IL Contact structures and symplectic cobordisms

A Contact Structures

- a <u>contact structure</u> on a manifold M^{2n+1} is a hyperplane field ζ^{2n} cTM such that for each point peM there is a 1-form & defined near p such that $\zeta = \ker x$ $x_{A}(d_{A})^{n} \neq 0$ (means never zero)
- note: if x, ß both satisfy kerd= 3= kerß then I a nonzero function f such that x=fß so x n(dx)ⁿ = fⁿ⁺¹ pn(dß) thus if n is odd § defines an orientation on M! (even if 3 is not orientable!)

if & can be globally defined we call § co-orientable coll & a (TM/z is I-dimensional and & orients this) contact form (TM/z is I-dimensional and & orients this) when M is orientable, this is equivalent to ? being orientable when M is oriented and n odd we call a contact str ? positive if and a defines orientation and otherwise negative (it is common for contact str. to mean positive Lontact structure)

exercise: Show da defines a symplectic structure on ?

(note if x=fp then dx|,=fdplz so a contact structure has a canonical conformal symplectic struture) "contact str odd dim'l analog of symplectic str "

examples:

1) given any monitold M
let
$$\lambda$$
 be the Lowville form on T^*M
 $d = dz - \lambda$ is a 1-form on $T^*M \times \mathbb{R}$ such that
 $f = ker (dz - \lambda)$ is a contact structure
Remark: $T^*M \times \mathbb{R}$ is called the 1-jets space
of M and denoted $J^*(M)$
2) $\mathbb{R}^{2n+1} = T^*\mathbb{R}^n \times \mathbb{R}$ has the contact structure
 $g_{std} = ker (dz - \lambda) = ker (dz - \Sigma + dx_1)$
 $\int_{T^*} \int_{T^*} \int_{$

if M is compact we call it a symplectric
filling of
$$(\partial M_{1} \ker (r_{r} \omega))$$

Eg. let $S^{2n-i} \subset \mathbb{C}^{n}$ be unit sphere
note $\tau = \frac{1}{2} \sum x_{1} \frac{\partial}{\partial r_{1}} + y_{1} \frac{\partial}{\partial y_{1}}$ is a symplectic
dilation of $\omega = \sum dx_{1} dy_{1}$
so $\alpha = (r_{r} \omega) = (\frac{1}{2} \sum x_{1} dy_{1} - y_{1} dx_{1})|_{S^{2n-i}}$ is a contact
form on S^{2n-i}
and (B^{2n}, ω_{stol}) is a symplectic filling of $(S^{2n-i}, \ker \alpha)$

Frobenius Th^m:

 let
$$M^n$$
 be a manifold

 $D \in T(M)$ be a k-plone field

 $D \in T(M)$ be a k-plone field

 D is integrable \Leftrightarrow D is closed under

 D is integrable \Leftrightarrow Lie bracket

Recall D integrable means $\forall p \in M$ there is a k-dimensional manifold Σ^{k} st. $p \in \Sigma^{k}$ and $T_{x}\Sigma^{k} = D_{x}$ $\forall x \in \Sigma^{k}$ If D is integrable then M has a k-dimi'l foliation (that is M is the union of images of injective immersions of k-manifolds st. each point has a nbhd $\cong \mathbb{R}^{k} \times \mathbb{R}^{n-k}$ where k-manifolds go to $\mathbb{R}^{n} \times \{p\}$) being closed under Lie bracket means of $v, u \in \Gamma(D) \subset \mathcal{H}(M)$ then $\{v, u\} \in \Gamma(D)$

If
$$D^{2n} CTM^{2n+1}$$
 and $D = \ker d$ for some $[-form \alpha]$
then for $v, u \in \Gamma(D)$ we have
 $d\alpha(v, u) = v \cdot \alpha(u) - u \cdot \alpha(v) - \alpha(\varepsilon u, v])$
 $= -\alpha(\varepsilon v, u)$
So $[v, u] \in \Gamma(D) \iff d\alpha(v, u) = 0$
thus of D closed under $l = 0$

exercise:

if
$$\Sigma^{k} \subset (M^{n+1}, \tilde{f})$$
 is a submanifold and
 $T_{\chi}\Sigma^{k} \subset T_{\chi}$ $\forall x \in \Sigma$
then show $T_{\chi}\Sigma$ isotropic in $(T_{\chi}, d\chi)$
where $T_{\pi} = ker \chi$
so $k \leq n$ (recall, this means $T_{\chi}\Sigma \subset T_{\chi}\Sigma^{\perp d\chi}$)
we call such a Σ an isotropic submanifold
and if $k=n$, then Σ called a Legendrian submanifold

i) recall for any manifold M, the 1-jet space J'(M) = T*M ×R has a contact structure

$$\begin{aligned} & \zeta = \ker (dz - \lambda) & \text{where } \lambda \text{ is the} \\ & \text{Liouville form} \end{aligned}$$
given $f: \mathcal{M} \to \mathcal{R}$ the 1-jet of f is
$$\int_{J'} (f) : \mathcal{M} \to J'(\mathcal{M}) : x \mapsto (df_x, f(x)) \end{aligned}$$

note:
$$j'(f)^* (d_{\overline{z}} - \lambda) = df - df^* \lambda = df - df = 0$$

so $\Gamma_f = image(j'(f))$ is Legendrian!
exercise: a section $\sigma : M \to J'(M)$ is the l-jet-
of some function $\rightleftharpoons \sigma(M)$ Legendrian
Hint: let $\pi_{\overline{z}} : J'(M) \to R$ be projection to R
consider $f = \pi_{\overline{z}} \circ \sigma$
Remark: a 1st order PD.E. on M is simply a function
 $F : J'(M) \to R$

an a solution is a function $f: M \rightarrow \mathbb{R}$ st. $F \circ j'(f) = 0$

or more geometrically a solution is a section $\sigma: M \rightarrow J'(M)$ st. () $F \circ \sigma = 0$ (c) I = 0(c) Legendrian Lie used this to solve PDEs

2) let
$$M^{n}$$
 be a manifold
let $P^{*}M = (T^{*}M - 2)/R_{+}$ be the oriented projectivised
cotangent bundle
here E is the zero section in $T^{*}M$
and the positive reals R_{+} just acts by mult:
note we still have $T : P^{*}M \rightarrow M$
let $3 = \{ v \in T_{e}(P^{*}M) : \alpha(T_{*}v) = 0 \}$
here $\alpha \in T^{*}M$ and $[\alpha]$ is equivalence
exercise:
i) show 3 well-defined hyperplane field

2) fibers of Tr are Sⁿ⁻¹ and tangent to ?

we claim
$$(P^*M, \overline{i})$$
 is a contact manifold
one way to see this is note of g is a Riemannian
metric on M (so induces metric on T^*M)
and $U^*M = \{a \in T^*M : \|a\|_{g} = 1\}$ is the unit
iotangent bundle then the projection
 $T^*M - \overline{z} \stackrel{f}{\to} U^*M$
decends to a diffeomorphism
 $P^*M \stackrel{f}{\to} U^*M$
Now if $v \in T^*M$ is the "radial vector field" in
each fiber (se. in local coords q, on M and
 $g_{1,\beta_{1}}$ on T^*M
 $v \in \mathbb{Z} p_{1} \stackrel{g}{\to} \overline{i}$)
then $d_{v} d\lambda = d\lambda$
 v also transverse to U^*M
so from example above
 $a = l_{v} d\lambda |= \lambda|$
 $U^*M \stackrel{g}{\to} U^*M$
is a contact form on U^*M
enercicie: Show $p: P^*M \rightarrow U^*M$
mops \overline{i} to her $d (=: \overline{i}')$
so (U^*M, \overline{i}') depends on g but is contactomorphic for
 $to (P^*M, \overline{i})$ which doesn't! (altheomorphic to $\mathcal{J}^*(S^{n-1})$

clearly if
$$f: M \rightarrow N$$
 is a diffeomorphism then the induced
map "f": P"N \rightarrow P"M a contactomorphism
the contact analog of on earlier question is
Major Open Question:
are M. N diffeomorphic
 \Rightarrow M and P"N are contactomorphic
 \Rightarrow P"M and P"N are contactomorphic
 \Rightarrow P"M and P"N are contactomorphic
Remark: maybe nicer than symplectic analog since P"M
compact (when Mis) but T"M not
Asside: recall the metric g induces a bundle isomorphism
 $TM \rightarrow T"M$
an : an isomorphism
 $UT \xrightarrow{3} U^{T}T$ where UT unit tangent
bundle
field X_k such that
 $(X_k d = 0 \text{ and } A(X_k) = 1$
 X_k called a Reeb field of T
note: X_k TT and flow of X_k preserves T
z) Show a vector field v on (M,3) is a Reeb field (for some a)
 $\psi = T$
 $v = T$ So $\lambda |_{U^*M}$ gives a natural flow (Reeb flac) on U"M
Recall, on UM there is olso a natural flow, the geodesci flow

B. Local Theory

Th-1:. · M²ⁿ⁺¹a smooth manifold · NCM a compact set with a nbhd U that strongly deformation retracts to N (e.g. Na submanifold) · ?, ?, be contact structures defined near N 3 = 3, on TM/ if 11>1, then] x, st.] = kerk, and do= di and ddo= ddi on TM/N Then I a diffeomorphism f: M -> M fixing N isotopii to the identity on M (re(N) S.t. $f^*\omega_1 = \omega_0$ on some noted of N in U.

<u>Remark</u>: Proof very similar to proof of Th^mIII. I we leave it as an exercise, as well as the following.

Cor 2 (Darboux Thm):

(siven any contact manifold (M²ⁿ⁺'i) and pEM, there is a neighborhood U of p contactomorphic to neighborhood of the origin in (R²ⁿ⁺¹, istal)

So we could have defined a contact structure to be a hyperplane field locally modeled on (R²ⁿ⁺¹, 3,+1)

Cor 3 (Legendrian nubble theorem):

(M, 7) a contact monifold
 LCM a compact Legendrian submanifold
 Then L has a nbhd in M contactomorphic to a nbhd of O-section in (J'(L), 3= ker(dq-λ))

<u>Th # 4 (Gray's Th #):</u>_____

•
$$M$$
 a manifold
• 3_{4} , $t \in [o, i]$ a family of contact structures that
differ on a compact subset $C \subset M$
Then there is an isotopy $Y_{t}: M \rightarrow M$ such that
 $Y_{t}^{*} T_{0} = 3_{t}$ and
 $Y_{t} = id$ off of C

٦

Now given a contact manifold [4, 3] with 3 coordented by
$$v \in \mathcal{X}(M)$$

let $S(M,3) = \{\alpha \in T_x^*M : x \in M, kerd_x = 1, d_x(v(M)) > 0\}$
then $d\lambda$ is symplectic form on $S(M,3)$
 $S(M,3)$ with form $d\lambda$ is called the symplectization of (M,3]
to see $d\lambda$ is symplectic on $S(M,3)$ we choose a 1-form d st.
 $3 = kerd$
and define $\phi: \mathbb{R} \times M \longrightarrow T^*M$
 $(2, \chi) \longmapsto e^2 d(\chi)$
 $exercise: 1) \phi$ is an embedding
 $2) \phi^* d\lambda = d(e^2 \chi)$
 $3) d(e^2 \chi)$ is a symplectic form on $\mathbb{R} \times M$
we also sometimes call $(\mathbb{R} \times M, d(e^2 \chi))$ the symplectization
of $(M,3)$ (but note the original def " only depends on $(M,3)$)
everuse: If d, β are contact 1-forms for 3 and $\alpha = f\beta$, $f > 0$
then $\Psi: \mathbb{R} \times M \to \mathbb{R} \times M (2, \chi) \mapsto (2 + \ln f(H), \chi)$
is a symplectomorphism from $(\mathbb{R} \times M, d(e^2 \mu))$ to $(\mathbb{R} \times M, d(e^2 \mu))$

Open problem:

<u>Remark</u>: Sylvain Court showed $\exists (M,3)$ and (M',3') where M is <u>not</u> diffeomorphic to M' but S(M,3) is (exact) symplectomorphic to S(M',3')

If
$$(M^{2n}, \omega)$$
 a symplectic manifold with boundary
and v is a vector field defined near a component
 C of ∂M such that
 $d_v \omega = \omega$
then we say C is convex if v points out of Malong C
we say C is concave if v points into Malong C
as discussed earlier $\alpha = L_v \omega l_c$ is a contact 1-form on
 C if C is convex and on $-C$ if C is concave

let C be a convex (concave) boundary component of
$$(M, \omega)$$
,
 v the associated vector field,
and $\alpha = (v_v \omega)_c$
then \exists a nbhd of C in M symplectomorphic to
 $((-\varepsilon_i \circ] \times C, d(e^2 \alpha))$ if C is convex
 $([o, \varepsilon) \times C, d(e^2 d))$ if C is convex

exercise: Prove this (almost immediate from Thm II.1)

$$\frac{7}{M} = C:$$

$$|et (M_0, \omega_0) \text{ have convex boundary component } C_0$$

$$(M_1, \omega_1) \text{ have concave boundary component } C_1$$

$$|et ?_0 be the inducted contact structure on C_0$$

$$?_1 ``` `` -C_1$$

$$|f] a \text{ contactomorphism } \phi:(C_0, \S) \to (-C_1, ?_1)$$

$$\text{ then there is a symplectic structure } \omega \text{ on }$$

$$M_0 \cup M_1 / \times \varepsilon C_0 \sim \phi(x) \varepsilon C_1$$

$$\text{ such that } \omega|_{M_0} = \omega_0 \text{ and off of some nbhd of }$$

$$C \text{ in } M_1, \ \omega = h \omega_1 \text{ for some constant } k$$

<u>Remark</u>: Many of our previous constructions can be proven using Th^m6 (eg. blow-down, blow-up, normal sum)

Proof:
let
$$v_i$$
 be vector field from def of convex/concave
and $v_i = (v_i \omega_i)_{c_i}$
so $\phi^* v_i = f v_o$
if we scale ω_i by a constant then v_i also scales
so \exists so k st. $\phi^* k v_i = \frac{1}{2} v_o$ with $\ln \frac{1}{2} \ll 0$

