F. Lefschetz pencils and fibrations on 4 -manifolds
let's startwith a lefschets fibration

$$
\begin{aligned}
\Sigma^{2} \rightarrow & M^{4} \\
& \downarrow \begin{array}{l}
\downarrow \\
S
\end{array}
\end{aligned}
$$

we assume all critical points have distinct images under π let c be a critical value and U a closed ubhd of c in S containing no other critical points we can assume $U=2$-disk
note: $\pi^{-1}(\partial u)$ is Σ^{2}-bundle over S^{\prime}
exercise:

1) given any manifold X and a diffeomor phism $\phi: X \rightarrow X$, then the mapping torus

$$
T_{\phi}=M \times[0,1] /(x, 1) \sim(\phi(x), 0)
$$

is an X-bundle over S^{\prime}
2) If ϕ and ψ are isotopic, show $T_{\phi} \cong T_{\psi}$ as bundles
3) Given any x-bundle oven S^{\prime} there is some diffeomorphism $\phi: X \rightarrow X$ such that the bundle is T_{ϕ}, we call ϕ the monodromy of the bundle
let's try to figure out what the monodromy of $\pi^{-1}(\partial U)$ is let V be a chart about the critical point (and assume U is a chart about c) so that π has the form

$$
\left(z_{1}, z_{2}\right) \longmapsto z_{1} z_{2}
$$

consider $\pi^{-1}(U)-V$
this will be a $(\Sigma-A)$ bundle over $U=B^{2}$
where A is an annulus in Σ
recall $\pi^{-r}(x) \cap V$ is an annulus for $x \neq C$

$$
\pi^{-u}(c) \cap V \text { is } 2 \text { disks) }
$$

since B^{2} contractible, the bundle is trivial

$$
\begin{aligned}
& \pi^{-1}(U)-V \cong U \times(\Sigma-A) \\
\therefore & \pi^{-1}(\partial U)-V \cong
\end{aligned}
$$

ne. monodromy is trivial away from A (or at least isotopic to (identity)
now for $\pi^{-1}(\partial U) \cap V$:
we can assume U is ε-disk
So ∂U parameterized by $\quad t \mapsto \varepsilon e^{2 \pi t} \quad t \in[0,1]$ recall we need to trivialize $\pi^{-4} \partial 0$) outside V note for $\left|z_{1}\right|$ large $\pi^{-1}(u)$ trivicolicied
 by $z_{1} \longmapsto\left(z_{1}, w z_{1}^{-1}\right) \quad w \in U$

note for $\left|z_{2}\right|$ large $\pi^{-\prime \prime}(u)$ trivicolcred by $\quad z_{2} \mapsto\left(w z_{2}^{-1}, z_{2}\right)$ for $w \in U$ points in $\pi^{-1 / \partial 0}$) parameterized by

$$
z_{1} \mapsto\left(z_{1}, \varepsilon e^{i 2 \pi t} z_{1}^{-1}\right)
$$

or

$$
z_{2} \mapsto\left(\varepsilon e^{12 \pi t} z_{2}^{-1}, z_{2}\right)
$$

but neither agrees with both trivializations! consider

and parametentations of $\pi^{-1}\left(\varepsilon e^{2 \pi \pi t}\right)$ given by

$$
\begin{aligned}
h_{t}: z_{1} \longmapsto> & \left.\left(g\left(z_{1}\right) z_{1} e^{\left.i 2 \pi f\left(z_{1}\right)\right) t}, \varepsilon / g\left(z_{1}\right)\right) e^{i 2 \pi t} z_{1}^{-1} e^{-\imath\left(\pi f\left(z_{1}\right)\right) t}\right) \\
& \left.\left(g\left(z_{1}\right) z_{1} e^{i 2 \pi f\left(z_{1} l\right)+}, \varepsilon / g\left(z_{1}\right)\right) z_{1}^{-1} e^{\left.i z \pi\left(1-f\left(z_{1}\right)\right)\right) t}\right)
\end{aligned}
$$

for $\left|z_{1}\right|>2 \varepsilon$, get $\left(z_{1}, \varepsilon z_{1}^{-1} e^{i z \pi t}\right)$
for $\left|z_{1}\right|<\varepsilon / 2\left(\right.$ so $\left.\left|z_{2}\right| \gg 0\right)$, get $\left(\varepsilon e^{2 z \pi t} z_{1}, z_{1}^{-1}\right)$
2.e. param. by $z_{2} \mapsto\left(\varepsilon e^{12 \pi t} z_{2}^{-1}, z_{2}\right)$
so this param. agrees with both trivializations!
by definition the monodromy is $h_{1}\left(z_{1}\right)=\left(g\left(z_{1} \mid\right) z_{1} e^{22 \pi f\left(z_{1}\right)},-\right)$
compared to $h_{0}\left(z_{1}\right)=\left(g\left(z_{1}\right) z_{1},-\right)$
identified with $\mathbb{C}-\{0\}$ by projection to 1^{1+} factor so monodromy is multiplication by $z_{1} e^{22 \pi f\left(z_{1}\right)}$
this is the map
c-\{0\}

this is called a right handed Dehn twist about c
Remark: In general, if γ a siniple closed curve in a surface Σ, the Den twist about γ is the diffeomorphism

$$
\tau_{\gamma}: \Sigma \rightarrow \Sigma
$$

that is the culentity outside a unbid of γ and in that ubhd is

exercise: 1) τ_{γ} is well-defined upto isotopy (and only depends on γ upto isotopy)
2) given any $\gamma<\sum$ there is a Lefschetz fibration over the disk with a single critical point, whose vanishing cycle is γ and has monodromy τ_{γ} (note this is the converse of above discussion)
Hint: Start with ubhd of critical point and glue together with triucal surface bundles
now given $\pi: M \rightarrow D^{2}$ a Lefschetz fibration with more critical points

let D_{-}be "half" of D^{2} wo crit vols let $\eta_{\text {, }}$ be a path ∂D_{-}to C_{i}
(intersect D_{-}in end $p t$)
let N_{1} be small ubhd η_{i} $\pi^{-1}\left(N_{1}\right)$ is determwied by vanishing cyc le γ_{i}.
the monodromy of $\pi^{-1}\left(\partial N_{1}\right)$ is $\tau_{r_{i}}$
exerccsé:

1) The monodromy of $\pi^{-1}\left(\partial\left(D_{1} \cup\left(U N_{1}\right)\right)\right)$ is $\tau_{r_{k}} \circ \ldots \circ \tau_{\gamma_{1}}$
2) Given any curves $\gamma_{1} \ldots \gamma_{k}$ in \sum there is a Lefschetz fibration over D^{2} with k critical point, vanishing cycles $\gamma_{1} \ldots \gamma_{k}$, and monodromy $\tau_{\gamma_{k}} \circ \ldots \circ \tau_{\gamma_{1}}$
3) let S be a surface of genus g with one boundary component and $\pi: M \rightarrow S$ be a \sum-fiber bundle show $\pi^{-1}(\partial s)$ has monodromy $\prod_{i=1}^{9}\left[f_{1}, g_{i}\right]$ where $f_{1}, g_{1}: \sum \rightarrow \sum$ are any diffeomorphisms and $\left[f_{2}, q_{1}\right]=f_{1} \circ g_{2} \circ f_{2}^{1} \circ g_{2}^{-1}$
4) Show the converse of 3), re. given any diffeomorphism of the form $\prod_{i=1}^{g}\left[f_{1}, g_{i}\right]$, there is a \sum-bundle over S with this monodromy on ∂S
Th ${ }^{m} 7$:
I) if $\pi: M \rightarrow S$ is a Lefschetz fibration with fiber \sum over a closed surface of genus g, with k surgular points, then there are diffeomorphisms $f_{1}, g_{i}: \Sigma \rightarrow \Sigma_{1} 1=1, \ldots g$ such that

$$
\pi \tau_{\gamma_{i}} \circ \pi\left[f_{i}, g_{i}\right] \sim_{i} \mathbb{1}_{i \text { isotope }}
$$

where γ_{i} are the vanishing cycles
II) Conversely, given such a factorization there is a Lefschetzfibration realizing this data.

Proof: I)
there is a disk $D^{2} C S$ such that all critical points in D^{2}
from above $\pi^{-1}\left(\partial D^{2}\right)$ has monodromy $\pi \tau_{r}$, and $\pi^{-1}\left(\partial\left(\overline{S-D^{2}}\right)\right.$) has monodromy $\pi\left[f_{1}, g_{2}\right]$
these must be glued together by an orientation reversing, fiber preserving diffeomorphism.
exercise: if T_{ϕ} orientation reversing, fiber preserving diffeomorphic to τ_{ψ} then $\phi \sim h \psi^{-1} h^{-1}$ for some diffeomorphism h
so $\pi \tau_{\gamma_{i}} \circ \pi\left[f_{1}, q_{i}\right] \sim \mathbb{1}_{\Sigma} \quad$ (here f_{1}, g_{1} are possibly conjugates of original f_{1}, q_{i})
for II) just use above discussions to build fibrations over D^{2} and $\overline{S-D^{2}}$ and glue together
//
Now, what if $M \xrightarrow{\pi} S$ has a section assume $\sigma(s)$ misses critical pts

$$
\frac{M}{S}{ }_{S}{ }^{2} \sigma \sigma
$$

note: $\sigma(s)$ has a neighborhood N_{s} that is a D^{2} bundle
over S and $D^{2} s$ are nbhds of $\sigma(x)$ in Σ_{x}
let $D^{2}<S$ contain no critical point, and $S_{1}=\overline{S-D^{2}}$ $N_{s} \cap \pi^{-1}\left(s_{1}\right)=S_{1} \times D_{+}^{2}$ in fiber monodromy of $\pi^{-1}\left(\partial s_{1}\right)$ restricted to $D_{f}^{2} \subset \sum$ is identity!
so the monodromy of $\pi^{-1}\left(\partial s_{1}\right)$ is ϕ, then
there is a difteomorphism

$$
\phi_{1}: \Sigma_{1} \rightarrow \Sigma_{1}
$$

where $\Sigma_{1}=\overline{\Sigma-D_{f}^{2}}$ and $\left.\phi_{1}\right|_{\partial \Sigma_{1}}=i d_{\partial \Sigma_{1}}$
such that ϕ_{1} extends war D_{f}^{2} by identity to get ϕ
as above $\phi_{1}=\pi \tau_{\gamma_{i}} \circ \pi\left[f_{1}, q_{i}\right]$ but

$$
\phi_{1} \sim \tau_{\delta}^{k}
$$

some k, where δ is parallel to $\partial \Sigma_{1}$

Remark: a prior ϕ_{1} might be a more general "point push" map but in this case cant extend $s, \times O_{f}^{P}$ to abed of $\sigma(s)$ now we have

$$
\begin{array}{cc}
\partial\left(\pi^{-1}\left(s_{1}\right)\right) & \partial\left(\pi^{-1}\left(D^{2}\right)\right) \\
\text { sIll } & \text { silt }
\end{array}
$$

$$
S^{\prime} \times \Sigma \quad S^{\prime} \times \Sigma
$$

$$
S_{x}^{\prime} \times\left(\Sigma_{1}, D_{f}^{2}\right) \xrightarrow[d d_{e_{0}}]{\psi} S^{\prime} \times\left(\Sigma_{1} v D_{f}^{2}\right)
$$

note $S_{1} \times D_{f}^{2}$ and $D^{2} \times D_{f}^{2}$ glue to give N_{S} the abd of $\sigma(S)$ exercise:

1) Show N_{s} is a D^{2}-bundle over S with Euler number $-k$

Hint: the isotopy τ_{δ}^{k} to $1 d_{\Sigma}$ affects isomorphism

$$
\pi^{-1}\left(\partial s_{1}\right) \text { to } s^{\prime} \times \Sigma
$$

2) Show if we have a factorization of τ_{6}^{k} as above there is a lefschetz fibration with section of self-intersection - k realizing this data
so we have shown
Th ${ }^{\text {m }}$ 8:
I) let $\pi: M \rightarrow S$ be a lefschetz fibration with fiber Σ over a closed surface of genus g, with k surgular points, with l disjoint sections having self-intersection k_{1}, \ldots, k_{l} set $\Sigma_{l}=\Sigma-\left(l-d i s k_{s}\right)$
There are diffeomorphisms $f_{1}, g_{i}: \Sigma_{l} \rightarrow \Sigma_{l}, 1=1, \ldots-9$, st.

$$
\pi \tau_{\gamma_{i}} 0 \pi\left[f_{2, \varphi_{i}}\right] \sim \tau_{\delta_{1}}^{-h_{1}} 0 \ldots 0 \tau_{\delta_{l}}^{-k_{l}}
$$

where γ_{i} are the vanishing cycles and δ_{i} parallel to $2^{\text {th }}$ boundary component.
II) Conversely, given such a factorization there is a Lefschetz fibration with l sections realizing this data.

Open Problem:
Does any Lefschetz fibration over S^{2} have a section? When does any Lefschetz fibration have a section? (multisection?)
note: this is equivalent to: Can a factorization

$$
\pi \tau_{\gamma_{i}} \circ \pi\left[f_{i}, q_{i}\right] \sim \mathbb{1}_{\Sigma}
$$

be lifted to a similar factorization of τ_{δ}^{k} ?
note any differ of Σ_{1} gives one of Σ, but can you "lift" a differ of Σ to Σ_{1} ?)
Finally, note a Lefschetz pencil with base locus having l points then we can blow-up \& times to get a lefschetz fibration with ℓ disjoint sections, all of self-nitersection -1
thus we have shown

I) let (π, B) be a Letschetz pencil with B having l points and π having k critical points
let Σ be the fiber and $\Sigma_{\ell}=\Sigma$-(ldishs)
Then

$$
\pi \tau_{\gamma_{2}} \sim \pi \tau_{s_{j}}
$$

where γ_{i} are the vanishing cycles and δ_{i} parallel to $i^{\text {th }}$ boundary component.
II) Conversely, given such a factorization there is a Lefschetz pencil l base points realizing this data
exercise: 1) Compute the homology of a lefschetz pencil from the above data
2) Compute the intersection form

Research Problem:
Can you find an exotic smooth (symplectic) structure on $\mathbb{C P}$ or $\mathbb{C P} \# \overline{\mathbb{C}} \vec{P}^{2}$ or $S^{2} \times S^{2} \ldots$ by finding an appropriate factorization as above?
Or prove they don't exist?
Later we will talk about handlebodies, but here we just observe how to build a neighborhood of a singular fiber by attaching a 2 -handle
let U be a disk in S contacing a single critical value and V a nbhd of the corresponding critied point
such that $\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}$

Set $\hat{\pi}=\operatorname{Re} \cdot \pi$
note $\hat{\pi}$ is a Morse function with one critical point at 0 of index 2:

$$
\hat{\pi}\left(x_{1}+1 y_{1}, x_{2}+2 y_{2}\right)=x_{1}^{2}+x_{2}^{2}-y_{1}^{2}-y_{2}^{2}
$$

so $\hat{\pi}^{-1}((-\infty, \varepsilon))$ is obtained from $\tilde{\pi}^{-1}((-\infty, \varepsilon))$ by "attaching a 2-handle"
the core of the handle is $\left\{x_{1}=y_{2}=0, y_{1}^{2}+y_{2}^{2} \leq \varepsilon^{2}\right\}$ so the attaching S^{\prime} is $\left\{x_{1}=x_{2}=0, y_{1}^{2}+y_{2}^{2}=\varepsilon^{2}\right\}$ is the vanishing cycle γ in $\pi^{-1}(-\varepsilon)$
how is the handle attacked to $\left.\partial \hat{\pi}^{-1}(1-\infty,-\varepsilon]\right)$?
2.e. What is the framing on γ
note: $(i \sqrt{\varepsilon} \cos \theta, i \sqrt{\varepsilon} \sin \theta)$ parametenizes γ
so $(-i \sin \theta, i \cos \theta)$ is tangent to γ and $\pi^{-r}(-\varepsilon)$ the fiber $\pi^{-l}(-\varepsilon)$ is holomorphic so $i(-2 \sin \theta, i \cos \theta)=(\sin \theta,-\cos \theta)$ also tangent to $\pi^{-1}(-\varepsilon)$ the tangent space to $\hat{\pi}^{-1}(-\varepsilon)$ along γ is spanned by

$$
\left\{\gamma^{\prime}(\theta), \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right\}
$$

and the normal bundle to the woe of the 2 -handle is spanned by $\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right\}$
the framing of the normal bundle to γ in $\hat{\pi}^{-1}(-\varepsilon)$ givens by the fiber $\pi^{-1}(-\varepsilon)$
was just computed to be $\sin \theta \frac{\partial}{\partial x_{1}}-\cos \theta \frac{\partial}{\partial x_{2}}$ so the fiber framing is one greater than the framing coming from the handle
we have shown
lemma 10:
If U contains a sirigle critical value of $\pi: M \rightarrow S$ then $\pi^{-l}(u)$ is obtained from $U \times \sum$ by attaching a 2 -handle to the vanishing cycle γ of the critical point with framing one less than the framing induced on γ from the fiber
exercise:

1) Check that we were careful with orientations and got the framing right (ie. -1 not +1).
2) Show this is consistant with the monodromy being a right handed Dehn twist about γ.
Remark: If you know about Kirby calculus then you should now be able to build a handle picture of a lefschetz fibration given a monodromy presentation.
