ g_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{2}+1, x_{3}, x_{4}\right)=\bar{g}_{2} \\
& \pi \circ g_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{2}, x_{3}, x_{4}+1\right)=\bar{g}_{4}
\end{aligned}
$$

so we have an induced map

$$
\pi: E \rightarrow T^{3}
$$

exercise: this is an s^{\prime}-bundle
note $\pi_{*}: H_{1}(E) \rightarrow H_{1}\left(T^{3}\right)$ maps g_{i} to \bar{g}_{2} for $1=2,3,4$
so π_{r} onto and g_{2} inifinte order for $1=2,3,4$ and no relations among them
also $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \stackrel{g_{2}}{\longrightarrow}\left(x_{1}, x_{2}+1, x_{3}, x_{4}\right) \xrightarrow{9_{4}}\left(x_{1}+x_{2}+1, x_{2}+1, x_{3}, x_{4}\right)$

$$
\stackrel{g_{2}^{-1}}{\longrightarrow}\left(x_{1}+x_{2}+1, x_{2}, x_{3}, x_{4}\right) \xrightarrow{g_{4}^{-1}}\left(x_{1}+1, x_{2}, x_{3}, x_{4}\right)
$$

so $g_{1}=\left[g_{2}, g_{4}\right] \quad \therefore g_{1}=0$ in $H_{1}(E)$

$$
\therefore H_{1}(E) \cong \mathbb{Z}^{3}
$$

we have established most of the following

Th ${ }^{m} 4$ (Thurston ~70's, Kodaira unpublished ~50):
there are symplectic manifolds that are not Kähler (they can even have a complex structure, of course not compatible with sympl str.)

Remark: This was first such example
Proof: for a Kähler manifold $b_{2 n+1}$ even but $b_{1}(E)=3$
note: $p: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}:\left(x_{1} x_{2} x_{3} x_{4}\right) \mapsto\left(x_{3} x_{4}\right)$
gives E the structure of a T^{2} bundle over T^{2} with sympl. fibers generalizing this we have

Th ${ }^{m}$ 5 (Thurston):
Given a symplectic manifold $\left(M, \omega_{\mu}\right)$ and a compact bundle $E \xrightarrow{p} M$ with fiber \sum assume a) if $\operatorname{dim} \sum=2, \exists \alpha \in H_{D R}^{2}(E)$ sit.

$$
\int_{\Sigma_{x}} \alpha>0 \quad \forall x \in M \text { where } \Sigma_{x}=p^{-1}(x)
$$

(equivalently $\left[F_{x}\right] \neq 0$ in $H_{z}(E ; R)$)
b) if $\operatorname{dim} \Sigma>2, \exists$ symplectic form ω_{Σ} on Σ
such that the structure group of E acts by symplectomor phisms (so $\exists \omega_{x}$ on each Σ_{x})

$$
\text { and } \exists \alpha \in H_{D R}^{2}(E) \text { st. }\left.\alpha\right|_{\Sigma_{x}}=\left[\omega_{x}\right]
$$

Then \exists a symplectic form ω_{E} on E st.

$$
\left.\omega_{E}\right|_{\tau_{x}} \text { symplectic } \forall x
$$

Moreover, the image of any prechosen section can be assumed to be symplectic

Remarks:

1) Surface bundles over surfaces (allorientable) have symplectic structures with symplectic fibers

$$
\Leftrightarrow\left[\Sigma_{x}\right] \neq 0
$$

note: if \exists section $\sigma: M \rightarrow E$ then $\left[\Sigma_{x}\right] \neq 0$ since $\sigma(M) \cdot \Sigma_{x}=p t$
2) $s^{3} \times s^{\prime} \xrightarrow{\pi} s^{2}$ where $\pi=H_{\text {o pf }}$ map $\circ \pi_{s^{3}}$
is a T^{2}-bundle over S^{2}
but no symplectic structure
3) More generally, $\left[\Sigma_{x}\right] \neq 0$ is automatic unless $\Sigma=T^{2}$ to see this suppose $\begin{gathered}\Sigma^{2} \rightarrow E \\ \\ \mathrm{M}^{2 n}\end{gathered}$ is a bundle
let $Z_{y}=T_{y} \Sigma_{x} \quad$ for $y \in \Sigma_{x}, x \in M$
so $\left\{\subset T E\right.$ and 3 an oriented \mathbb{R}^{2}-bundle on E
so \exists Euler class $e(3)$ and $e(3)\left(\left[\Sigma_{n}\right]\right)=X(\Sigma)$
so if $X(\Sigma) \neq 0$, then Σ_{x} pairs non-trivially with something in cohomology.

Proof:
Claim: \exists a closed 2-form $\eta \in \Omega_{D R}^{2}(E)$ st. $\omega / \Sigma_{\Sigma_{x}}= \begin{cases}\text { area form } & \text { case a) } \\ \omega_{x} & \text { case } b)\end{cases}$ given this consider $\omega_{t}=\pi^{*} \omega_{M}+t y \quad t>0$
note: $\left.\omega_{t}\right|_{\Sigma_{x}}=t \eta$ so Σ_{x} symplectic $\forall x$
now let's check ω_{t} is symplectic

$$
d \omega_{t}=d \pi^{*} \omega_{M}+t d \eta=\pi^{*} d \omega_{M}+0=0
$$

choose any metric on E and note $T_{y} E=T_{y} \Sigma_{x} \oplus T_{y} \Sigma_{x}^{\perp} \quad$ where $\quad \pi(y)=x$ now $d \pi_{y}$ is an isomorphism from $T_{y} \Sigma_{x}^{\perp}$ to $T_{x} M$
so $\pi^{*} \omega_{M}$ non-degenerate on $T_{y} \Sigma_{x}^{\perp}$
$\therefore \omega_{t}$ non-degenerate on $T_{y} \Sigma_{x}^{\perp}$ for small t
(non-degen is open condition and E compact) but we already noticed ω_{t} non-degen. on $T_{y} \Sigma_{x}$ $\therefore \omega_{t}$ non-degen on E ie. ω_{t} symplectic!
now if $\sigma: M \rightarrow E$ a section then

$$
\sigma^{*}\left(\pi^{*} \omega_{M}\right)=\omega_{M}
$$

so $\sigma^{*}\left(\omega_{e}\right)=\omega_{M}+t \sigma^{*} \eta$ which is symplectic for small t.
so we are left to check claim
Proof of Claim:
Cover the base M by local trivializations $\left\{\left(U_{1}, \phi_{1}\right)\right\}$ with U_{i} contractible and transition maps symplectos

$$
\begin{aligned}
& \pi^{-1}\left(U_{1}\right) \xrightarrow{\phi_{i}} U_{2} \times \Sigma^{\pi_{工}} \Sigma \quad \text { in case b) } \\
& p \downarrow_{V_{2}} \swarrow \pi_{v_{i}}
\end{aligned}
$$

let $\left\{p_{1}\right\}$ be a portion of unity subordinate to $\left\{U_{2}\right\}$ In case a) let ω_{Σ} be any area form st. $\int_{\Sigma} \omega_{\Sigma}=\int_{\Sigma_{x}} \alpha$ now set $\eta_{i}=\phi_{i}^{*} \pi_{\Sigma}^{*} \omega_{\Sigma}$ on $\pi^{-1}\left(u_{2}\right)$

$$
\text { so }\left.\eta_{i}\right|_{\Sigma_{x}}=\omega_{x} \text { in case b) }
$$

let $\rho \in \Omega^{2}(E)$ represent $\alpha \in H_{D R}^{2}(E)$
$\eta_{2}-\left.\rho\right|_{\pi^{-1}\left(\omega_{2}\right)}$ is closed and note $\pi^{-1}\left(v_{1}\right) \simeq \Sigma_{x}$ since U_{z} contractible
$\left[\eta_{1}-\left.\rho\right|_{\pi^{-1}\left(v_{t}\right)}\right]=\left[\omega_{x}\right]-\left[\omega_{x}\right]=0$ (same in case a) by S above)
so $\left[y_{1}-\left.\rho\right|_{\left.\pi-1 u_{1}\right)}\right]=0$ in $H_{D R}^{2}\left(\pi^{-1}\left(v_{1}\right)\right)$
$\therefore \exists 1$ forms $\theta_{2} \in \Omega^{\prime}\left(\pi^{-1}\left(U_{2}\right)\right)$ st. $d \theta_{1}=\eta_{1}-\left.S\right|_{\pi^{-1}\left(U_{1}\right)}$
finally set $\eta=\rho+d\left(\Sigma(\rho, \circ \pi) \theta_{i}\right)$
clearly well-defined and $d \eta=0$

$$
\begin{aligned}
\eta I_{\Sigma_{x}} & =\rho I_{\Sigma_{x}}+\left.\underbrace{\sum\left(\rho_{0} \circ \pi\right)}_{\text {constant on } \Sigma_{x}} d \theta_{1}\right|_{\Sigma_{x}}=\left.\rho\right|_{\Sigma_{x}}+\sum\left(\rho_{1} \circ \pi\right)\left(\eta_{1} I_{\Sigma_{x}}-\left.\rho\right|_{\Sigma_{x}}\right) \\
& =\rho I_{\Sigma_{x}}-\frac{\rho \mid \Sigma_{x}}{\sum\left(\rho_{0} \circ \pi\right)}+\left.\sum\left(\rho_{1} \circ \pi\right) \eta_{2}\right|_{\Sigma_{x}} \\
& = \begin{cases}\sum\left(\rho_{1} \circ \pi\right)(\text { area form }) & \text { case a) } \\
\Sigma_{\left(\rho_{1} \circ \pi\right)} \omega_{x} & \text { case b) }\end{cases} \\
& = \begin{cases}\text { area form } & \text { case a) } \\
\omega_{x} & \text { case b) }\end{cases}
\end{aligned}
$$

E. Lefschetz Pencils and Fibrations

Briefly a Lefschetz pencil is simply a fibration oven S^{2} except two types of "singularities" are allowed for a lefschetz fibration only one type is allowed. More rigorously, a (topological) Lefschetz pencil on a compact, oriented manifold $M^{2 n}$ is $\quad n=2$ automatic $\angle^{\text {called base locus }}$

1) a codimiension 4 compact submanifold $B \subset M$ and
2) a smooth map $\pi:(\mu-B) \rightarrow \mathbb{C} P^{\prime}=S^{2}$
such that
a) for each $\rho \in B$ there are orientation preserving coordinates about ρ where B is $z_{1}=z_{2}=0$ in G^{n} and π in the compliment of B is

$$
\left(z_{1}, \ldots z_{n}\right) \mapsto\left[z_{1}: z_{2}\right] \in \mathbb{P}^{\prime}
$$

(ie. π on each fiber of normal bundle is projectivization)
b) there are a finite number of critical points $\left\{c_{1}, \ldots . c_{l}\right\}$ such that fore each c_{i} there are orientation preserving coordinates about c_{1} and $\pi\left(c_{1}\right)$ in which π is given by

$$
y_{1}\left(z_{1}, \ldots, z_{n}\right) \mapsto z_{1}^{2}+\ldots+z_{n}^{2}
$$

(can assume image of c_{1} disjoint)
a Lefschetz fibration is a lefschetz pencil with $B=\varnothing$
Remarks:

1) for a Lefschetz fibration we can have $\pi: M \rightarrow S$ for any oriented surface S
2) The requirement for the critical points is really just that they are non-degenerate, then a complex version of the Morse lemma gives the desired form
exercise: find a complex change of coordiviates taking $z_{1}^{2}-z_{2}^{2}$ to $z_{1}^{2}+z_{2}^{2}$ or to $z_{1} z_{2}$
3) Nbhd of critical points
$n=2$ case: from above assume $\pi\left(z_{1}, z_{2}\right)=z_{1} z_{2}$

$$
\pi^{-1}(0)=\mathbb{C} \times\{0\} \cup\{0\} \times \mathbb{C} \text { with singular point } 0
$$

$$
\begin{aligned}
\pi^{-1}(\varepsilon) \cong S^{\prime} \times \mathbb{R} \quad \text { indeed } S^{\prime} \times \mathbb{R} & \rightarrow \pi^{-1}(\varepsilon) \\
(0, t) & \mapsto\left(e^{t+2 \theta}, \varepsilon e^{-t-1 \theta}\right)
\end{aligned}
$$

is a diffeomorphision
as $\varepsilon \rightarrow 0, \pi^{-1}(\varepsilon) \rightarrow \pi^{-1}(0)$
note there is an $s^{\prime} \subset \pi^{-1}(\varepsilon)$ that collapses to 0 as $\varepsilon \rightarrow 0$
this S^{\prime} is called a vanishing cycle the union of the S^{\prime} as $\varepsilon \rightarrow 0$ and critical point is a D^{2} called the thimble
so generic fiber in this ubhd is an annulus and its generator is homology vanishes when ricluded in ubhd
exercise: in higher dimensions show generic fiber is $T^{*} S^{n-1}$, vanishing cycle is an S^{n-1} and thimble is D^{n}
4) If $B=\varnothing$ (so a lefschet fibration) then generic fiber is a $(2 n-2)$-manifold
note: $\left.\pi\right|_{\pi^{-1}\left(\pi\left(\left\{c_{3}\right)\right)\right)}: \pi^{-1}\left(\pi\left(\left\{\xi_{2}\right\}\right)\right) \rightarrow\left(s^{2}-\pi\left(\left\{c_{z}\right\}\right)\right)$ a fiber bundle schematically we write M

to indicate its a singular fiber bundle
5) Now let's consider B

$$
n=2 \text { case: } B=\left\{b_{1} \ldots b_{k}\right\}
$$

b_{1} has ubhd \mathbb{C}^{2} where π in complement of b_{2} is

$$
\begin{aligned}
& \mathbb{C}^{2}-\left\{\left(e_{1}, 0\right)\right\}^{b_{i}} \rightarrow \mathbb{C} P^{\prime} \\
& \left(z_{1}, z_{2}\right) \mapsto\left[z_{1}: z_{2}\right]
\end{aligned}
$$

so $\pi^{-}(z)$ in this ubhd is a complex line $-\{(0,0)\}$ so the closure of $\pi^{-1}(z)$

$$
\text { is just a copy of } \mathbb{C}
$$

thus $\pi^{-1}(z) \subset M$ has
 closure a surface goingthroug all b_{1}
so $\pi:(\mu-B) \rightarrow G P^{2}$ is a fibration with fibers Σ_{z} being punctured surfaces whose closures $\bar{\Sigma}_{z}$ in M is an embedded surface containg B
thus a lefschetz pencil fills M with (singular) surfaces all disjoint except at B schematically

note: if we blow up each point of B we get $\mu \#_{k} \overline{\mathbb{C P}}^{2}$

then π extends over blow up ubhd to give a Lefschetz filtration $M{\#_{k}}_{\mathbb{C P}^{2}} \rightarrow \mathbb{C} P^{\prime}$ and we have k sections which are the $\mathbb{C P} \subset \overline{\widetilde{P}}^{2}$
exercisé: in higher diniensconal case B has a ubhd that is a σ^{2} bundle over B
we can replace this with a $\left(\overline{\mathbb{C} P^{2}}-B^{4}\right)$-bundle oven B and extend π to a Lefschetz fibration of this new manifold
(we "blowup B", ie a "parameterized blow op")
let's now see some examples where lefschetz pencils naturally arrise
examples:

1) Case where we have no critical points complex projective lines $\mathbb{C} P^{\prime}$ through a point B in $\mathbb{C} P^{2}$
exercise:
2) for each $\left[t_{0}: t_{1}\right] \in \mathbb{C} \rho^{\prime}$ show

$$
L_{\left[t_{0}: t_{1}\right]}=\left\{[x: y: z] \in Q^{2}: t_{0} x=t_{1} y\right\}
$$

is a well-defined copy of $\mathbb{C} P^{\prime}$ in $\mathbb{C} P^{2}$
all of which contain $B=[0: 0: 1]$
Hint: for $t_{1} \neq 0$ consider $\subset P^{\prime} \rightarrow \subset P^{2}$

$$
\left[z_{1}: z_{2}\right] \mapsto\left[z_{1}: t / y_{1} z_{1}: z_{2}\right]
$$

2) for distinct points $\left[t_{0}: t_{1}\right] \neq\left[s_{0}: s_{1}\right]$

$$
L_{\left[t_{0} \cdot t_{1}\right]} \cap L_{\left[s_{0}, s_{1}\right]}=\{B\}
$$

3) for any $P \neq B$ in $C P^{2} \exists!\left[t_{0}: t_{1}\right]$ st. $P \in L_{\left[t_{0} ; t_{1}\right]}$
from above we have a map

$$
\begin{aligned}
\pi:\left(\mathbb{C P} P^{2}-\{B\}\right) & \rightarrow \mathbb{C} P^{\prime} \\
P & \longmapsto\left[t_{0}: t_{1}\right] \quad S t P \in L\left[t_{0}: t_{1}\right]
\end{aligned}
$$

in lords about B we see π is

$$
\begin{aligned}
\left(\mathbb{C}^{2}-\{(0.0)\}\right) & \rightarrow \mathbb{C}^{\prime} \\
\left(z_{1}, z_{2}\right) & \longmapsto\left[z_{1}: z_{2}\right]
\end{aligned}
$$

so this is a Lefschatz pencil!
if we blow op base locus B we get a lefschetz fubration

$$
\mathbb{C} P^{2} \# \overline{\mathbb{P}}^{2} \rightarrow \mathbb{C} \rho^{\prime}
$$

with no singular fibers zee s^{2}-bundle oven s^{2}
exercise: $\mathbb{C P ^ { 2 } \#} \overline{\mathbb{C P}}^{2}$ is not diffeomorphic to $S^{2} \times S^{2}$
2) Cubic pencil of $C P^{2}$ and the elliptic surface $E(1)$
exercise:

1) If $P\left(z_{1}, z_{2}, z_{3}\right)$ is a non-constant homogeneous polynomial, then

$$
V_{P}=\left\{\left[z_{0}: z_{1}: z_{2}\right] \in \mathbb{C}^{2}: P\left(z_{0}, z_{1}, z_{2}\right)=0\right\}
$$

is well-defined
2) for a generic P, V_{p} is a surface of genus

$$
g=\frac{(d-1)(d-2)}{2}
$$

now consider 2 generic degree 3 polynomials p_{0}, p_{1} For $\left[t_{0}: t_{1}\right] \in \mathbb{P} P^{\prime}$, let

$$
V_{\left[t_{0}: t_{1}\right]}=\left\{\left[z_{0}: z_{1}: z_{2}\right] \in \mathscr{C}^{2}: t_{0} \rho_{0}\left(z_{0}, z_{1}, z_{2}\right)+t_{1} \rho_{1}\left(z_{0}, z_{1}, z_{2}\right)=0\right\}
$$

exercué:

1) $V_{[0: 1]} \cap V_{[1,0]}=\{9$ points $\}=B$
and any $V_{\left[t_{0}: t_{1}\right]}$ contains B
2) if $\left[t_{0}: t_{0}\right] \neq\left[s_{0}: s_{1}\right]$ then $V_{\left[t_{0}: t_{1}\right]} \cap V_{\left[s_{0}: s_{1}\right]}=B$
3) for any $P \notin B, \exists!\left[t_{0}: t_{1}\right]$ st $P \in V_{\left[t_{0} t,\right]}$

Fact: for most $\rho_{0}, \rho_{1,}, T_{\left[t_{0}: t,\right]}$ will be smooth tori except for 12 points from above we have a map

$$
\pi:\left(C P^{2}-B\right) \rightarrow \mathbb{C} P^{\prime}
$$

that near pts in B looks like

$$
\begin{aligned}
\left(\mathbb{C}^{2}-\{(0,0)\}\right) & \rightarrow \mathbb{C}^{\prime} \\
\left(z_{1}, z_{2}\right) & \longmapsto\left[z_{1}: z_{2}\right]
\end{aligned}
$$

moreover π has 12 non-degenerate critical points
so π is a lefschetz pencil of $\mathbb{C P}^{2}$
if we blow up B we get a Lefschetz fibration
$\pi: \mathbb{C} P^{2} \#_{q} \overline{\mathbb{C}}^{2} \rightarrow \mathbb{C P}^{\prime}$
with elliptic (T^{2}) fibers
we call this manifold $E(1)$
from construction $E(1)$ is symplectic and to torus fibers are also symplectic
exercise: Show $E(1)$-(regular fiber) is simply connected
Hint: consider section coming from blow up
Remark: Existence of $E(1)$ completes proof of Cor 3 about realizing all finitely presented groups as π, of a symplectic manifold.

Th m (Donaldson):
(M, ω) a symplectic manifold
Suppose $[\omega] \in H_{D R}^{2}(M)$ is an integral class
For sufficiently large integers K there is a topological
Lefschets pencil on M whose fibers are symplectz and homologous to the Poincare dual of $k[\omega]$

We will prove this later, but for now we turn to
$T^{m}{ }^{m}$ 6:
I) Any 4-manifold with a Lefschetz pencil (such that each irreducible component of each fiber intersects the base locus non-trivially) has a symplectic structure with symplectic fibers
II) A 4 -manifold M with a lefschetz fibration has a symplectic structure with symplectic fibers a generic fiber is non-triuial in $H_{2}\left(M_{i} \mathbb{R}\right)$

Remark: 1) There is a higher dimensional version of this but a bit complicated to state
2) in case II) can let base be any surface S not just S^{2} as in case I)
(note: def" of Lefschetz fibration works here)
3) in case II), fiber non-trivial in $H_{2}(\mu ; \mathbb{R})$ unless if is T^{2} and no critical point (for T^{2} same argt as for fibrations, for critical points consider what we know about elliptic fibrations)

Proof:
let (π, B) be a lefschetz pencil of M over $S=S^{2}$ or a Lefschetz fibration of M over a surface S
in both cases a "regular tiber" is a surface Σ
denote: $\overline{\pi^{-1}(x)}$ by Σ_{x} for $x \in S$

$\Sigma_{x} \times$ regular

$\Sigma_{x} \times$ critical

Step 1: $\exists \alpha \in H_{O R}^{2}(M)$ s.t. $\int_{\Sigma} \alpha>0 \quad \forall \Sigma$ "components" of Σ_{x}
Step 2: Detinue form near base locus B and critical points $\left\{c_{2}\right\}$

Step 3: Define form near fibers
Step 4: Patch forms above together to get singular symplectic structure
Step 5: Alter form near B to get desired symplectic structure
Proof of 1:
case I) let $\alpha=$ Poincare dual of $\left[\Sigma_{x}\right], x$ regular value
now if $\sum \subset \Sigma_{x^{\prime}}$ then $\Sigma \cap \Sigma_{x} \neq \varnothing$ subset B
and all n pts positive so

$$
\int_{\Sigma} \alpha=\Sigma_{x} \cdot \Sigma>0
$$

case II) let $\tilde{\alpha} \in H_{D R}^{2}(M)$ st. $\left\langle\alpha_{1}\left[\Sigma_{x}\right]\right\rangle=1$, for x regular value
(ok slice $\left[\Sigma_{x}\right] \neq 0$)
If x^{\prime} critical, $\Sigma_{x^{\prime}}=\Sigma_{1} \cup \Sigma_{2}$ and for, say $\Sigma_{1,}$

$$
\left\langle\tilde{\alpha}, \Sigma_{1}\right\rangle=0
$$

then note

$$
\Sigma_{1} \cdot \Sigma_{2}=1 \quad\left(\text { recall } \Sigma_{1} \cap \Sigma_{2} \text { transuersolly }\right)
$$

so let $\alpha=\tilde{\alpha}+c \cdot$ Porncaré Dual $\left[\Sigma_{2}\right]$ some small c
now

$$
\begin{aligned}
&\left\langle\alpha, \Sigma_{x}\right\rangle=\left\langle\tilde{\alpha}, \Sigma_{x}\right\rangle+c\left(\Sigma_{2} \cdot \Sigma_{x}\right)=1 \\
&\left\langle\alpha, \Sigma_{1}\right\rangle=\left\langle\tilde{\alpha}, \Sigma_{1}\right\rangle+c\left(\Sigma_{1} \cdot \Sigma_{2}\right)=c>0 \\
&\left\langle\alpha, \Sigma_{2}\right\rangle=\left\langle\tilde{\alpha}, \Sigma_{x^{\prime}}\right\rangle-\left\langle\tilde{\alpha}, \Sigma_{1}\right\rangle=1-c>0 \\
&\left.\quad \sum_{\left[x^{\prime}\right]}\right]=\left[\Sigma_{x}\right]
\end{aligned}
$$

Proof of 2:
(do for other singular fibers too)
let U_{2} be ubhds of points $b_{1} \in B$ from definition of Lefschetz Pencil
V_{1} " "critical points c_{i} " " and set $V=\left(U U_{i}\right) \cup\left(U v_{i}\right)$
define ω_{v} to be $\omega_{\text {std }}$ on \mathbb{C}^{2} using word charts for U_{i} and V_{i}
note: ω_{V} is symplectic on $\Sigma_{y} \cap V \quad \forall y$
Proof of 3:
for each $y \in S$ let ω_{y} be a symplectic form on Σ_{y} that extends ω_{V} on $\Sigma_{y} \cap V$ and (ω_{y} not necessarily smooth in y) $\int_{\Sigma} \omega_{y}=\alpha(\Sigma) \quad \forall$ components $\Sigma c \Sigma_{y}$ (might need to shrink V)
we now extend w_{y} to a ubhd w_{y} of Σ_{y} as a closed 2-form Y_{y} for this let $f_{y}: w_{x} \rightarrow \Sigma_{x} \cup V$ be a retraction that is
 identity near $B \cup\left\{c_{\imath}\right\}$
near $b \in B$ \square
near c_{i}
set $\eta_{y}=f_{y}^{*}\left(\omega_{y} \cup \omega_{y}\right)$
by choosing smaller ubhds if necessary can assume
$\exists U_{y} \in S$ a ubhd of y st. $W_{y}=\pi^{-1}\left(U_{y}\right) \cup V$ and no critical points in $W_{y}-\Sigma_{y}$ and U_{y} contractible
and $\forall z \in U_{y},\left.\eta_{y}\right|_{\Sigma_{z}}$ is symplectic (since non-degeneracy is open condition)

Proof of 4: let 9 be a 2 -form representing α

$$
\left(\eta_{y}-\left.\rho\right|_{W_{z}}\right)\left(\Sigma_{y}\right)=\alpha\left(\Sigma_{y}\right)-\alpha\left(\Sigma_{y}\right)=0
$$

since $H^{2}\left(w_{y}\right) \cong H^{2}\left(\Sigma_{y}\right)$ we see $\eta_{y}-\left.\rho\right|_{w_{y}}=0$ in $H^{2}\left(w_{y}\right)$
$\therefore \exists \theta_{y}$ st. $\quad d \theta_{y}=y_{y}-J l_{w_{y}}$
\exists a finite number $\left\{U_{y_{0}} \ldots U_{y_{k}}\right\}$ of U_{y} covering S
note $\begin{aligned} d\left(\theta_{y_{i}}-\theta_{y_{0}}\right)=\left(\eta_{y_{i}}-\left.\rho\right|_{w_{y_{i}}}\right)-\left(\eta_{y_{0}}-\left.\varphi\right|_{w_{y_{0}}}\right. & =\omega_{v}-\omega_{v} \text { near } B\end{aligned}$
\therefore in ubhd of $B \exists f_{2}$ st. $d f_{2}=\theta_{y_{1}}-\theta_{y_{0}}$ (cut off f_{2} outside small unbid) ${ }^{y_{2}}$ replace $\theta_{y_{i}}$ with $\theta_{y_{i}}-d f_{z}$
So we can assume $\theta_{y_{i}}=\theta_{y_{j}}$ in ubhd of $B \quad \forall i, j$ let $\left\{p_{2}\right\}$ be a partition of unity subordinate to $\left\{\begin{array}{l}U_{i}\end{array}\right\}$ set $\eta=\rho+d \Sigma\left(\rho_{i} \circ \pi\right) \theta_{y_{i}}$ on $\underline{\underline{M-B}}$
η closed 2-form and $\left.\eta\right|_{\Sigma_{y}-B}$, ymplectic $\forall y \in S$ near $B, \quad \eta=\rho+d \theta_{y_{0}}=\rho+\eta_{y_{0}}-\left.\rho\right|_{{w_{Y_{0}}}}=\eta_{y_{0}}=\omega_{v}$
$\therefore \eta$ can be extended over B by ω_{v} near critical points of π only one $\rho_{i} \neq 0$
$\therefore \eta=\zeta+d \theta_{y_{i}}=\omega_{v}$ near critical point so \because global closed 2-form
η / Σ_{y} symplectic
η near $B u\left\{c_{2}\right\}$ is ω_{v}
Set $\omega_{t}=\pi^{*} \omega_{s}+t \eta \quad t>0$ small Note: only defined on area form on S $M-B$!
just as in proof of Theorem $5 \omega_{t}$ symplectic outside of V
near a critical point we have a chart \mathbb{C}^{2} and \mathbb{C} st.

$$
\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}
$$

and $\omega_{t}=\pi^{*} \omega_{\mathbb{C}}+t \omega_{\mathbb{C}^{2}}$
If J is almost complex str on \mathbb{C}^{2} and \mathbb{C}
then $d \pi_{0} J=J \circ d \pi$ since π is holomorphic
so

$$
\begin{aligned}
\omega_{t}\left(v, J_{v}\right) & =\omega_{c}\left(d \pi(v), d \pi\left(J_{v}\right)\right)+t \omega_{c^{2}}\left(v_{1} v_{v}\right) \\
& =\omega_{c}(d \pi(v), J d \pi(v))+t \omega_{c^{2}}\left(v_{1} J_{v}\right) \\
& \geq 0 \quad>0 \text { if } v \neq 0 \\
& >0 \text { so } \omega_{t} \text { non-degenerate for } t>0
\end{aligned}
$$

So we are done in case II)
near $b \in B$ we have a chart \mathbb{C}^{2} st.

$$
\begin{aligned}
& \pi:\left(\mathbb{C}^{2}-\{(0,0)\}\right) \rightarrow \mathbb{C} \boldsymbol{P}^{\prime} \\
& \left(z_{1}, z_{2}\right) \longmapsto\left[z_{1}: z_{2}\right] \\
& \omega_{t}=\underbrace{\pi^{*} \omega_{\text {cpl }}}_{\tau_{\text {singular at }}(0,0)}++\omega_{\mathbb{C}^{2}}
\end{aligned}
$$

so ω_{t} symplectic on $M-B$ and diverges at B
Proof of 5:
consider $\mathbb{C}^{2}-\{(0,0)\} \longrightarrow \mathbb{R}^{\prime}$

$$
S^{3} \times(0, \infty)
$$

- radial coordr

Let L denote any \mathbb{C} - line in \mathbb{C}^{2} through O
now $T_{p}\left(\{r\} \times S^{3}\right)=T_{p} L \oplus T_{p} L^{\perp}=L \oplus L^{\perp_{g}}$ where g is $s t d$ metric on \mathbb{C}^{2}
$L n\left(\left\{r i \times s^{3}\right)=S^{\prime}\right.$ there is a vector field v generating S^{\prime}-action on all $\left.\{r\} \times\right\}^{\prime}$
let β be 1 -form on $\mathbb{C}^{2}-\{(0,0)\}$ st. $\beta(v)=1$ and $\beta\left(\sigma^{\perp g}\right)=0$
on any $L, \beta l_{L}=d \theta$
so $\omega_{C^{2}} L_{L}=r d \wedge \wedge \beta L_{L}=\left.d\left(\frac{1}{2} r^{2}\right) \wedge \beta\right|_{L}$
now $T_{p}\left(\{i\} \times s^{3}\right)=L^{\frac{1}{g}} \oplus$ span $\{v\}$

note: $\pi_{0}($ molt by $r)=\pi$

$$
\begin{aligned}
& \text { so (malt by } r)^{*} \circ \pi^{*}=\pi^{*} \text { and }(m u l t \text { by })^{*} d x_{2}=r d x_{i} \\
& (\text { multi bor })^{*} d y_{1}=r d y_{i} \\
& \therefore \text { on } L^{\perp}, \quad \omega_{C^{2}}=\left.\pi^{*} \omega_{\sigma P^{\prime}}\right|_{\{1\} \times s^{3}}=\left.\left(m u l+b_{y} r\right)^{*} \circ\left(\pi^{*} \omega_{c P 1}\right)\right|_{\{r\} \times s^{3}} \\
& =r^{2} \pi^{*} \omega_{\text {ap }}
\end{aligned}
$$

and on $L, \pi^{*} \omega_{C p 1}=0$
finally we have

$$
\omega_{C^{2}}=r^{2} \pi^{*} \omega_{\mathbb{C} P^{1}}+d\left(\frac{1}{2} r^{2}\right) \wedge \beta
$$

thus

$$
\begin{aligned}
\omega_{t} & =\pi^{*} \omega_{\mathbb{C P}^{\prime}}+t \omega_{\mathbb{C}^{2}} \\
& =\left(1+t r^{2}\right) \pi^{*} \omega_{\mathbb{Q}^{\prime}}+t d\left(\frac{1}{2} r^{2}\right) \wedge \beta
\end{aligned}
$$

If we set $R=1+t r^{2}$ then

$$
\omega_{t}=R^{2} \pi^{*} \omega_{c \rho^{\prime}}+d\left(\frac{1}{2} R^{2}\right) a \beta
$$

so on $B^{4}-\{0\} \quad \omega_{+}$is symplectomorphic to $\omega_{C^{2}}$ on

\therefore can glue B_{1}^{4} to $M-B$ and extend ω_{t} over B_{1}^{4} by $\omega_{C^{2}}$

