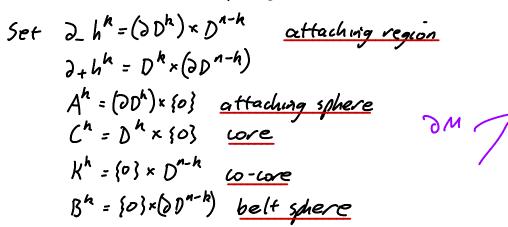
D. Handlebody Theory

an n-dimensional <u>k-handle</u> is

$$h^{k} = D^{k} \times D^{n-k}$$

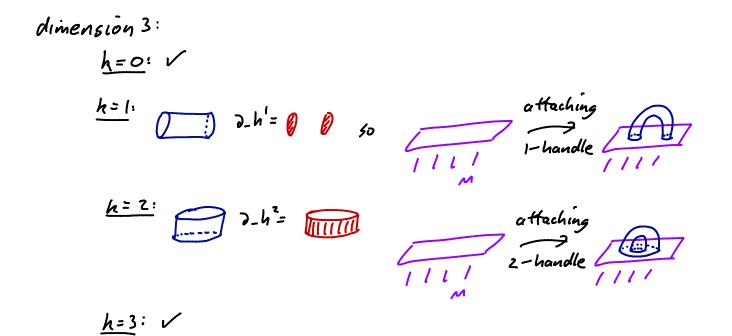
hk



given an n-manifold M and an embedding $\phi: \partial_{-}h^{h} \rightarrow \partial M$

we attach hh to M by forming the identification space M IL hh/(x e 2 - hh)~ (\$(x) E d M)

- 1) In all dimensions attaching a O-handle is just taking disjoint union with D"
- 2) In all dimensions n attaching an n-handle is just "(apping off" an 5ⁿ⁻¹ boundary component.



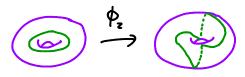
<u>Remark</u>: Note when a handle is attached one has a manifold with "corners" there is a standard way to smooth them out (see Wall "Differential Topology")

exercises:

i) if \$\phi_0, \overline{1}: \$\frac{1}{2}\$, \$h^k\$ → \$\frac{1}{2}\$ Are isotopic, then the result of attaching a handle to \$M\$ via \$\overline{0}\$ is diffeomorphic to attaching a handle to \$M\$ via \$\overline{0}\$ is diffeomorphic to attaching a handle to \$M\$ via \$\overline{0}\$ is diffeomorphic to attaching a handle to \$M\$ via \$\overline{0}\$ isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by

i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) isotopy class of \$\overline{1}\$. \$h^k\$ → \$\frac{1}{2}\$ M\$ is determined by
i) iii isotopy class of \$\overlin{1}\$. \$h^k\$ →

e.g. notice that $S' \times D^2$ has an integers worth of framings $S' \times D^2 \xrightarrow{\phi_n} S' \times D^2$ $(\phi, (r, o)) \longmapsto (\phi, (r, o + n \phi))$



3) more generally show the framings on a k-dimensional sphere in Yⁿ is in one-to-one correspondence with $\pi_k(O(n-k))$ is due of normal bundle

so we see to attach an n-dumensional k-handle one must specify 1) an S^{k-1} knot in DM and 2) "elt" of $T_{k-1}(O(n-k))$ to really get such an element need a canonical "Zero" framing

A handle decomposition of an *n*-manifold *M* is a sequence
of manifolds
$$M_0, M_1, \dots, M_k$$
 such that
1) $M_0 = \emptyset$ and $M_k \equiv M$
2) M_{3+1} is obtained from M_i by a
k-handle attachment for some *k*

example:

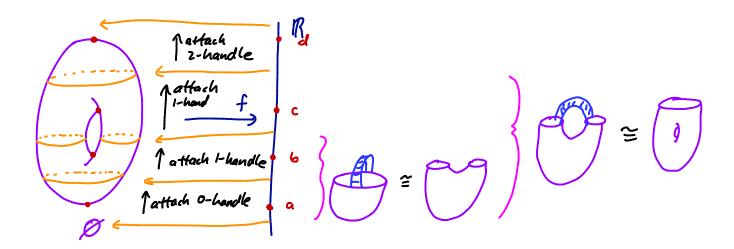
nandle decompositions of
$$5^2$$

1) $0 \xrightarrow{\text{o-handle}} 111 \xrightarrow{\text{o-handle}} 2$ -handle $111 \xrightarrow{\text{o-handle}} 1$ -handle 1

Thm: Any smooth compact manifold has a handle decomposition a brief sketch of the proof goes as follows. recall a Morse function $f: M \rightarrow R$ is a function all of whose critical points are non-degenerate 18. If pEM a critical point, then in locall coordinates about p the matrix $\left(\frac{\partial^2 f}{\partial x \partial x}(p)\right)$ is invertable exercise: 1) Show p is a non-degenerate critical point of f E df is transverse to the zero section of T*M at df(p) z) Every function f: M→R can be perturbed to be a Morse function 3) If p is a non-degenerate critical point of f: M-> R then 3 coordinates about p such that f takes Fundamental lemma of the form $f(x_{1},...,x_{n}) = f(p) - \chi_{1}^{2} - ... - \chi_{k}^{2} + \chi_{k+1}^{2} + ... + \chi_{n}^{2}$ Morse theory k is called the <u>index</u> of p Main The of Morse Theory

let
$$f: M \rightarrow \mathbb{R}$$
 be a Morse function
I) if $[a,b]$ contains no critical values then
 $f^{-1}([a,b]) = f^{-1}(a) \times [a,b]$
Manifold since a regular value
I) if $\exists!$ critical point $p \in f^{-1}([a,b])$ st. $f(p) \in (a,b)$
then
 $f^{-1}([a,b])$ is obtained from $f^{-1}(a) \times [a,a+\epsilon]$ by
attaching a k-bandle to $f^{-1}(a) \times [a+\epsilon]$

example:



Kemark: handle decomposition theorem clearly follows Idea of proof of Main Th": I) let $\Phi_{i}: M \rightarrow M$ be the (normalized) gradient flow of f then f-'(a) × [0, b-0] -> M $(\rho, t) \longmapsto \tilde{P}_{\rho}(\rho)$ is an embedding onto f ([29,6]) I) let U be about p where f has the form as in exercise 3 above in V we see Rn-k $c = f(\rho)$ f"(c) Handle attachment Rh Dk THI $f^{-1}(c-\varepsilon)$ n-h this is essentially a k-handle attachment <u>exercise</u>: finish proof of I) 囲

D. Weinstein Manifolds

given a function
$$\phi: M \rightarrow R$$
 we say a vector field v
is gradient like if
 $v \cdot \phi \ge \delta(||v||^2 + ||d\phi||^2)$
for some 570 and some metric g
this means ϕ is increasing on flowlines of v
and $v = 0$ color $||d\phi||_g = 0$
let $p \in M$ be a nondegenerate zero of v
Set $T_p^{\pm}M = \text{span} \{ \text{eigenvalues of } (\frac{2\pi}{2\pi i}, (P)) \text{ have } \pm \text{real part} \}$
let $\psi_e: M \rightarrow M$ be the flow of v (where defined)
 $|et v^{\pm}(p) = \{\pi \in M \text{ st. } \lim_{t \to \pm \infty} \psi_t(\pi) = p\}$
 $w^{-}(p)$ is called the stable manifold "points flowing away trap p''
 $w^{+}(p) = T_p^{\pm}M$
 $eg:$
 v_p^{\pm} v_p^{\pm}
 w_p^{-}
 w_p^{-}

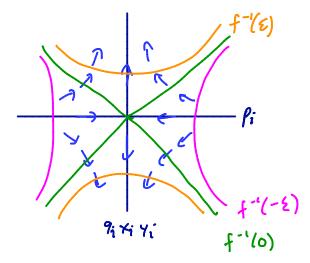
a <u>Weinstein manifold</u> is a manifold M together with 1) a Morse function \$\overline{M}\$ → \$\mathcal{R}\$ with boundary being regular level sets 2) a symplectric structure co 3) a vector field to that is gradient like for \$ and expanding w (ie. \$\overline{U}\$ = \overline{U}\$)

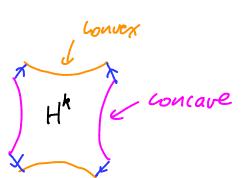
exercise:
i) Show
$$k_{\sigma} \omega = \omega \Rightarrow \mathcal{Y}_{t}^{*} \omega = e^{t} \omega$$
 where \mathcal{Y}^{t} flow of v
and if $\lambda = l_{v} \omega$ then $\mathcal{Y}_{t}^{*} \lambda = e^{t} \lambda$
lemma 7:

if
$$(M, \phi, \omega, v)$$
 is a Weinstein manifold and p a critical
point of ϕ then W_p^- is isotropic
in particular, index $(p) \leq n$ if $\dim M = 2n$

Remark: This implies
$$M$$
 can't be closed
(find another proof of this!)
enercise: Under hypothesis of lemma show W_{p}^{+}
is coisotropic.
Proof: We first note we can linearite V at p :
 $A = "dv(p)": T_{p}M \to T_{p}M$
(in local words $v: \mathbb{R}^{n} \to \mathbb{R}^{n}$ (really $\mathbb{R}^{n} \to \mathbb{R}^{n} \times \mathbb{R}^{n}$)
 $p=0$ dv(o)= $T_{0}\mathbb{R}^{n} \to T_{0}\mathbb{R}^{n}$)
note the flow $Y_{E}: M \to M$ induces a flow $dY_{E}: T_{p}M \to T_{p}M$
 $enercise: i) This flow is guiden by $v \mapsto e^{tA}v$
 $z) A = (\frac{2u}{2k})$ in local words
 $so \pm eigen spaces of A are $T_{p}^{\pm}M$$$

now we see for $u_{i}w \in T_{p}M$ $e^{t}\omega(u,w) = \mathscr{Y}_{t}^{*}\omega(u,w) = \omega(d\mathscr{Y}_{t}(w), d\mathscr{Y}_{t}(w)) = \omega(e^{At}u, e^{At}w)$ R.H.S. is bounded since $u,w \in T_{p}M$ so $\omega(u,v) = 0$ 12. $T_{p}M$ is isotropic!

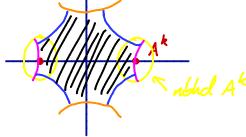




(H, w, v, f) Weinsten handle

note

 i) J_H^h has an induced contact structure and J_H^h (Pi-space) is a Legendrian A^h = S^{h-1}
 2) We can choose a model for H^h so that in J_H^h is contained in any preassigned ubbd of A^k



Now let S be an isotropic submanifold of (M, i)let α be any 1-form st. $i = \ker \alpha$ $d\kappa |_{i}$ symplectic recall $TSCTS^{\perp}\alpha\kappa$ Set $(SN(S) = (TS^{\perp}\alpha\kappa))/TS$

> dx induces a symplectic structure on (SN(S) and a different contact form for 3 would induce a conformal symplectic structure on (SN(S) so (SN(S) is called the <u>conformal symplectic</u> <u>normal bundle</u> to S

note:
$$TM_{1_{s}} = 3 \oplus TM_{7_{s}} = (CSN(s) \oplus TS \oplus 3/_{TS^{\perp}}) \oplus R$$

 R spanned by a Reeb vector field
exercise: $T(T^{*}S) \cong TS \oplus 3/_{TS^{\perp}}$
So the only part of $TM_{1_{s}}$ not determined by S
is $(SN(S))$

$$\underbrace{\operatorname{let}(M_{i_{1}}^{2n}\omega_{i}) \text{ be a symplectic manifold } 1=1,2}_{i_{1}}$$

$$et (M_{i_{1}}^{2n}\omega_{i}) \text{ be a symplectic manifold } 1=1,2$$

$$v_{i} \text{ an expanding vector field for } v_{i}$$

$$\Sigma_{i} \text{ a hypersurface in } M_{i} \text{ transvese to } v_{i}$$

$$[ariented so v_{i} \text{ positively transverse}]$$

$$et \overline{I}_{i} = \operatorname{ker}((v_{i}, \omega_{i})|_{\overline{L_{1}}} \text{ be the induced contact strand } \Lambda_{i} \text{ an isotropic } S^{k}$$
Given a diffeomorphism $\phi: \Lambda_{i} \rightarrow \Lambda_{2}$ that is covered by
$$a \text{ bundle isomorphism } (SN(\Lambda_{i}) \rightarrow CSN(\Lambda_{2}))$$

$$\exists \text{ neighborhoods } N_{i} \text{ of } \Lambda_{i} \text{ in } M_{i} \text{ ond an extention of } \phi$$

$$to a diffeomorphism$$

$$\overline{\Psi}: N_{i} \rightarrow N_{2}$$

$$Such \text{ that}$$

$$i) \quad \overline{\Phi}(N_{i} \cap \overline{L_{1}}) = N_{2} \cap \overline{L_{1}}$$

$$2) \quad \overline{\Psi}^{*}(l_{V_{2}} \omega_{1})_{\overline{L_{2}}} = (v_{i}, \omega_{i})|_{\overline{L_{1}}}$$

$$3) \quad \overline{\Psi}^{*} \omega_{2} = \omega_{i}$$

$$4) \quad \overline{\Psi}_{*}(v_{i}) = v_{2}$$

<u>Proof</u>: let $\alpha_i = c_i \omega_i |_{\Sigma_i}$ be the contact forms on Σ_i

 $\frac{C(a_{1}, \dots, m)}{d_{1}} \xrightarrow{f} 1 \text{ neighborhoods } \widetilde{N_{1}} \subset \Sigma_{1} \text{ of } \Lambda_{1} \text{ and } a$ $d_{1} \xrightarrow{f} 1 \text{ comparison } \Psi: \widetilde{N_{1}} \to \widetilde{N_{2}} \xrightarrow{f} 1 \xrightarrow{f} 1$

given the claim, recall $Th^{\underline{m}} 5$ gives an identification (using flow of v_1) of a nbhd N_1 of Λ_1 in M_2 with $((-\xi_1\xi) \times \tilde{N}_1, d(e^+ x_1))$

since
$$\mathbb{P}$$
 preserves α_i , we can extend \mathbb{P} to $\mathbb{P}: N_i \to N_2$
st. $\mathbb{P}^* \omega_2 = \omega_i$ and by construction $(1-4)$ in
theorem are true!

Proof of Claum:

Step I:] a hypersurface
$$R_i = \Lambda_1 \times D^{2n-k-2}$$
 such that
a) R_i tanget to R_i along $\Lambda_1 = \Lambda_1 \times \{o\}$
b) $d\alpha_i$ symplectic on Σ_i
c) Σ_1 to keep field X_{α_i}

to see this note the normal bundle to Λ_1 in \mathcal{T}_1 is $\mathcal{V}_1 = (SN(\Lambda_1) \oplus \mathcal{T}_1/T\Lambda_1)$

let R₁ be the mage of a normal exponential map in V_i under the normal exponential map (use any metric)

note: R, satisfies all properties!

Step I: I a symplectomorphism
$$\Psi: (R_1, dR_1) \rightarrow (R_2, dR_2)$$

Using the identifications of the CSN bundles in
the hypothesis and the fact that Λ_1 is isotropic in (R_1, dR_2)
we can build a diffeomorphism $R_1 \rightarrow R_2$ that
takes dR_1 to dR_2 along Λ_1 (this is small extension of
the argument in $(Dr III.5)$

The III. I now says we can isobop diffeo to be
a symplectomorphism in a nobid of
$$\Lambda_{i}$$
.
Step III: Build desired abods \tilde{N}_{i} and $\tilde{\Xi}: \tilde{N}_{i} \rightarrow \tilde{N}_{2}$
Using the Reeb vector field X_{i} , build a nobid \tilde{N}_{i} of R_{i}
in Σ_{i} of the form $(-\varepsilon,\varepsilon) \times R_{i}$.
extend $\Psi:R_{i} \rightarrow R_{2}$ to $\Psi:\tilde{N}_{i} \rightarrow \tilde{N}_{2}$.
Since the Reeb flow of α_{2} preserves dx_{i} , we see
 $\Phi^{*}(dx_{i}) = dx_{i}$.
also $\Phi^{*} \alpha_{2} = \alpha_{1}$ on $T\Sigma_{i}|_{\Lambda_{1}}$ (have some hernel
and eval some
on X_{i} .)
We now build an embedding $f_{i}: N_{i} \rightarrow N_{i}$ such that
 i $f_{i} = id_{\Lambda_{1}}$.
 $if = id_{\Lambda_{1}}$.
 $if = id_{\Lambda_{1}}$.
 $if = id_{\Lambda_{1}}$.
 $g_{i} = \phi \circ f_{i}$ is desired map
to build f consider
 $\beta_{t} = \alpha_{1} + t(\Phi^{*}\alpha_{2} - \alpha_{1})$.
 $note: \beta_{t}$ is contact near Λ_{1} .
 $(so on N_{i} \in N_{i} \text{ small enough})$
this is because at Λ_{i} , ker $\beta_{T} = ker \alpha_{1}$
and $d\beta_{t} = dx_{i}$ on her β_{t} is sympl.
 $: d\beta_{t}$ sympl. on her β_{t} mear Λ_{i} .
Now $d(\Phi^{*}\alpha_{k} - \alpha_{k}) = 0$ and
 $\Phi^{*}\alpha_{2} - \alpha_{i} = 0$ on Λ_{i} .

: I some function
$$h: N_{1} \rightarrow R$$
 st:
 $dh = -(\Phi^{*} \kappa_{2} - \kappa_{1})$ and
 $h = 0$ on Λ_{1}
if X_{t} is the Reeb vector hield of β_{t} .
then set $v_{t} = h X_{t}$ and denote the flow of
 v_{t} by f_{t}
now $\frac{d}{dt} f_{t}^{*} \beta_{t} = f_{t}^{*} (\mathcal{J}_{v_{t}} \beta_{t} + \frac{d}{dt} \beta_{t})$
 $= f_{t}^{*} (d_{v_{t}} \beta_{t} + (v_{t} \partial_{t} \beta_{t} - dh))$
 $= f_{t}^{*} (d_{h} - dh) = 0$
 $\therefore f_{t}^{*} \beta_{t} = \beta_{0}$
If $(M_{t}\omega)$ a symplectic manifold with convex boundary
and 3 induced contact structure on $\Im M$
then for any isotropic sphere Λ^{*-1} in $(\Im M_{t})$ and
choice of trivialization of $SCN(\Lambda)$ (this might not
one may attach a Weinstein k-handle to M to get
a new symplectic manifold with convex boundary
Moreover, if $(M_{t}\omega)$ was Weinstein, then the result

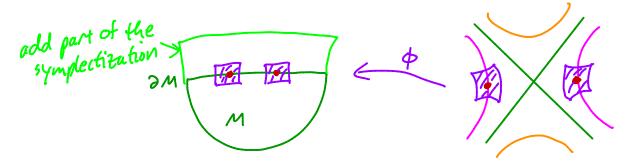
of a taching the k-handle is also Weinstein

Proof: by lemma 8 we have an identification

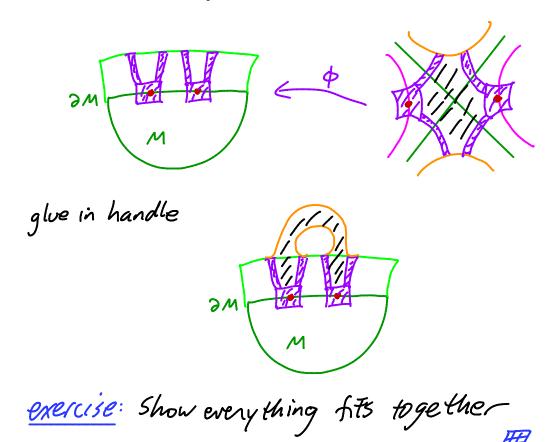
If (M

then f

an



now extend along part of the symplectization



<u>exercise</u>: Show if (M, ω, v, ϕ) is Weinstein, then M is obtained from \emptyset by a sequence of Weinstein handle attachments as in lemma 9.

Thm (Cieliebak - Eliashberg):-

let \$\$: M²→R be a proper Morse function, bonded below with no critical points of index > N
let ¶ be a non-degenerate 2-form on M
If n>2, then ∃ a Weinstein structure (ω, υ, φ) on M such that ¶ and ω are homotopic through non-degenerate 2-forms

We call a complex manifold
$$(M, J)$$
 Stein if if admits
an exhausting J-convex function $\phi: M \rightarrow R$
exhausting means: ϕ is bounded below and proper
J-convex (a.h.a. (strictly) plurisubharmonic) if
 $\omega_{\phi} = -d(d\phi \circ J)$
is symplectic
enercise: 1) J is compatible with ω_{ϕ}
z) ω_{ϕ} , J define a metric g_{ϕ}
 $H \chi_{\phi}$ is the gradient with respect to g_{ϕ}
then $\chi_{\chi_{\phi}} \omega_{\phi} = \omega_{\phi}$
[so if ϕ is Morse, then $(M, \omega_{\phi}, \chi_{\phi}, \phi)$
is a Weinstein manifold!]
3) if $\Sigma^{c} M$ is an intersed holomorphic curve
then $\phi|_{Z}$ can have no intervir local maxima
and any maxima on $\partial \Sigma$ is not a critical point
 $(\theta|_{Z}$ is subharmonic)
The (Grouert):

(Grauert A complex manifold (M,J) is Stein (M,J) can be properly holomorphically embedded in C" for some N

<u>Note</u>: $\mathbb{C}^{N} \to \mathbb{R}^{:}(z_{i},...,z_{N}) \mapsto \mathbb{Z}|z_{z}|^{2}$ is plurisubharmonic so given MCCN as in Mas clearly get plurisubharmonic

so the hard part of the theorem is (=)

note: if X C CPⁿ is any complex submanifold and H C CP is a hyperplane then X-H is a Stein manifold

The (Cieliebak-Eliashberg):

If (M, W, V, P) a Weinstein manifold then there is a Stein structure on M such that its induced Weinstein structure is homotopic to (M, W, V, P)