F. Lefschetz pencils and fibrations on 4-manifolds let's start with a lefschets fibration $Z^2 \rightarrow M^4$ $\int \pi$ 5

we assume all critical points have distinct images under TT let c be a critical value and V a closed ubbid of c in S containing no other critical points we can assume U=2-disk

<u>note:</u> $\pi^{-1}(\partial U)$ is Σ^{2} -bundle over S'

exercise:

i) given any manifold X and a diffeomorphism

$$\phi: X \rightarrow X$$
, then the mapping torus
 $T_{\phi} = M \times \{0, 1\} / (x, 1) - (\phi(x), 0)$

is an X-bundle over 5'

- 2) If ϕ and ψ are isotopic, show $T_{\phi} \cong T_{\psi}$ as bundles
- 3) Given any X-bundle over 5' there is some diffeomorphism \$:X→X such that the bundle is Tp, we call \$ the <u>monodromy</u> of the bundle

let's try to figure out what the monodromy of
$$T^{-1}(\partial U)$$
 is
let V be a chart about the critical point (and assume
U is a chart about c) so that T has the form
 $(B_1,B_1) \mapsto B_1B_2$
COnsiden $T^{-1}(U) - V$
this will be a $(\Sigma - A)$ bundle over $U = B^2$
where A is an annulus in Σ
 $(recall T^{-1}(x) \wedge V \text{ is an annulus for $x \neq C$ }
 $T^{-1}(C) \wedge V = U = U = G^2$
since B^2 contractible, the bundle is trivial
 $T^{-1}(U) - V = U \times (\Sigma - A)$
 $\therefore T^{-1}(\partial U) - V = S^{1} \times (\Sigma - A)$
 $\therefore T^{-1}(\partial U) - V = S^{1} \times (\Sigma - A)$
 $now for T^{-1}(\partial U) \wedge V :$
we can assume U is Σ -dick
so ∂U parameterized by $t \mapsto ce^{t 2 \pi t} + c \{S_0, i\}$
recall we need to trivial $Z \to T^{-1}(U)$ trivial $Z \to U$
 $T^{-1}(U) = U = T^{-1}(U)$
 $T^{-1}(U) = T^{-1}(U)$
 $T^{-1}(U)$
 $T^{-1}(U) = T^{-1}(U)$
 $T^{-1}(U)$
 $T^{-1}(U) = T^{-1}(U)$
 $T^{-1}(U)$
 $T^{-1}(U)$$

note for
$$[2i] \underline{lage} = T^{*}(i)$$
 trivial and
by $\overline{z}_{2} \mapsto (w \overline{z}_{1}^{-1} \overline{z}_{2})$ for $w \in U$
points in $T^{*}(\partial U)$ parameterized by
 $\overline{z}_{1} \mapsto (\overline{z}_{1}, \overline{z} e^{i2\pi t} \overline{z}_{1}^{-1})$
or
 $\overline{z}_{2} \mapsto (\overline{z} e^{i2\pi t} \overline{z}_{2}^{-1}, \overline{z}_{2})$
but neither agrees with both erwallreations!
consider
 $1 \longrightarrow \overline{z}_{1} \mapsto (\overline{z} e^{i2\pi t} \overline{z}_{2}^{-1}, \overline{z}_{2})$
but neither agrees with both erwallreations!
consider
 $1 \longrightarrow \overline{z}_{1} \mapsto (\overline{z} e^{i2\pi t} \overline{z}_{1}^{-1}, \overline{z}_{2})$
but neither agrees with both erwallreations!
consider
 $1 \longrightarrow \overline{z}_{1} \mapsto (\overline{z} e^{i2\pi t} \overline{f}(iz_{1}) + \overline{z}_{1} e^{i2\pi t} \overline{z}_{1}^{-1} e^{-i2\pi t} \overline{f}(iz_{1}) + 1)$
 $\overline{z}_{1} \mapsto (\overline{z} e^{i2\pi t} \overline{f}(iz_{1}) + \overline{z}_{1} e^{i2\pi t} \overline{z}_{1}^{-1} e^{-i2\pi t} \overline{f}(iz_{1}) + 1)$
 $\overline{z}_{1} \mapsto (\overline{z} e^{i2\pi t} \overline{f}(iz_{1}) + \overline{z}_{1} e^{i2\pi t} \overline{z}_{1}^{-1} e^{i2\pi t} \overline{z}_{1}^{-1} e^{-i2\pi t} \overline{f}(iz_{1}) + 1)$
 $\overline{z}_{1} \mapsto (\overline{z} e^{i2\pi t} \overline{f}(iz_{1}) + \overline{z}_{1} e^{i2\pi t} \overline{z}_{1}^{-1} e^{i2\pi t} \overline{z}_{1}^{-1}, \overline{z}_{2})$
so this param agrees with both trivializations!
by definition the monodromy is $h_{1}(\overline{z}_{1}) = (g(iz_{1}) z_{1} e^{i2\pi t} \overline{f}(iz_{1}), -)$
 $identified with C_{1}(0)$ by projectin to 1^{34} factor
so monodromy is multiplication by $\overline{z}_{1} e^{i2\pi t} \overline{f}(iz_{1})$

this is the map 6-{0} -6vanishing cyclp this is called a right handled Dehn twist about c <u>Remark</u>: In general, if I a simple closed curve in a surface I, the Dehn twist about & is the diffeomorphism てょこうこ that is the identity outside a nord of 8 and in that nbhd is i_{s} (i_{o}) $\tau_{\tilde{Y}}$ (o)exercise: 1) To is well-defined upto isotopy (and only depends on & up to isotopy) 2) given any &CI there is a Lefschetz fibration over the disk with a single critical point, whose vanishing cycle is I and has monodromy Ty (note this is the converse of above discussion) Hint: Start with ubbd of critical point and glue together with trivial surface bundles now given II: M-) D' a Lefschetz fibration with more critical points let No be small ubbd ?; T'(N.) is determined by vanishing cycle S:

the monodromy of T'(aNa) is Tr;

<u>exercisë</u>:

- 1) The monodromy of $T^{-1}(\partial(D, U(UN)))$ is $T_{k} \circ \dots \circ T_{k}$ 2) Given any curves $\delta_{1} \dots \delta_{k}$ in Σ there is a Lefschetz fibration over D^{2} with k critical points, vanishing cycles $\delta_{1} \dots \delta_{k}$, and monodromy $T_{k} \circ \dots \circ T_{k}$
- 3) let 5 be a surface of genus g with one boundary component and $\pi: M \rightarrow 5$ be a \mathbb{Z} -fiber bundle show $\pi^{-1}(35)$ has monodromy $\prod_{i=1}^{g} [f_{i}, g_{i}]$ where $f_{i}, g_{i}: \mathbb{Z} \rightarrow \mathbb{Z}$ are any diffeomorphisms and $[f_{i}, g_{i}] = f_{i} \circ g_{i} \circ f_{i}^{-1} \circ g_{i}^{-1}$
- 4) Show the converse of 3), 12. given any diffeomorphism of the form $\prod_{i=1}^{9} [f_{1,9_{1}}]$, there is a \mathbb{Z} -bundle over S with this monodromy on ∂S

 $\frac{Th=7}{1}$

I) if T: M→S is a lefschetz fibration with fiber E over a closed surface of genus g, with k surgular points, then there are diffeomorphisms f₁,g; : E→ E, 1=1,...g such that
TT T_{gi} oTT [f₁,gi] ~ 1_E
where S; are the vanishing cycles
I) Conversely, given such a factorization there is a lefschetz-fibration reakting this data.

Proof: I)
There is a disk DCS such that
all critical pairs in D²
from above
$$\pi^{-1}(\partial D^{2})$$
 has monodromy $\pi^{-1}T_{i}$, and
 $\pi^{-1}(\partial(5-D^{2}))$ has monodromy $\pi^{-1}T_{i}$, $\pi^{-1}(\partial(5-D^{2}))$
 $\pi^{-1}(f_{i}, g_{i}) = f_{i} = f_{i}, g_{i}$ are possibly
 $\pi^{-1}(f_{i}, g_{i}) = f_{i} = f_{i}, g_{i}$ are possibly
 $\pi^{-1}(f_{i}, g_{i}) = f_{i} = f_{i}$ and give together
 $\pi^{-1}(f_{i}, g_{i}) = f_{i} = f_{i}$ and give together
 $\pi^{-1}(f_{i}) = f_{i} = f_{i} = f_{i}$ and $f_{i} = f_{i}$
 $\pi^{-1}(f_{i}) = f_{i} = f_{i} = f_{i}$
 $\pi^{-1}(f_{i}) = f_{i} = f_{i}$
 $\pi^{-1}(f_{i}) = f_{i} = f_{i}$
 $\pi^{-1}(f_{i}) = f_{i} = f_{i}$
 $\pi^{-1}(f_{i}) = f_{i} = f_{i} = f_{i}$
 $\pi^{-1}(f_{i}) = f_{i} = f_{i}$
 $\pi^{-1}(f_{i})$

there is a diffeomorphism $\varphi: \Sigma \to \Sigma,$ where $\Sigma_{i} = \overline{\Sigma} - D_{f}^{2}$ and $\phi|_{\partial \Sigma_{i}} = id_{\partial \Sigma_{i}}$ such that \$, extends over D2 by identity to get \$ as above $\phi_1 = \pi \tau_{\gamma_i} \circ \pi [f_{i_1} \circ_i]$ but $\phi \sim T_{c}^{k}$ some k, where S is parallel to 22, <u>Remark</u>: a priori & might be a more general "point push" map but in this case can't extend S, ×D; to noted of o(s) now we have $\partial(\pi^{-1}(S_i))$)(T⁻⁻(o²)) S'XZ S'XZ $S'_{x}(\Sigma_{i}\cup D_{f}^{2}) \xrightarrow{\Psi} S'_{x}(\Sigma_{i}\cup D_{f}^{2})$ id id

note $S_1 \times D_f^2$ and $D^2 \times D_f^2$ glue to give N_s the nbhd of $\sigma(s)$ <u>exercise</u>:

1) Show N₅ is a D²-bundle over S with Euler number -k <u>Hint:</u> the isotopy T₅^k to id_z affects isomorphism T^{-'}(25,) to S'×E

2) Show it we have a factorization of T₆^k as above there is a Lefschetz fibration with section of self-intersection -k realizing this data so we have shown

Thm 8:

I) let $T: M \rightarrow S$ be a lefschetz fibration with fiber Σ over a closed surface of genus g, with k surgular points, with I disjoint sections having self-intersection k, ..., ke set In= I-(l-dishs) There are diffeomorphisms f,g; : E > E, 1=1,...g, st. TT To oTT[f, 9,]~ To o ... o The where &; are the vanishing cycles and &; parallel to 2th boundary component. II) Conversely, given such a factorization there is a Lefschetz fibration with I sections realizing this data.

Open Problem:

Does any Lefschetz fibration over S² have a section ! When does any Lefschetz fibration have a section? (multisection?)

<u>note</u>: this is equivalent to: Can a factorization $T T_{S_i} \circ T [E_{I_i, S_i}] \sim \mathbf{1}_{\Sigma}$ be litted to a similar factorization of T_S^h ? (note any differ of Σ_i gives one of Σ_i but can you "lift" a differ of Σ to Σ_i ?) Finally, note a Lefschetz <u>pencil</u> with base locus having L points then we can blow-up L times to get a Lefschetz fibration with L disjoint sections, all of self-intersection -1

thus we have shown Thm 9 I) let (TT, B) be a Letschetz pencil with B having I points and Thaving k critical points let I be the fiber and I = I- (Idushs) Then TT 2x ~ TT TS: where &; are the vanishing cycles and &; parallel to 2th boundary component. I) Conversely, given such a factorization there is a Lefschetz pencil l base points realizing this data

<u>exercise</u>:) Compute the homology of a Lefschetz pencil from the above data z) Compute the intersection form

Research Problem:

Can you find an exotic smooth (symplectic) structure on GP^2 or $GP^2 \# GP^2$ or $S^2 \times S^2 \dots$ by finding an appropriate factorization as above? Or prove they don't exist?

Later we will talk about handlebodies, but here we just observe how to build a neighborhood of a singular fiber by attaching a Z-handle

let U be a disk in 5 containing a single critical value and V a nbhd of the corresponding critical point such that $T(z_1, z_2) = 2_1^2 + 2_2^2$

was just computed to be smith 3x1 - cost \$x2 so the fiber framing is one greater than the framing coming from the handle

we have shown

lemma 10:

If U contains a single critical value of T: M→S then Ti⁻¹(U) is obtained from U×Z by attaching a Z-handle to the vanishing cycle & of the critical point with framing one less than the framing induced on X from the fiber

<u>exercise</u>:
i) Check that we were careful with orientations and got the framing right (i.e. -1 not +1).
2) Show this is consistant with the monodromy being a right handled Dehn twist about Y.
<u>Remark</u>: If you know about Kirby calculus then you should now be able to build a handle picture of a Lefschetz fibration given a monodromy presentation.