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ABSTRACT. Using recent work on high dimensional Lutz twists and families of Weinstein structures
we show that any almost contact structure on a 5–manifold is homotopic to a contact structure.

1. INTRODUCTION

Though contact structures have been studied for quite some time we still do not know which odd
dimensional manifolds support such structures. Recall that (oriented) contact structures only exist
on odd dimensional manifoldsM2n+1 and are described as ξ = kerα where α is a 1–form for which
α ∧ (dα)n is a volume from on M . (We will always take M oriented and assume this volume form
gives the preferred orientation.) Noting that dα defines a symplectic form on ξ we see that a contact
structure gives a reduction of the structure group of TM to U(n)× 1 (more specifically choosing a
complex structure J on ξ that is compatible with dα gives the reduction and one may easily check
this reduction is independent of the choice of J or α). Any reduction of the structure group of TM
to U(n) × 1, or equivalently a choice of hyperplane field η in TM with a complex structure J on
η, is called an almost contact structure and the fundamental existence question in contact geometry
concerns whether or not almost contact structures always come from contact structures.

For open manifolds Gromov [15] showed that all almost contact structures are homotopic to
contact structures, but on closed manifolds much less is known. Previously we only had a complete
answer in dimensions 1 and 3. The 1 dimensional result is trivial. In dimension 3 almost contact
structures are equivalent to plane fields and so all oriented 3–manifolds M admit almost contact
structures. Martinet [20] showed that all closed oriented 3–manifolds admit a contact structure and
Lutz [19] showed that every plane field is homotopic to a contact structure. The main result of this
paper is to extend this existence result to 5–manifolds.

Theorem 1.1. On any closed oriented 5–manifold any almost contact structure (η, J) is homotopic, through
almost contact structures, to a contact structure ξ.

There have been many partial results towards this theorem. The first breakthrough was due to
Geiges [9] who showed that on simply connected 5–manifolds any almost contact structure was
homotopic to a contact structure. This result was reproven using open book decompositions by
van Koert in [23]. In the papers [12] and [13] Geiges and Thomas extended the existence results to
some 5–manifolds with finite fundamental group. In [11] Geiges and Stipsicz were able to prove
existence on some other 5–manifolds. The most recent breakthrough is due to Casals, Pancholi,
and Presas [1] who proved that all possible first Chern classes of almost contact structures can be
realized by contact structures on 5–manifolds. In particular, they established the above theorem
for manifolds without 2 torsion and gave a completely general existence result (that is any almost
contact 5–manifold admits some contact structure). (Upon receiving a draft of this paper Casals,
Pancholi, and Presas have informed the author that their arguments in [1] can be extended to obtain
the main theorem above.)

The proof of Theorem 1.1 involves the use of an open book decompositions of a manifold M .
In Section 3 we show that every almost contact structure on a closed oriented 5–manifold M can
be “supported” by an open book decomposition. The open book decomposition allows us to write
M as a neighborhood N = Y ×D2 of an embedded 3–manifold and its complement C that can be
expressed as a mapping torus of a 4–manifold X . We further break C into two pieces C′ and C′′

where C′ = D4 × S1 and C′′ is the mapping torus of X −D4. We then use a result of the author
and Pancholi [7] to put a contact structure on C′ that induces an overtwisted contact structure on
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the boundary of D4 × {θ} for each θ ∈ S1. We then use work of Cieliebak and Eliashberg [4] on
Weinstein manifolds to extend this contact structure over C′′. The final extension over N relies on
Eliashberg’s understanding of overtwisted contact structures on 3–manifolds in [5].

We note that this proof is relatively elementary in that the two most sophisticated tools that
it uses are the stable s-cobordism theorem (when quoting Quinn’s result below on the existence
of open book decompositions [21]) and a symplectic analog of the h-cobordism theorem due to
Cieliebak and Eliashberg [4].

We also note that most of the steps in the proof have obvious analogs in higher dimensions
except the last step concerning the extension of the contact structure over the neighborhood N of
the binding Y , which relies heavily on Eliashberg’s understanding of overtwisted contact structures
in dimension 3. So one might hope that a similar approach would yield a general existence result
in higher dimensions. This is essentially a program laid out by Giroux independently from the
work here, though the author does thank Giroux for comments that simplified the arguments in
Section 3.

Remark 1.2. In the proof of Theorem 1.1 we make the somewhat surprising observation that any
5–manifoldM has a fixed open book decomposition that supports (in a weak sense, see Section 3.3)
any almost contact structure on M and more generally any hyperplane field on M can, in some
sense, be thought of as a perturbation of the pages of the open book. For a more precise formula-
tion of this fact see Theorem 3.1. This observation is also true in higher dimensions but clearly far
from true for open book decompositions of 3–manifolds. The intuitive explanation for this counter-
intuitive fact is that the pages of open books in higher dimensional manifolds have more interesting
topology than those of 3–dimensional open books.

Acknowledgments: The author thanks Kai Cieliebak and Yasha Eliashberg for providing an ad-
vanced copy of [4] and especially thanks Cieliebak for several very helpful discussions concerning
Weinstein cobordisms. He additionally thanks David Gay, Emmanuel Giroux and Rob Kirby for
useful conversations and correspondence. The author is particularly grateful to Dishant Pancholi
who has made many helpful comments to improve this paper and helped to identify a potential
gap in the original version of this paper. This work was partially supported by NSF grant DMS-
0804820.

2. PRELIMINARY RESULTS AND RECOLLECTIONS

In this section we first recall the notion of an open book decomposition for a 5–manifold and
discuss a special open book decomposition on S5. We we then discus of a generalization of Lutz
twists on 5–manifolds and finish by recalling Eliashberg’s result on the space of overtwisted contact
structures.

2.1. Open book decompositions of 5–manifolds. An open book decomposition of a manifold M is
a pair (Y, π) where Y is a co-dimension 2 submanifold of M that has a product neighborhood
N = Y ×D2 in M and π : (M − Y ) → S1 is a fibration such that π|N−Y is the projection onto the
θ–coordinate of D2 where we give D2 polar coordinates (r, θ). We call Y the binding of the open

book decomposition and π−1(θ) a page of the open book.
There is another useful view of open books decompositions. If we are given a pair (X,φ) where

X is a compact manifold with boundary and φ : X → X is a diffeomorphism that agrees with the
identity map near ∂X , then we can construct a manifold as follows. Let Tφ be the mapping torus
of φ, that is Tφ = X × [0, 1]/ ∼ where (x, 1) ∼ (φ(x), 0) for all x ∈ X . Notice that ∂Tφ = Y × S1

where Y = ∂X . We now glue Y ×D2 to Tφ so that the product structures on the boundary agree.
This gives a manifold M(X,φ). We call (X,φ) an open book decomposition for a manifold M if M is
diffeomorphic to M(X,φ). Notice that the image of Y ×{(0, 0)} in M is the binding of an open book
decomposition as above and any open book decomposition as above can be constructed from a pair
(X,φ). We will use these notions interchangeably but note that when using the second definition
of an open book we must always keep in mind a fixed diffeomorphism between M and M(X,φ).

We have the following simple observation that we will use later.
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Lemma 2.1. Given open book decompositions (Xi, φi) of Mi, i = 1, 2, define X to be the boundary sum
X1♮X2 and φ to be the diffeomorphism ofX that restricts to φi onXi. ThenM(X,φ)

∼=M(X1,φ1)#M(X2,φ2).

2.2. An open book decomposition for S5. In this section we discusse a special open book de-
composition of S5 that we will need to “stabilize” open books of other 5–manifolds to have nice
properties that will be needed later.

Theorem 2.2. There is an open books (Ystab, πstab) for S5 with pageXstab the manifold (S2×S2)#(S2×S2)
with an open disk removed. Let φstab be the monodromy of this open book. There is a Morse function
fstab : Xstab → R for the page such that fstab and fstab ◦ φstab can be connected by a family of Morse functions
having only 0 and 2–handles.

Proof. In [22], Saeki showed there was an open book for S5 with the given page. We sketch the
argument here for the convenience of the reader. Given diffeomorphisms φ of Xstab that is the
identity on the boundary we see that the identity map I on the homology chains of Xstab and
φ∗ induce the same map on the homology chains in ∂Xstab. Thus I − φ∗ induce a map from
H2(Xstab, ∂Xstab) → H2(Xstab). Since Xstab can be build with just 0 and 2–handles one may eas-
ily check that the open book (X,φ) gives a homotopy sphere if I −φ∗ is an isomorphism. Using the
obvious product basis for H2(Xstab) the matrix

Φ =




0 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 0




defines an automorphism ofH2(Xstab) that preserves the intersection pairing. AsH1(Xstab) = 0 this
determines a map I − Φ: H2(Xstab, ∂Xstab) → H2(Xstab) that is easily seen to be an isomorphism.
A result of Wall [24] implies that there is a diffeomorphism φstab of Xstab that induces the Φ. Thus
(Xstab, φstab) give an open book decomposition for S5 which we denote by (Ystab, πstab).

One may easily show, cf. [17], that the diffeomorphism given in Wall’s theorem can be induced
by a sequence of 2–handle slides. More specifically, there is a family of handle decompositions
Ht, t ∈ [0, 1], of manifold Xt = Xstab that starts and ends with the same handle decomposition of
Xstab = X0 = X1. In addition each Ht only consists of 0 and 2–handles and the family describes
isotopies of the attaching regions and handles slides. We can use the handle decomposition of
Xt to describe a diffeomorphism φt : X0 → Xt and φ1 : Xstab → Xstab is a diffeomorphism that
induces the map Φ on H2(Xstab), that is φ1 can be take to be φstab. Now if fstab is a Morse function
on X0 = Xstab that corresponds to H0 then set ft = fstab ◦ φt. Thus we have a sequence of Morse
functions ft : Xstab → R that correspond to 2–handle slides and f1 = fstab ◦ φ1. �

2.3. A notion of high dimensional Lutz twists. Recall the standard contact structure ξstd on S3

is obtained as the set of complex tangencies to the unit S3 in C2. There is an overtwisted contact
structure ξot on C2 in the same homotopy class of plane field as ξstd. This follows from Eliashberg’s
classification of overtwisted contact structures [5], or can easily be constructed by performing a full
Lutz twist, see Section 2.4 below, on a transverse unknot in ξstd.

Proposition 2.3. There is a contact structure ξ on D4 × S1 such that ξ induces the overtwisted contact
structure ξot on ∂D4 × {θ} for each θ ∈ S1. More precisely, if αot is a 1–form for which ξot = kerαot then
in a neighborhood S3 × (1/2, 1]× S1 of the boundary of D4 × S1 the contact structure is given by

ξ = ker(Kdθ + tαot),

where t is the coordinate on (1/2, 1], θ is the coordinate on S1, and K is any positive constant. Moreover, ξ
is homotopic through almost contact structures to the almost contact structure coming from the tangents to
D4 × {θ}, for each θ ∈ S1, where we think of D4 as the unit disk in C2.

This theorem follows easily from a results of Pancholi and the author [7]. To state the result we
first establish some notation. Consider T 2 × R with coordinates (ϑ, ϕ, r) and the contact structure

ξT 2×R = ker(cos r dϑ+ sin r dϕ).
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We will think of ξ[a,b] as the contact structure obtained from ξT 2×R by restricting it to T 2× [a, b]. We

also denote T 2 × {r} by Tr.
Notice that T 2 × [0, π/2] has boundary T0 ∪ Tπ/2 and the characteristic foliation induced by

ξ[0,π/2] is given by a linear horizontal floatation on T0 and linear vertical foliation on Tπ/2. So if

we collapse the leave of the foliation on the boundary of T 2 × [0, π/2], or more precisely perform a
contact cut [18], the we obtain S3 and ξ[0,π/2] induces the standard contact structure on S3. Similarly

performing a contact cut on the boundary of T 2 × [0, 5π/2] will also produce S3 but this time with
the overtwisted contact structure ξot. (In particular it is easy to see that this contact structure is
obtained from the one above by a full Lutz twist.)

We now define a symplectic structure on a neighborhood of the boundary of Y × [0, 1], where
Y = T 2×[0, 1]. Using an identification of [0, 1] with [0, π/2] we construct a diffeomorphism φ0 : Y ×
{0} → T 2 × [0, π/2]. Then on (Y × [0, 1/4]) ∪

(
T 2 × ([0, 1/4] ∪ [3/4, 1])× [0, 1]

)
we let λ be t φ∗0α,

where t is the coordinate on [0, 1]. Similarly an identification of [0, 1] with [0, 5π/2] can be used to
build a diffeomorphism φ1 : Y × {1} → T 2 × [0, 5π/2]. Then on Y × [3/4, 1] we can define λ to be
t φ∗1α. If φ1 is chosen correctly, λ will be a well defined 1–form on a closed neighborhood of the
boundary of Y × [0, 1] such that dλ is a symplectic form with Y ×{0} concave, Y ×{1} convex and
(∂Y )× [0, 1] flat. It is well known that λ cannot be extended over all of Y × [0, 1] but if there was an
extension we could construct a contact from on Y × [0, 1]× S1. Pancholi and the author [7] proved
that this contact structure does exist.

Lemma 2.4 (Etnyre and Pancholi, 2011 [7]). With Y and λ as defined above, there is a contact structure
ξ on Y × [0, 1]× S1 so that near the boundary ξ = ker(Kdθ+ λ), where θ is the coordinate on S1 and K is
any positive constant. Moreover, the contact structure ξ is homotopic through almost contact structures to
ker(Kdθ + (t φ∗0α)).

With this lemma in hand we return to the proof of our main theorem of this section.

Proof of Proposition 2.3. Simultaneously performing a contact cut on ∂Y × {t} for each t gives a
contact structure on S3× [0, 1]×S1. We can glue D4×S1 with the contact structure Kdθ+λ, where
λ is the standard Liouville form on D4, to the lower boundary of S3 × [0, 1]× S1. This results in a
contact structure on D4 × S1 with the desired properties. �

2.4. Plane fields and contact structures on 3–manifolds. Let Y be a closed oriented 3–manifolds.
A contact structure ξ on Y is call overtwisted if there is a disk D embedded in Y that is tangent to ξ
along the boundary of D and at one point on the interior of D and is transverse to ξ elsewhere. The
disk D is called an overtwisted disk.

Recall that given any contact structure ξ on Y we can alway alter it to be overtwisted by a Lutz
twist. To define a Lutz twist let K be a knot in Y that is transverse to ξ. It is easy to show, for
example see [10], thatK has a standard neighborhood S and the boundary of S has a neighborhood
contactomorphic to (T 2 × [a, b], ξ[a,b]) for some a < b, where we are using the notation from the

previous section. Notice that one can replace the contact structure on this neighborhood with (T 2×
[a, b], ξ[a,b+2π]) to obtain a new contact structure on Y . We say that this contact structure is obtained
from ξ by a full Lutz twist along K . It is well known, see for example [10] for a nice exposition of
this, that the contact structure obtained from ξ by a full Lutz twist is homotopic as a plane field to
ξ; moreover, this homotopy can be done fixing the plane fields along K (which is called the core
of the Lutz tube). It is also simple to see that if full Lutz twists are performed parametrically on a
family of contact structure then the resulting family is homotopic to the original family (also fixing
the planes along the cores of the Lutz tubes).

We fix a base point p in Y and a plane P ⊂ TY . Then denote by Pp(Y ) the space of plane fields
on Y that agree with P at p. Let D be a disk in Y that is tangent to P at p (and p is on the interior
of D). We let Cot(Y ) be the space of contact structures on Y for which D and overtwisted disk. An
amazing insight of Eliashberg relates these spaces.

Theorem 2.5 (Eliashberg, 1989 [5]). The natural inclusion map

i : Cot(Y ) → Pp(Y ).
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is a homotopy equivalence.

3. ALMOST CONTACT STRUCTURES

In this section we study hyperplane fields and almost contact structures on 5–manifolds.

3.1. Hyperplane fields on 5–manifolds. LetM be an oriented 5–manifold. To study the homotopy
classes of hyperplane fields onM we consider the bundle associated to the tangent bundle TM with
fiber the Grassmann manifold of oriented 4–planes in R5:

G+(4, 5) // E

��

M.

Hyperplane fields on M correspond to sections of this bundle. So we are interested in studying the
homotopy classes of sections of this bundle. Throughout this section we will make no distinction
between a hyperplane field and a section of this bundle. Note that G+(4, 5) is diffeomorphic to
S4. (One may easily see this by noting that oriented hyperplanes are in one-to-one correspondence
with unit vectors in R5, where the correspondence comes from an inner product on R5.)

Studying the obstruction theory of this bundle we first observe that πn(G
+(4, 5)) agrees with

[Sn, G+(4, 5)], the set of homotopy classes of maps of Sn to G+(4, 5) (that is G+(4, 5) is n–simple).
In addition because TM is oriented it is well known that the action of π1(M) on πn(G

+(4, 5))
coming from the bundle E is trivial. Thus the obstruction to homotoping two sections of E over
the n–skeleton of M lies in Hn (M ;πn(G

+(4, 5))). Knowing that

πn(G
+(4, 5)) =





0 n < 4

Z n = 4

Z/2Z n = 5

it is clear that any section s1 can be homotoped to s2 on the 3–skeleton of M and the obstruction to
homotoping them together on the 4–skeleton is an element

d4(s1, s2) ∈ H4(M ;Z)

and is a primary obstruction. Moreover if s1 and s2 agree on the 4–skeleton the, non-primary,
obstruction to homotoping s1 to s2 over the 5–skeleton is an element

d5(s1, s2) ∈ H5(M ;Z/2Z).

Given a plane field ξ on a 3–manifold Y and an open book decomposition (Y, π) of a 5–manifold
M we can construct a hyperplane field as follows. Let N = Y ×D2 be a neighborhood of Y in M ,
so that π|(N−Y ) is just the projection to the θ–coordinate of D2. On N we take the hyperplane field

ker {f(r)dθ + g(r)α}

where α is a 1–form on Y that defines ξ, (r, θ) are polar coordinates on the unit disk D2, f is a non-
decreasing function equal to r2 near 0 and constantly 1 near 1, and g is a non-increasing function
equal to 1 near 0 and 0 near 1 for which f and g are never simultaneously zero. This hyperplane
field can be extended across (M −N) by ker dπ. Denote this hyperplane field H(ξ). It is clear that
H gives a well defined map from the set of plane fields on Y to the set of hyperplane fields on M .
Our main observation is that under certain hypothesis this map is onto.

Theorem 3.1. Let M be any closed oriented 5–manifold and (Y, π) any open book decomposition of M .
Then we have the following:

(1) The map H is well defined up to homotopy. That is if ξ and ξ′ are to homotopic plane fields on Y
then H(ξ) is homotopic to H(ξ′).

(2) If the pages of (Y, π) are handlebodies with handles of index 0,1 and 2, then any homotopy class of
hyperplane field is in the image of the map H defined above. More specifically, if η is a hyperplane
field on M then there is some plane field ξ on Y such that H(ξ) is homotopic to η.
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Remark 3.2. The obvious generalization of this theorem to higher dimensional manifolds is also
true and might be of use in trying to construct contact structures homotopic to almost contact
structures on higher dimensional manifolds.

Proof. The first statement is clear as we can apply the same construction used in defining H to the
homotopy between ξ and ξ′.

The second statement requires a bit more work. We begin by reinterpreting the obstruction
cohomology class d4. Let η and η′ be two hyperplane fields on M . Thinking of η and η′ as sections
of the bundle G+(4, 5) → E → M we homotope them so that they are transverse. Let

γ(η, η′) = {x ∈M |η(x) = η′(x)}

be the locus where η and η′ agree.

Lemma 3.3. With the notation above, the Poincaré dual of d4(η, η
′) is [γ(η,−η′)] ∈ H1(M ;Z).

Proof. We begin by recalling how to compute d4(η, η
′). We can assume that η and η′ agree on

the 3–skeleton of M . Now given a 4–cell D of M the sections η and η′ each give a map from
D → G+(4, 5) ∼= S4 that agree along the boundary. We can thus use η and η′ to define a map from
S4 → S4 buy using η on the upper hemisphere and η′ on the lower hemisphere. The degree of this
map is the value of d4(η, η

′) on the 4–cell D.
We may isotope η and η′ so that the 1–manifold γ(η,−η′) is disjoint from the 3–skeleton of M

and intersect the 4–skeleton transversely. It is clear that we may compute the degree of the above
mentioned map on D as the intersection number of D and γ(η,−η′). (You can pick a trivialization
of TM over D so that η, say, is constant, then γ(η,−η′) ∩ D is just the preimage of some point on
S4.) �

Lemma 3.4. Let M be a closed oriented 5–manifold with open book decomposition (Y, π) whose page is a
handlebody with handle of index 0,1 and 2. Fix a plane field ξ on a Y . As ξ′ ranges over all homotopy classes
of plane field on Y the class

d4(H(ξ), H(ξ′)) ∈ H4(M,Z)

ranges over all of H4(M ;Z).
In particular, every hyperplane field η on M is homotopic, over the 4–skeleton of M , to H(ξ′) for some plane
field ξ′ on Y .

Proof. Using Lemma 3.3 we prove the first statement by showing that [γ(H(ξ),−H(ξ′))] ranges
over all of H1(M ;Z) as ξ′ ranges over all homotopy classes of plane field on Y . To this end we first
observe that the inclusion map

i : Y →M

induces a surjection

i∗ : H1(Y ;Z) → H1(M ;Z).

To see this let X be a page of the open book (Y, π). A neighborhood V0 of X can be identified
with X × [0, 1] and V1 = M \ V0 is also homeomorphic to X × [0, 1]. Notice that V0 and V1 are
handlebodies with handles of index less than 3. So M is built from V0 by adding handles of index
greater than 2 (that is the handles in V1 turned upside down). Thus the inclusion of V0 into M
induces an isomorphism on the first homology H1(V0;Z) → H1(M ;Z). Of course the inclusion of
X into V0 is a homotopy equivalence so H1(X ;Z) ∼= H1(M ;Z). Finally notice that X can be build
from Y = ∂X by attaching 4–dimensional handles of index 2, 3 and 4 (the handles in X turned
upside down). Thus the inclusion map gives a surjection of H1(Y,Z) onto H1(X ;Z). The claim
follows.

We now define a map H̃ that is a slight variant of H . Recall in the definition of H we used the
neighborhood N = Y × D2 of Y in M , where D2 was the unit disk. We also had functions f(r)
and g(r) where f(r) = r2 near 0 and is constantly 1 near 1 and non-decreasing, and g(r) = 1 near
0 and is 0 near 1 and non-increasing. We now specify that g should be zero on only the interval
[1/2, 1]. Now choose g̃(r) to be a non-increasing function that is 1 near 0 and 0 near 1, but is 0 only

on [3/4, 1]. For the moment let f̃ = f , but we will perturb it later. Define H̃ in the same manner as
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H except use f̃ and g̃ in place of f and g. Notice that H(ξ) and H̃(ξ) are homotopic as hyperplane

fields. Moreover, on (Y × {(r, θ)|r ∈ [1/2, 3/4)}) ⊂ M , H(ξ) and H̃(ξ′) give disjoint section. Thus

H̃(ξ) can be perturbed, relative to the region (Y ×{(r, θ)|r ∈ [1/2, 3/4)}) ⊂M , so that it is transverse

to H(ξ) over the complement of Y × {(r, θ)|r < 1/2}. From now on we will denote by H̃(ξ) this
perturbed hyperplane field. Notice that H(ξ′) for any other plane field ξ′ agrees with H(ξ) on

the complement of Y × {(r, θ)|r < 1/2}. Thus H(ξ′) is transverse to H̃(ξ) on the complement of
Y × {(r, θ)|r < 1/2}.

We claim with the appropriate choice of f̃ and g̃, H(ξ′) will be transverse to H̃(ξ) on all of M

if ξ and ξ′ are transverse on Y . To achieve this we choose f̃ to be zero only on [0, 1/2] (it is still

non-decreasing and 1 near 1). It is now a simple exercise to see that H̃(ξ) and H(ξ′) are transverse
on Y × {(r, θ)|r < 1/2}. (Though the exercise is somewhat easier if one uses the dual picture to
think of the hyperplane fields as unit vector fields.)

Obstruction theory as discussed above shows ξ and ξ′ have a difference class d2(ξ, ξ
′) that ob-

structs homotoping them on the 2–skeleton of Y and it is Poincaré dual to the 1–dimensional ho-
mology class given by the locus where they agree, which we denote by γ′. From construction it

is clear that H̃(ξ) and H(ξ′) on Y × {(r, θ)|r < 1/2} only agree along γ′. So the Poincaré dual of

d4(H̃(ξ), H(ξ′)) is given by the homology class of γ′ ∪ γ′′ where γ′′ is a 1–manifold in the comple-
ment of Y × {(r, θ)|r < 1/2}. Notice that γ′′ is independent of ξ′. Moreover we know that by the
appropriate choice of ξ′ we can realize any homology class in H1(Y,Z) as the Poincaré dual of the
difference class between ξ′ and ξ. Thus we see that any element of H1(M ;Z) can be realized as the

Poincaré dual of the difference class d4(H̃(ξ), H(ξ′)) = d4(H(ξ), H(ξ′)).
For the last statement recall that the difference class d4 satisfies

d4(η1, η3) = d4(η1, η2) + d4(η2, η3).

Given a hyperplane field η the first part of the proof guarantees a plane field ξ′ such that

d4(H(ξ), H(ξ′)) = −d4(η,H(ξ)).

So we see that d4(η,H(ξ′)) = d4(η,H(ξ)) + d4(H(ξ), H(ξ′)) = 0. Thus H(ξ′) is homotopic to η over
the 4–skeleton of M . �

Returning to the proof of Theorem 3.1 we note that given any hyperplane field η on M we can
find some plane field ξ on Y such that H(ξ) is homotopic to η on the 4–skeleton of M . We are left
to see that ξ can be chosen so that the homotopy can be extended over the 5–skeleton. Recall from
above that if two hyperplane fields agree on the 4–skeleton then the obstruction to homotoping
them on the 5–skeleton is a class in H5(M ;Z/2Z) = Z/2Z.

We claim that if ξ and ξ′ are homotopic over the 2–skeleton of Y and their obstruction to ho-
motopy over the 3–skeleton is odd (this obstruction is an element of H3(Y ;Z) = Z and is well
defined modulo the divisibility of the Euler class of ξ), thenH(ξ) andH(ξ′) are homotopic over the
4–skeleton of M but d5(H(ξ), H(ξ′)) 6= 0. Thus if η is homotopic to H(ξ) over the 4–skeleton then
it will be homotopic to either H(ξ) or H(ξ′) over all of M .

To verify the claim we begin by choosing representatives of ξ and ξ′ that agree except on the
3–handle of Y . Thus we know that H(ξ) and H(ξ′) agree on the complement of N = Y ×D2. To
construct M from the complement of N we think of a handle decomposition of N , coming from

Y , turned upside down. Thus M is constructed from M −N by attaching a 2–handle, some 3 and
4–handles and a 5–handle. The 5–handle comes from the 3–handle of Y and thus we see that H(ξ)
and H(ξ′) agree on all of M except the 5–handle D5.

From the set up we know D5 is the product of the 3–dimensional 3–handle D3 with D2. The
plane fields ξ and ξ′ give maps from D3 to G+(2, 3) ∼= S2 that agree on the boundary of D3. The
obstruction to finding a homotopy of ξ to ξ′ is an element of H3(Y,Z) that evaluates on D3 to the
“Hopf invariant” of the map S3 → G+(2, 3) ∼= S2 given by ξ on the upper hemisphere of S3 and ξ′

on the lower hemisphere. Denote this map h : S3 → S2.
Similarly the hyperplane fieldsH(ξ) andH(ξ′) each give a map fromD5 ∼= D3×D2 toG+(4, 5) ∼=

S4 and they agree on ∂D4. The obstruction to finding a homotopy of the hyperplane field H(ξ) to
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H(ξ′) is the homotopy class of the mapH : S5 → S4 defined byH(ξ) on the upper hemisphere and
by H(ξ′) on the lower hemisphere.

We claim the map H : S5 → S4 factors through a map homotopic to the map obtained form
h : S3 → S2 by a “double suspension”. Recall that the suspension of a space X is the quotient
of X × [0, 1] by X × {0} and X × {1}. Given a function f : X → X ′ there is clearly an induced
suspension map S(f) : S(X) → S(X ′). It is well known, and easy to see, that Sn ∼= S(Sn−1). So
we are claiming that our map H factors through a map k : S5 → S4 that is homotopic to S2(h), in
other words there is a map k′ : S5 → S5 such that H = k ◦ k′. Moreover k′∗ : π5(S

5) → π5(S
5) is an

isomorphism. The Freudenthal suspension theorem implies that the double suspension map from
π3(S

2) → π5(S
4) is surjective (here we have ignored base points, but due to the simple connectivity

of the spaces their inclusion would not alter the statement). Thus, as π3(S
2) ∼= Z and π5(S

4) ∼= Z2,
we see that S2(h) is not null homotopic and represents the generator of π5(S

4). Thus k, which is
homotopic to S2(h), induces a surjective map k∗ : π5(S

5) → π5(S
4). As k′∗ gives an isomorphism

on π5(S
5) we see H∗ is surjective and hence H : S5 → S4 represents the generator of π5(S

4). Thus
d5(H(ξ), H(ξ′)) is the mod 2 reduction of 3–dimensional obstruction d3(ξ, ξ

′). This finishes the
proof.

So we are left to justify the claim about H and S2(h). We first note that the suspension can be
described in terms of joins. Specifically, given a space X its suspension is S(X) ∼= X ∗ S0. (Recall
the join X ∗ Y of X and Y is obtained from X × Y × [0, 1] where each of the sets X × {y} × {0}
and {x} × Y × {1} are identified to a point.) As we know that S0 ∗ S0 = S1 it is clear that the
double suspension can be written S2(X) = X ∗ S1. Now given a map f : X → Y the double
suspension map S2(f) : X ∗ S1 → Y ∗ S1 is constructed as follows. We begin by defining the map
X × S1 × [0, 1] → Y × S1 × [0, 1] by (x, θ, t) 7→ (f(x), θ, t). Composition with the quotient map
Y × S1 × [0, 1] → Y ∗ S1 we get a map X × S1 × [0, 1] → Y ∗ S1. This map clearly descends to a
map X ∗ S1 → Y ∗ S1 which we define to be S2(f).

In our case we start with the map h : S3 → S2 and the map H : S5 → S4. These maps are
defined with respect to some trivialization of the tangent space TY over the 3–handle D3 and of
the tangent space TM over D5, respectively. Recall D5 = D3 ×D2 and over D5 we have TM |D5

=
TYD3 ⊕TD2

D2 . Notice that the unit sphere S4 in R5 is naturally represented as the join of S2 and S1

where S2 is the unit sphere in the first 3 coordinates of R5 and the S1 is the unit sphere in the last
2 coordinates. Thus we me think of the S4–bundle in TM |D5 as a fiber wise join of the unit sphere
bundle in TY |D3 and the unit sphere bundle in TD2.

Recall that the S5 in the domain of H is obtained by gluing two copies of the 5–handle D5

together. Moreover, D5 = D3 × D2 where D3 is the 3–handle in Y and D2 is the fiber in the
neighborhood N of Y . We glue the two copies of D3 × D2 together in two stages. We first glue
along (∂D3)×D2. This yields S3 ×D2. Writing D1 and D2 for the two copies of D3 glued to form
D3 we see that S5 is obtained from S3×D2 by gluing D1×{θ} toD2×{θ} for θ ∈ ∂D2. In addition
we see that the join S3∗S1 is obtained fromS3×D2 (this is S3×S1×[0, 1]/ ∼ where each {p}×S1×{t}
is collapsed to a point) by collapsing each S3 × {θ} to a point. Thus we clearly see that there is a
map k′ : S5 → S5 obtained by thinking of the domain as two copies of D3 × D2 glued together
and the image space as S3 ∗ S1. (Specifically the first S5 is obtained from S3 × D2 by partially
collapsing each S3 × {θ} while the second is obtained by completely collapsing the spheres.) This
is clearly a degree 1 map and hence induces an isomorphism on the homotopy groups of S5. Below
we will denote S5 created via the first method by S5

1 and via the second method as S5
2 . Clearly

S2(h) : S5
2 → S4 and H : S5

1 → S4. We are now left to see that H = k ◦ k′ where k is homotopic to
S2(h).

Representing S4 as S2 ∗ S1 from the splitting of TM |D5 above we can consider “coordinates” on
S2 ∗ S1 to be (p, θ, t) ∈ S2 × S1 × [0, 1] as discussed above. Using coordinates (p, r, θ) on S3 ×D2,
where (r, θ) are polar coordinates on D2, we see them map H is given by

(p, r, θ) 7→

(
h(p), θ,

2

π
tan−1 f(r)

g(r)

)
.
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(To see this notice that we can map S2 × S1 × [0, 1] to the unit sphere in R5 by the map (p, θ, t) 7→
(p cos π

2 t, θ sin
π
2 t), where we think of S2 is the unit sphere in the first 3 coordinates of R5 and S1

as the unit sphere in the last 2 coordinates. Now the map H from S3 ×D2 to S4 ⊂ R5 is given by
(p, r, θ) 7→ (g(r)h(p), f(r)(cos θ, sin θ)). So if g and f are chosen so that g2+ f2 = 1 we get the above
representation of H when using the “join coordinates” on S4.)

The map H : S5
1 → S4 descends to a map k : S5

2 → S4 so that H = k ◦ k′. Now choosing

a homotopy from r 7→ 2
π tan−1 f(r)

g(r) to the identity map r 7→ r we have an induced homotopy

k : S5
2 → S4 to S2(h) : S5

2 → S4. Thus completing the proof. �

3.2. Almost contact structures. Recall an almost contact structure on an oriented 5–manifold M is
a reduction of the structure group of TM from SO(5) to U(2)× 1. This is equivalent to a choice of
homotopy class of hyperplane field η on M together with a homotopy class of complex structure J
on η. We will always think of an almost contact structure as a pair (η, J), up to homotopy.

To study the homotopy classes of almost contact structures on M we consider the bundle asso-
ciated to the tangent bundle TM with fiber SO(5)/U(2)

SO(5)/U(2) // E

��

M.

Homotopy classes of sections of this bundle correspond to homotopy classes of almost contact
structures. Using obstruction theory to understand the homotopy classes of sections of this bundle
we need to know the homotopy type of the fiber. To this end we recall that SO(5)/U(2) is dif-
feomorphic to CP 3, see for example [10]. Thus all the relevant homotopy groups are zero except
π2(SO(5)/U(2)) ∼= Z. From this we see that the first and only obstruction to homotoping one almost
contact structure to another is inH2(M ;Z). In particular, we have the following useful observation.

Lemma 3.5. If two almost contact structures on the same 5–manifold M are homotopic over the 2–skeleton
of M then they are homotopic.

3.3. Almost contact structures and open book decompositions. Recall that in Section 3.1 a map

H(Y,π) : {hyperplanes on Y } → {hyperplanes on M}

was assigned to an open book decomposition (Y, π) of a 5–manifold M . We say that an open book
(Y, π) supports an almost contact structure (η, J) if there is some hyperplane ξ on the binding Y
such that η is (homotopic to) H(Y,π)(ξ) and the plane field ξ is a complex sub-bundle of H(Y,π)(ξ)
on Y (that is ξ on Y is J invariant). Notice that this implies that there is a homotopy of (η, J) so
that η is transverse to Y and outside of a small neighborhood of Y is tangent to the pages of (Y, π)
and thus defines an almost complex structure on the pages.

Theorem 3.6. Given an almost contact structure (η, J) on a closed oriented 5–manifold, there is an open
book decomposition (Y, π) with pages having a handle decomposition with handles of index less than or equal
to two that supports the given almost contact structure.

Moreover there is an overtwisted contact structure ξ on Y such that H(ξ) = η and one can assume that
there is a neighborhood N = Y ×D2 of the binding Y such that η is tangent to the pages of the open book
outside of N and at each point of N the plane ξ is a J–complex sub-bundle of H(ξ).

To prove this proposition we will need a preliminary lemma.

Lemma 3.7. If J is a complex structure on the hyperplane field η then there is a C0–neighborhood of η
in the space of hyperplane fields such that J induces a complex structure for all hyperplane fields in this
neighborhood. Moreover, the complex structures are well-defined up to homotopy.

Proof. Given η choose any line field L on M that is transverse to η. Let O be a C0–neighborhood
of η in the space of hyperplane fields that consists of hyperplanes transverse to L. Note that L and
η can be used to define a projection p : TM → η. It is clear that at any point x ∈ M the projection
p maps η′x isomorphically onto ηx for any η′ ∈ O. Thus we can use p to pull J back form η to η′.
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The only choice made in this construction was the choice of L, but clearly as we vary L this only
changes the complex structures induced on η′ by a homotopy. �

Proof of Theorem 3.6. Quinn [21] proved that there is an open book decomposition (Y, π) ofM whose
pages have a handle decomposition with handles only of index less than or equal to two. Let (η, J)
be an almost contact structure onM . By Proposition 3.1 there is a hyperplane field ξ on Y such that
the induced hyperplane field H(ξ) is homotopic to η. Using Lemma 3.7 we can pull J back along
this homotopy so that H(ξ) also has a complex structure J ′. Thus (H(ξ), J ′) is an almost contact
structure that is homotopic to (η, J). To simplify notation we now assume our given almost contact
structure is (H(ξ), J).

We are left to see that we can arrange that ξ on Y is J–invariant. We will do this by altering H(ξ)
on the neighborhood N of the binding Y to construct a new almost contact structure and then show
that this is homotopic to (H(ξ), J) through almost contact structures.

Recall N = Y ×D2 where D2 is the unit disk in R2. We write D2 as the union D1/4 ∪ A1/4,1/2 ∪
A1/2,3/4 ∪ A3/4,1, where D1/4 is the disk of radius 1/4 and Aa,b denotes the annulus {(r, θ) : a ≤

r ≤ b}. We can homotope (H(ξ), J) so that it is independent of the coordinates on D2 near Y ×
{(0, 0)}. Now one can use a map from A3/4,1 to D that is the identity near the outer boundary of
the annulus, a diffeomorphism away from the inner boundary and collapses the inner boundary
to the origin, to pull (H(ξ), J) back to an almost contact structure on Y × A3/4,1, call the resulting
almost contact structure (η′, J ′). Notice that η′ on Y × {p} for any point on the inner boundary of
A3/4,1 is homotopic to TY ⊕ R (where we can take R to point in the radial direction if we like). We
can use this homotopy to extend η′ to a hyperplane field on A1/2,3/4 so that on the inner boundary
of this annulus the hyperplane field is TY ⊕ R. We can also use the homotopy to extend J ′ over
this annulus so that it is independent of the angular coordinate on the annulus.

To continue to define our almost contact structure we need to discuss complex structures on
TY ⊕ R. Recall that complex structures on a 4–dimensional bundle correspond to reductions of
the structure group from SO(4) to U(2) and thus correspond to sections of a principal SO(4)/U(2)
bundle. As SO(4)/U(2) is homotopy equivalent to S2 and the bundle TY ⊕ R is trivial, we see
that complex structures on this bundle correspond to maps Y → S2. We can concretely see this by
noting that a unit vector in the R direction of TY ⊕R will be mapped by the complex structure to a
unit vector in TY . The span of these two vectors is a complex line in TY ⊕R and there is a unique,
up to homotopy, complex structure on the orthogonal complement of this complex line. Thus a unit
vector field on Y , or dually an oriented plane field, determines the complex structure on TY ⊕ R.
Clearly there is some plane field, say ξ′, on Y that corresponds to J ′ on TY ⊕ R (thought of as a
hyperplane field along the inner boundary of Y ×A1/2,3/4). We can assume that ξ′ is an overtwisted
contact structure.

We can now define η′ onD1/4 using the form f(r) dθ+g(r)α′, whereα′ is a contact form for ξ′ and
f and g are functions analogous to the ones used in the definition of H(ξ) in Section 3.1. With the
appropriate choice of f and g this is a contact form on the interior ofD1/4 and the complex structure
discussed in the previous paragraph thought of as defined on η′ restricted to Y × ∂D1/4 extends to
a complex structure compatible the contact structure η′ on the interior of D1/4. In particular at any
point in Y ×D1/4 the plane field ξ ⊂ TM can be assumed to be a J ′–complex line in η′. Finally by
our choice of J ′ and ξ′ above we can extend η′ over Y ×A1/4,1/2 to be TY ⊕R and extend J ′ by the
homotopy from the paragraph above.

We finally note that η′ can be homotoped on Y × (A1/2,3/4 ∪A3/4,1) so that it is TY ×R at every
point. Thus η′ is homotopic to H(ξ′) and the complex structure J ′ has the properties stated in the
theorem. We are left to see that (H(ξ′), J ′) is homotopic to (H(ξ), J). To this end notice that if U is a
neighborhood of a page of the open book (Y, π) then M has a handle decomposition with U being
the union of 0, 1, and 2–handles and the other handles being index 3 and above. Since (H(ξ′), J ′)
and (H(ξ), J) agree along the cores of the 0, 1 and 2–handles we see from Lemma 3.5 that they are
homotopic on all of M . �
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4. COBORDISMS

This section consists of two subsections. In the first we recall the notions of Weinstein cobordisms
and Cieliebak and Eliashberg’s “Weinstein flexibility results”. The following subsection examines
Morse functions on the pages of open book decompositions of 5–manifolds.

4.1. Weinstein cobordisms and flexibility. A cobordism W is an compact n–manifold with bound-
ary ∂W = −∂−W ∪ ∂+W . We say that W is a cobordism from ∂−W to ∂+W . A Morse cobordism is
a pair (W, f) where W is a cobordism and f : W → R is a Morse function having ∂±W as regular
level sets.

Recall that a 1–form λ on a manifold W is called a Liouville form if dλ is a symplectic form. Given
such a 1–form there is a unique vector field v such that ιvdλ = λ. This vector field is called the
Liouville vector field associated to λ. Notice that if ω = dλ is a symplectic structure on W then λ can
be recovered from v and ω by λ = ιvω. We call (ω, v) a Liouville structure on W if dιvω = ω.

A Weinstein cobordism is a tuple (W,ω, v, f) whereW is a compact cobordism, (ω, v) is a Liouville
structure on W so that v points out of W along ∂+W and into W along ∂−W , and f is a Morse
function on W that is constant on each boundary component and for which v is a gradient-like
vector field. Recall v is gradient-like for f if there is some constant δ > 0 and some metric so that

df(v) ≥ δ(|v|2 + |df |2).

It is well known, see for example [4], that the Weinstein structure gives W a handle decom-
position with handles of index less than or equal to half the dimension of W . We also note that
ιvω|∂±W is a contact form on ∂±W and thus Weinstein cobordisms are cobordisms between contact
manifolds.

Cieliebak and Eliashberg define a flexible Weinstein cobordism on a 4–manifold W to be one
with only 0 and 1–handles or one whose lower boundary is an overtwisted contact 3–manifold
and all the 2–handles are attached along Legendrian knots that have overtwisted disks in their
complement.

Theorem 4.1 (Cieliebak and Eliashberg 2012, [4]). Let (W, f) be a 4–dimensional Morse cobordism such
that f has no critical points of index larger than 2. Let η be a non-degenerate 2–form on W and w a vector
field near ∂−W such that (η, w, f) is a Weinstein cobordism structure on some neighborhood N of ∂−W .
Suppose that the contact structure induced by ιwη on ∂−W is overtwisted. Then there is a flexible Weinstein
cobordism structure (ω, v, f) on W such that

(1) (ω, v) = (η, w) on some neighborhood N ′ of ∂−W , and
(2) the non-degenerate 2–forms ω and η are homotopic on W relative to N ′.

We now discuss a slight refinement of the above theorem that follows directly from the proof of
that theorem, [3]. We first establish some notation. A relative cobordism W is a compact n–manifold
with boundary ∂W = ∂−W ∪ ∂+W ∪ ∂vW where ∂vW ∼= −[0, 1] × ∂(∂−W ) ∼= [0, 1] × ∂(∂+W ).
We say W is a relative cobordism from the manifold with boundary ∂−W to the manifold with
boundary ∂+W . We say the vertical boundary of W is ∂vW . (There is of course an analogous notion
of relative Morse cobordism.)

A relative Weinstein cobordism structure on a relative cobordism W is a triple (ω, v, f) as in the
ordinary definition of Weinstein cobordism and in addition, f must have no critical points near
∂vW and v must be tangent to ∂vW . As in the case of Weinstein cobordisms a relative Weinstein
cobordism is flexible if it only has 0 and 1–handles or if on its lower boundary the induced con-
tact structure is overtwisted and all the 2–handles are attached along Legendrian knots that have
overtwisted disks in their complement.

Theorem 4.2 (Cieliebak and Eliashberg 2012, [3, 4]). Let (W, f) be a 4–dimensional relative Morse
cobordism such that f has no critical points of index larger than 2. Let η be a non-degenerate 2–form on W
and w a vector field defined near ∂−W ∪ ∂vW such that (η, w, φ) is a Weinstein cobordism structure on
some neighborhood N of ∂−W and on some neighborhood Nv of ∂vW . Suppose that the contact structure
induced by ιwη on ∂−W is overtwisted. Then there is a flexible Weinstein cobordism structure (ω, v, f) on
W such that
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(1) (ω, v) = (η, w) on some neighborhood N ′ of ∂−W and N ′
v of ∂vW (N ′ can be any subset of N on

which (η, w) gives a Weinstein cobordism structure and similarly for N ′
v and Nv), and

(2) the non-degenerate 2–forms ω and η are homotopic on W relative to N ′ ∪N ′
v .

A Weinstein homotopy on a cobordismW is a smooth family of Weinstein structures (ωt, vt, ft), t ∈
[0, 1], were we allow the functions ft to have birth-death type degenerations (that is, they form a
generic family of functions), and (ωt, vt) is a smooth family of Liouville structures on W . We now
state a slight strengthening of Cieliebak and Eliashberg’s Weinstein flexibility theorem from [4].
Just as for Theorem 4.2 above, the proof of this is the same as for the non-relative version in [4].

Theorem 4.3 (Cieliebak and Eliashberg 2012, [3, 4]). Let (ω0, v0, f0) and (ω1, v1, f1) be two flexible
Weinstein structures on a 4–dimensional relative cobordism W from an overtwisted contact structure on
∂−W to some contact structure on ∂+W . Let

(1) ft, t ∈ [0, 1], be a Morse homotopy without critical points of index greater than two, and
(2) βt, t ∈ [0, 1], be a homotopy of non-degenerate 2–forms connecting ω0 and ω1 such that there are

neighborhoods N of ∂−W and Nv of ∂vW and vector fields wt defined on N ∪ Nv connecting
v0|N∪N ′ to v1|N∪N ′ such that (βt, wt, ft) has the structure of a relative Weinstein cobordism when
restricted to N and when restricted to Nv.

Then there are sub-neighborhoodsN ′ of ∂−W inN andN ′
v of ∂vW inNv and there is a homotopy (ωt, vt, ft), t ∈

[0, 1], of Weinstein structures agreeing with (βt, wt, ft) on N ′ ∪N ′
v, such that the paths of 2–forms βt and

ωt, for t ∈ [0, 1], are homotopic relative to N ′ ∪N ′
v and the endpoints.

4.2. Open books and stabilization. Let (Y, π) be an open book decomposition of a closed oriented
5–manifold M . Let N = Y × D2 be a closed neighborhood of Y in M . We can think of π as a
fibration of M \N (and π extends over N − Y by projection to the θ–coordinate of D2).

We denote the pages (that is fibers of π : (M \N) → S1) of the open book byXθ = π−1(θ). Fixing
some θ0 ∈ S1, notice that

(M \N) \Xθ0
∼= X × [0, 1]

where X = Xθ0 . Moreover there is some diffeomorphism φ : X → X that is the identity near ∂X
so that the mapping torus

Tφ = X × [0, 1]/(x, 1) ∼ (φ(x), 0)

is diffeomorphic to M \N .
Let f is a Morse function for Xθ0 . We denote f on X × {0} by f0 and think of φ∗f is a Morse

function on X × {1}, which we denote by f1.

Theorem 4.4. Given an open book (Y, π) for a closed oriented 5–manifoldM and a Morse function f : X →
R on a page of the open book with critical points of index less than or equal to 2, there is another open book
(Y ′, π′) with monodromy φ′ and Morse function f ′ : X ′ → R on its pages so that, in the notation above,
whenM \N ′ is cut open along the pageX ′ to obtainX ′× [0, 1] the Morse function f0 = f ′ onX ′×{0} and
f1 = φ′∗f ′ on X ′ × {1} can be extended to a family of functions ft : (X ′ × {t}) → R, t ∈ [0, 1], satisfying
the following:

(1) ft is either a Morse function or has a birth/death degenerate critical point,
(2) no ft has critical points if index larger than 2,
(3) each ft has a unique index 0 critical point,
(4) the index 0 critical is constant in t and it can be connected to the boundary by a gradient like flow

line that is also constant in t and φ′ fixes a neighborhood of the index 0 critical point and flow line.

Proof. Let f0 = f and f1 = f ◦ φ. Let ft, t ∈ [0, 1], be a generic family of functions connecting f0
to f1. It is well known, see [2], that such a family has the following structure. For all but finitely
many {t1, . . . , tk} ⊂ (0, 1) the functions f are Morse functions whose critical points all have distinct
values. At each ti there are either precisely two critical points with the same value or all critical
points have distinct values, but one of the critical points is a birth or death point.

The Cerf graphic for the family {ft} consists of the points (t, u) ∈ [0, 1] × R where u is a critical
value of ft. It is now a standard argument using manipulations of the Cerf graphic, see [2, 16],
that we can alter ft relative to f0 and f1 so that there are no births or deaths of index 0 or 4 critical
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points. Thus ft has a unique index 0 critical point for all t. One can isotope φ and then the functions
{ft}, relative to f0 and f1, so that the critical point and a gradient-like flow line is fixed for all t;
moreover, one can further isotope φ and then the functions relative to f0 and f1 so that they all
agree on a neighborhood of the index 0 critical point and flow line.

We are left to show how to remove the index 3 critical points. We will give a modification of
Fenn and Rouke’s extension [8] of Kirby’s arguments in [16] to the non-simply connected setting.
We will be considering the family Xt of cobordisms upside down. That is we use the functions
{−ft} so in order to eliminate the index 3 critical points of the {ft} we will eliminate the index 1
critical points of the {−ft}.

We begin by identifying a product neighborhood N = (∂X)× [a, b] of ∂X so that ∂X = (∂X)×
{a} and isotoping φ so that it is the identity map on N . We can also assume that f |N : (∂X) ×
[a, b] → [a, b] is just the projection map (and thus −f0 and −f1 will also be the projection map when
restricted to N ). We will denote the copy of N in Xi by Ni, i = 0, 1.

Following Kirby we can modify {−ft} so that all the index 1 critical points occur as shown on
the left of Figure 1. Looking at the bottom most line of index 1 critical points we can isotope {−ft}

t = 0 t = 1 t = 0 t = 1

X X

index 1 critical points

FIGURE 1. On the left, the birth and death of index 1 critical points of ft. On the
right we have moved the birth death points for the lowest index 1 critical point
across the left and right boundary of the Cerf diagram.

so that the birth and death points are pushed past the edge of the Cerf graphic as shown on the
right of Figure 1. We can assume that the canceling 1/2–handle pair in X0 and X1 is contained a
small 4–ball B0 ⊂ N0 and B1 ⊂ N1, respectively, where B0 = B1.

More precisely, we can assume that an index 1–handle, h1i and canceling index 2–handle, h2i are

attached to a 3–ball B̃i in (∂X)× {c} ⊂ Ni, for some c ∈ (a, b) and i = 0, 1; and moreover B̃0 = B̃1.

The attaching sphere for h20 is a circle A0 that is the union of two arcs a01 and a02 with a01 ⊂ B̃0 and

a02 contained in h10. Let γ0 be an arc in B̃0 that connects the two components of the attaching region
of h10 and is parallel to a1. There is an arc γ′0 in h10 that is parallel to the core of h10 and completes
γ0 into a circle C0. Notice that the 2–handle h20 shows that the circle C0 is null-homotopic and in
particular bounds an embedded disk D0.

Moving through the cobordisms (Xt,−ft) the attaching region of the 1–handle changes by an
isotopy in (∂X) × {c} (since it is the bottom most 1–handle it does note slide over the other 1–
handles). This can be extended to an ambient isotopy of (∂X) × {c} and thus we may push γ0 to
a curve γ1 in (∂X) × {c} ⊂ N1. We can further extend this ambient isotopy to X so that D0 can
be pushed to the disk D1 in X1. In particular we get simple closed curves Ct in Xt. Identifying X
with X0 we let X ′ be the result of surgering C0 in X . This will replace the 1–handle (that is index
1 critical point) with a 2–handle (that is index 2 critical point). We can use the circles Ct to surger
all the Xt simultaneously to get X ′

t that fit together to form X ′ × [0, 1]. Moreover the functions −f ′
t

induced from the −ft and this surgery have one less critical point of index 1. We claim that

(1) X ′ = X#(S2 × S2)
(2) we may extend φ to a diffeomorphism φ′ of X ′ and
(3) we may still assume that f ′

1 = f ′
0 ◦ φ

′.
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Once we establish these three claims we will see how to alter the pair (X ′, φ′) to an open book
decomposition (X ′′, φ′′) of M with the desired properties.

We first observe that since h10, h20 and γ0 are attached in B0 and so the surgery on C0 with the
appropriate framing in X0 clearly results in X0#(S2 × S2). Since we can surger all the Ct in Xt

(using the same framing) at the same time and preserve the product structure (we could interpret
this as surgering the annulus that is formed as the union of the Ct in X × [0, 1]) we see that the
surgered family of cobordisms X × [0, 1] becomes X ′ × [0, 1] where X ′ = X#(S2 × S2) and thus
establish Claim (1). We note that we can extend the functions ft restricted to the complement of the
surgered regions to the surgery regions to obtain new functions f ′

t .
We now establish Claims (2) and (3) by analyzing the curve C1. Notice that C1 runs over the

1–handle h11 and no other 1–handles (again since we are considering the bottom most 1–handle it
does not slide over the other 1–handles). In particular C1 = γ1 ∪ γ

′
1, where γ′1 is the analog of γ′0

that runs over the 1–handle h11 in X1.
The curve C1 bounds the disk D1 in N1 = (∂X1)× [a, b] and so is null-homotopic. The 2–handle

h21 is attached along a curveA1 = a11∪a
2
1 where a11 is in B̃1 and a12 is in the handle h11. The arcs a11 and

γ1 can be connected in (∂X1)× {c} to from a simple closed curve c1. The 2–handle h21 can be used
to show that C1 and c1 are isotopic and thus c1 is null-homotopic in (∂X1)×{c} (since (∂X1)×{c}
is homotopy equivalent to N1). We can use this null-homotopy to isotope γ1 in (∂X1)× {c} so that
it is parallel to a11 (of course this isotopy may cross a11). The family of functions −ft for t ∈ [0, 1]
can be extended to a family for t ∈ [0, 2] that is constant for t ∈ [1, 2]. The isotopy above allows
us to extend Ct, t ∈ [0, 1] to a family of curves Ct in Xt for t ∈ [0, 2] so that −f2 = −f0 ◦ φ and
C0 = φ(C2). Thus the Ct form a torus in the mapping torus of φ and we can perform surgery on Ct

in Xt simultaneously for all t. Reparameterizing the interval [0, 2] establishes Claims (2) and (3).
Given X ′

t, −f
′
t and φ′ as above we construct X ′′ by connect summing X ′ with S2 × S2. More

specifically we add two 2–handles to X ′ to obtain X ′′ = X ′#S2 × S2. Since these 2–handles are
attached to ∂X ′ and φ′ is the identity map here we can clearly extend φ′ over X ′′. Moreover we can
extend the −f ′

t over X ′′ to obtain Morse functions on X ′′
t = X ′′ that satisfy f ′′

1 = f ′′
0 ◦ φ′.

Recall that X ′′ = X#Z where Z = S2×S2#S2×S2. Using Theorem 2.2 we can perform handle
slides on the Z part of X ′′, encoded by Morse functions f ′′

t , t ∈ [1, 2], to obtain a diffeomorphism
ψ : X ′′ → X ′′ that is the identity away from Z and gives the monodromy for S5 described in the
theorem. Thus setting φ′′ = φ′◦ψ we have a diffeomorphism ofX ′′ and a family of Morse functions
f ′′
t , t ∈ [0, 2], such that f ′′

2 = f ′′
0 ◦ φ′′. Moreover it is clear that (X ′′, φ′′) describes the open book

decomposition obtained from (X,φ) by boundary summing with the open book from Theorem 2.2.
That is (X ′′, φ′′) is an open book forM#S5 according to Lemma 2.1. Moreover the Morse functions
f ′′
t have one less 3–handle than ft. Thus continuing the above construction for each 3–handle in ft

we eventually arrive at an open book and Morse functions as described in the theorem. �

5. ALMOST CONTACT STRUCTURES ARE HOMOTOPIC TO CONTACT STRUCTURES

We are now ready to assemble the pieces discussed above to prove that an almost contact struc-
ture on a 5–manifold can be homotoped to a contact structure.

Proof of Theorem 1.1. Let (η, J) be any almost contact structure on the closed oriented 5–manifold
M . Let (Y, π) be an open book decomposition for M with pages having no handles of index larger
than two. Theorem 4.4 allows us to assume that there is a Morse function f on a page of (Y, π) so
that f and f ◦ φ, where φ is the monodromy of (Y, π), can be connected by a family of functions as
described in the theorem. By Theorem 3.6 there is an overtwisted contact structure ξ on Y such that
the hyperplane field H(ξ) is homotopic to η and using the homotopy we can think of η as H(ξ) and
J as a complex structure on H(ξ). Thus J induces an almost complex structures Jθ on the pages
Xθ = π−1(θ), θ ∈ S1, of (Y, π).

We break M into several parts. Let N = Y × D2 be a neighborhood of the binding Y in M , as
in Theorem 3.6. Let C = M \ N be the complement of the interior of N . We can think of π as a
fibration C → S1 (that extends over N − Y as projection onto the θ–coordinate of D2). By a slight
abuse of notation we will refer to the fibers of π : C → S1 as Xθ and Jθ will be the almost complex
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structures on Xθ. Letting X = Xθ0 for some fixed θ0 ∈ S1 we can write

C = X × [0, 1]/(x, 1) ∼ (φ(x), 0)

for some diffeomorphism φ : X → X that is the identity near the boundary of X . According to
Theorem 4.4 we can write X as a union of X ′ and X ′′ where X ′ is a neighborhood of the fixed
index 0 critical point of f : X → R and X ′′ = X \ X ′ is the complement of the interior of X ′;
moreover, φ is the identity on X ′. Thus we may decompose C as

C = C′ ∪ C′′,

where C′ = D4 × S1 is the mapping torus of φ|X′ and C′′ is the mapping torus of φ|X′′ .
Glancing at Steps 1 and 2 below will convince the reader that is is relatively easy to create a

contact structure on C (using Proposition 2.3 for C′ and Theorem 4.3 for C′′). However, it is not
easy to extend this over N . To achieve this extension we need to be more careful in Steps 1 and 2.
For this reason we need to further decompose X ′′. More specifically, we will show below that there
is a cylinder W ′ = D3 × [0, 1] in X ′′ that breaks X ′′ into two relative cobordisms X ′′ = W ′ ∪W
where W is a relative cobordism from D3 to Y \ B (where B is a ball in Y ). Moreover φ is the
identity on X ′ and W ′, the complex structure J restricted to X ′ is standard and restricted to W ′

is compatible with (part of) the symplectization of the standard contact structure on the 3–ball D3.
Moreover we have a Morse function f : X ′′ → R that satisfies the properties in Theorem 4.4 and
has a gradient like vector field that is non-zero on W ′ and tangent to ∂W ′ ∩ ∂W .

We begin by constructing a model situation. LetB be the ball of radius 1 in C
2 with the standard

complex structure. The complex tangencies to S3 = ∂B give the standard contact structure ξstd on
S3. Let D3 be a small ball in S3 = ∂B on which the contact structure is standard (i.e. a Darboux
ball). Gluing D × [1, 2] to B where D × {1} is identified with D ⊂ ∂B gives another ball R and
using a portion of the symplectization of (ξstd)B we can extend the standard symplectic structure
and complex structure on B to all of R. Denote this complex structure J ′

We now carefully construct the decomposition C′ ∪ C′′ on C. There is some neighborhood U of
∂X such that φ is the identity map on U and hence each page Xθ has a corresponding neighbor-
hood Uθ that can be identified with U . In particular, U ′ = ∪θUθ is a neighborhood of ∂C in C and
is diffeomorphic to U × S1. We can assume that U ∼= Y × [0, 2] and the construction in Theorem 3.6
allows us to assume that under the identifications of U with Uθ the complex structure Jθ is inde-
pendent of θ on U . Again referring to the proof of Theorem 3.6, Y ×{t} in each Uθ is Jθ convex and
the Jθ complex tangencies to Y × {t} are ξ (recall that ξ is the overtwisted contact structure on Y
such that η = H(ξ)).

Looking at the proof of Theorem 4.4 we can assume the ball X ′ is a small neighborhood of a
point in U ′. Moreover we can take an arc γ from ∂X ′ to ∂X that is transverse to all the Y × {t}
in U . Clearly there is a diffeomorphism from R, constructed above, and X ′ union a neighborhood
of γ so that B maps to X ′ and D × [1, 2] maps to a neighborhood of γ. We can also arrange that
D×{t} maps to a ball in Y ×{t} and by (a parametric version of) Darboux’s theorem the J ′–complex
tangencies to D × {t} in R map to the J–complex tangencies to the ball in Y × {t}. We can now
homotope, if necessary, the complex structure J so that it agrees with J ′ on the image of R and the
complex tangencies to Y × {t} are not changed for t ∈ (1, 2] (but we might change the complex
tangencies on [0, 1]). Since J is θ–invariant in U ′ we can clearly arrange this on each page Xθ. We
now set W = X ′ \ R and W ′ = D × [1, 2] to get the desired decomposition of X ′′ and notice that
Theorem 4.4 still gives the desired Morse function.

Step 1: The contact structure on C′. Proposition 2.3 gives a contact structure ζ on C′ = D4 × S1 such
that ζ induces the overtwisted contact structure ξot on ∂D4 × {θ} for each θ ∈ S1. The proposition
also gives the following specific form for the contact structure near ∂C′: if αot is a 1–form for which
ξot = kerαot then in a neighborhood S3 × (1/2, 1] × S1 of the boundary of D4 × S1 the contact
structure is given by

ζ = ker(Kdθ + tαot),
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where t is the coordinate on (1/2, 1], θ is the coordinate on S1, and K is any positive constant.
Proposition 2.3 allows us to arrange that ker(αot) is standard on the disk D3 where W ′ intersects
∂X ′.

We note that ξot is homotopic to ξstd on S3 relative to the disk D3 and thus there is a homotopy
of the almost complex structure on (D4 = X ′)∪X ′′, relative to W ′, so that ζ ∩ (∂D4×{θ}) is the set
of complex tangencies to ∂D4 = ∂−X

′′. By Proposition 2.3, ζ is homotopic, through almost contact
structures, to ker(Kdθ + λ), where λ is a primitive for the standard symplectic form on D4. And
this contact structure is homotopic to the almost contact structure η′ coming from the tangencies to
B4 (with the almost complex structure above).

Step 2: Extending the contact structure to C′′. Recall that

C′′ = X ′′ × [0, 1]/(x, 1) ∼ (φ(x), 0).

In addition X ′′ = W ′ ∪W and we can think of W ′ as part of the symplectization of the standard
contact structure on a 3–ball D3, that is W ′ = D3 × [1, 2] and if α is a contact form for the standard
contact structure on D3 then d(tα) is a symplectic form on W ′ and it is compatible with the almost
complex structure J . Thus we see that W ′ × S1 ⊂ C′′ already has a contact structure given by
ker(K dθ + α). Note also that (d(tα), v = ∂t, f |W ′) gives W ′ the structure of a relative Weinstein
cobordism.

We are left to consider
W × [0, 1]/(x, 1) ∼ (φ(x), 0).

We will denote W × {t} by Wt and the almost complex structure on Wt by Jt.
Recall that f and f ◦ φ are connected by a family of functions as in Theorem 4.4. Thinking of

f as a Morse function on W0 and f ◦ φ as a Morse function on W1 the family of functions from
Theorem 4.4 can be thought of as giving functions ft : Wt → R. (We are of course considering the
restriction of f to W , but leave this out of the notation for convenience.)

Recall that Jt are all the same near the lower boundary ∂−Wt so the complex tangencies on
S3 = ∂−Xt give the standard overtwisted contact structure ξot. In addition all the Jt are the same
near the vertical boundary ∂vW . By extending W into W ′ and X ′ slightly we can assume that
there is a neighborhood of ∂−W that has the structure of a Weinstein cobordism and there is a
neighborhood of ∂vW that has the structure of a Weinstein cobordism.

Recall that for any almost complex structure the space of compatible non-degenerate 2–forms is
contractible. Thus we can use the almost complex structures Jt to find a path βt of non-degenerate
2–forms on Wt such that β1 = φ∗β0. Moreover we can assume that βi agrees with the 2–forms
defining the Weinstein cobordism structures on the neighborhoods of ∂−Wt and ∂vWt.

We now claim that there are vector fields vi on Wi, i = 0, 1 such that (φ−1)∗v1 = v0 and we can
assume that (β0, v0, f0) and (β1, v1, f1) are flexible Weinstein structures onW0 andW1, respectively.

To see this we first note that via homotopy we can assume that βt and ft are fixed near t = 0 and
t = 1. Now recall that Theorem 4.2 says that there is a homotopy of β0 to a symplectic form ω and
there exists a vector field v such that (ω, v, f0) is a flexible relative Weinstein cobordism structure
on W0. We can now extend W × [0, 1] to, say, W × [−ǫ, 1], for some ǫ > 0, and use the homotopy
of 2–forms between β0 and ω to define non-degenerate 2–froms on Wt for t ∈ [−ǫ, 0]. We can also
extend ft so that it is constant on [−ǫ, 0]. Moreover pulling back the homotopy of 2–forms via φ we
can also extend our βt and ft over [1, 1 + ǫ]. We now have (βt, ft) defined for all t ∈ [−ǫ, 1 + ǫ] so
that the structures at the endpoints, together with v and φ∗v, define relative Weinstein cobordism
structures on W . Moreover all the properties from Theorem 4.4 for the functions ft are unchanged
andW × [−ǫ, 1+ ǫ] can be used to recoverC′′. Thus re-parameterizing [−ǫ, 1+ ǫ] to [0, 1] establishes
the claim. (Notice that the homotopy of the 2–forms can be taken to be fixed in a neighborhood of
∂−W ∪ ∂vW .)

Noting that ft, t ∈ [0, 1], is a Morse homotopy without critical points of index greater than 2, we
can now apply Cielieback and Eliashberg’s theorem, Theorem 4.3 above, to get a path (ωt, vt, ft),
t ∈ [0, 1], of Weinstein structures such that ωt is homotopic to βt relative to the end points and a
neighborhood of ∂−W and ∂vW . Now set λt = ιvtωt and consider the 1–form

α = Kdt+ λt
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on W , where K is some constant. Note

α ∧ dα ∧ dα = K dt ∧ dλt ∧ dλt + 2 dt ∧
dλt
dt

∧ λt ∧ dλt.

So for any K sufficiently large, α defines a contact from on W × [0, 1] that extends the one on
W ′ × [0, 1] and clearly descends to a contact from on C′′. Since we have a precise formula for the
contact form near ∂−X×S1 ⊂ C′′ that agrees with the one near ∂C′ ⊂ C′ we can clearly extend the
contact form from Step 1 over C′′ using α. We denote the associated contact structure ζ. Moreover
the contact structure ζ is clearly homotopic through almost contact structures to the tangents to the
pages of the open book on C′′ (just let the constant K go to infinity).

We wish to use Eliashberg’s computation of the homotopy type of overtwisted contact structures,
Theorem 2.5. To this end we study the loop of contact structures ξθ = ker(λθ) on Y . First notice
that the homotopy of 1–forms from the βt, compatible with the Jt, to the symplectic forms ωt, can
be covered by a homotopy of almost complex structures (Jt)s, s ∈ [0, 1]. We can arrange that the
complex structures (Jt)1 that are compatible with ωt also have ξθ as the set of complex tangencies
to Y = ∂+X

′′.
The original almost complex structures on Xθ induced the constant loop of plane fields ξ on Y

as the complex tangencies to ∂+X
′′
θ = Y . The homotopy of almost complex structures on (Jt)s

induces a homotopy of this loop to the loop ξθ = ker(λt). Moreover this loop is constant on the
ball ∂+W

′ ⊂ Y . Thus ξθ is homotopic to a constant loop of plane fields in the space Pp(Y ) (for any
p ∈ ∂+W

′). (We are using the notation from Section 2.4.) To apply Theorem 2.5 we need to see that
we can assume that ξθ have a fixed overtwisted disk through p.

Step 3: Create a fixed overtwisted disk in each fiber of ∂C. We may identify a neighborhood N ′′ of ∂C
in C with (1/2, 1]× Y × S1. Under this identification the contact form α can be written Kdθ+ sαθ,
where s is the coordinate on (1/2, 1], θ is the coordinate on S1 and αθ is a contact form on Y for each
θ. Moreover in D3 = ∂+W

′ ⊂ Y the contact forms are independent of θ and induce the standard
contact structure on the ball. Let S be a solid torus in D3 that contains the point p discussed in the
previous paragraph and let T 2 × [0, 1] be a neighborhood of ∂S that does not contain p. We use the
contact structure constructed in Lemma 2.4 to remove (1/2, 1]×T 2 × [0, 1]×S1 from C and replace
it with the contact structure on (1/2, 1]× T 2 × [0, 1]× S1 described in the lemma. In particular we
can assume that S is a “Lutz tube” and, more to the point, there is a diskD inD3 that is overtwisted
in the contact structures ξ′θ induced on Y thought of as the boundary of Xθ with this new contact
structure on C. Each ξ′θ differs from ξθ by a Lutz twist. And by the discussion in Section 2.4 we see
that the loop ξ′θ is homotopic to ξθ in Pp(Y ). This completes Step 3. For convenience we rename ξ′θ
to ξθ .

Step 4: Construct a contact structure on N . From the previous step we know that ξθ = kerαθ is a
loop of contact structures on Y with a fixed overtwisted disk that is contractible in Pp(Y ). Thus
according to Eliashberg’s result, Theorem 2.5, the loop is contractible through contact structures.
That is for each r ∈ [0, 1] there is a loop αr

θ of contact forms on Y such that α1
θ = αθ and α0

θ is
independent of θ. Moreover, we can assume that αr

θ is independent of r near 0 and near 1. Consider
the 1–form

β = f(r) dθ + g(r)αr
θ

on Y ×D2. One can compute that

β ∧ dβ ∧ dβ = g(f ′g − g′f) dr ∧ dθ ∧ αr
θ ∧ dα

r
θ − g2 dr ∧ dθ ∧

∂αr
θ

∂r
∧

(
f dα− g α ∧

∂αr
θ

∂θ

)
.

Whereαr
θ is independent of r the last term vanishes. Thus as long as g is positive and (f ′g−g′f) > 0,

β will be a contact from. Where αr
θ does depend on r we will take g to be constant and f(r) = ecr.

If g is any fixed constant and c is chosen sufficiently large, β will be a contact form in this region
too.

Specifically, let 0 < r1 < r2 < 1 be constants such that αr
θ is independent of r outside [r1, r2].

Let r3 < r4 be any numbers in (r2, 1). We can choose f(r) to be r2 near 0, ecr on [r1, r2], strictly
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increasing on [0, r4] and some large constant K on [r4, 1]. We also choose g(r) to be 2 on [0, r3],
strictly decreasing on [r3, 1] and equal to 2− r near 1.

If Da is the disk of radius a then we clearly see that β defines a contact structure on Y ×Da for
any a > 1.

Using the coordinates (1/2, 1]× Y × S1 for a neighborhood of ∂C in C from above, we can glue
Y ×Da to C by a diffeomorphism

Ψ: {(p, r, θ) : 1 < r < a} → (1/2, 1]× Y × S1 : (p, r, θ) 7→ (2− r, p, θ).

It is clear that Ψ pulls the contact from from Step 2 back to the one constructed in above. Thus Ψ
can be used to glue the contact structures on N and C together, thus extending ζ on C over N .

Step 5: See that ζ is homotopic to (η, J). Notice in the construction above ζ is clearly homotopic
to (η, J) along a page of the open book (Y, π). Thus, just as in the proof of Theorem 3.6 we see
that (η, J) and ζ are homotopic as almost contact structures. (Recall this is simply because almost
contact structures on a 5–manifolds are determined up to homotopy by their restriction to the 2–
skeleton.) �

Remark 5.1. We note that in [14] Giroux defines the notion of a contact structure being supported
by an open book. While we use open books to construct our contact structures, none of the contact
structures coming from Theorem 1.1 are supported by the open book used in the proof of the theo-
rem. In particular, it is possible that the given open book does not support any contact structures.
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[14] Emmanuel Giroux. Géométrie de contact: de la dimension trois vers les dimensions supérieures. In Proceedings of the
International Congress of Mathematicians, Vol. II (Beijing, 2002), pages 405–414, Beijing, 2002. Higher Ed. Press.

[15] M. L. Gromov. Stable mappings of foliations into manifolds. Izv. Akad. Nauk SSSR Ser. Mat., 33:707–734, 1969.
[16] Robion Kirby. A calculus for framed links in S3. Invent. Math., 45(1):35–56, 1978.
[17] Robion C. Kirby. The topology of 4–manifolds, volume 1374 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1989.
[18] Eugene Lerman. Contact cuts. Israel J. Math., 124:77–92, 2001.
[19] Robert Lutz. Sur quelques propriétés des formes differentielles en dimension trois. Thèse, Strasbourg, 1971.
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