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Abstract. Using contact-geometric techniques and sutured Floer homology, we present
an alternate formulation of the minus and plus version of knot Floer homology. We
further show how natural constructions in the realm of contact geometry give rise to
much of the formal structure relating the various versions of Heegaard Floer homology.
In addition, to a Legendrian or transverse knot K ⊂ (Y, ξ), we associate distinguished
classes EH−→(K) ∈ HFK−(−Y,K) and EH←−(K) ∈ HFK+(−Y,K), which are each invari-

ant under Legendrian or transverse isotopies of K. The distinguished class EH−→ is shown

to agree with the Legendrian/transverse invariant defined by Lisca, Ozsváth, Stipsicz,
and Szabó despite a strikingly dissimilar definition. While our definitions and construc-
tions only involve sutured Floer homology and contact geometry, the identification of
our invariants with known invariants uses bordered sutured Floer homology to make
explicit computations of maps between sutured Floer homology groups.
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1. Introduction

In [35] Juhász defined the sutured Heegaard Floer homology SFH(Y,Γ) of a balanced

sutured manifold (Y,Γ) and immediately observed that if Y (K) = Y \ν(K) was the
complement of an open tubular neighborhood of a knot K in the manifold Y and Γµ
was the union of two meridional curves, then SFH(Y (K),Γµ) was isomorphic to the

knot Floer homology of K, ĤFK(Y,K). A primary aim in this paper is to show how
to recover more of the knot Floer homology package from the sutured theory. More
specifically, we will show that given a knot K ⊂ Y we can define its Heegaard Floer-
theoretic invariants purely in terms of sutured Floer homology, contact geometry, and
certain direct and inverse limits. These invariants share many properties of the knot
Floer homology package and in the second part of the paper, using border sutured
homology, we show how to identify these limit invariants with the plus and minus knot
Floer homologies.

The original motivation for the present study is found in the work of Stipsicz and
Vértesi who first established a connection between the Legendrian knot invariant defined
by Honda, Kazez, and Matić [32] and the Legendrian/transverse invariant defined by
Lisca, Ozsváth, Stipsicz and Szabó [41], hereafter referred to as the LOSS invariant.
Their work naturally gives rise to an alternate, and more geometric characterization
of the LOSS hat invariant. We show here that the correspondence first established by
Stipsicz and Vértesi fits into a much broader picture encompassing the more general
LOSS minus invariant.

Accomplishing the broad goals described in the paragraphs above requires precise
computations of the Honda-Kazez-Matić gluing maps for sutured Floer homology in a
multitude of nontrivial situations. To date, only elementary computations, typically rely-
ing on formal properties of the HKM gluing maps have been performed. Such precision
is achieved through tools and techniques originating in bordered Floer homology [38]
and, specifically, bordered sutured Floer homology [72, 70], as developed by the third
author.

We note that contact geometry plays a key role in our results, adding to a steady
stream of evidence that there exist deep connections linking contact geometry and Hee-
gaard Floer theory. On one hand, Heegaard Floer invariants have proven powerful tools
for studying contact-geometric phenomena. They were instrumental in Lisca and Stip-
sicz’s classification of Seifert-fibered spaces admitting tight contact structures, and have
featured prominently in the study of transversally non-simple knot and link types. In
the other direction, contact structures have conspicuously appeared in solutions to sev-
eral problems in Heegaard Floer theory. In addition to appearing in Honda, Kazez, and
Matić’s definition of a Heegaard Floer gluing map, Juhász uses them in an essential way
in his construction of cobordism maps for sutured Floer homology. The proof of our
results hint at what might be behind this connection: when considering relatively simple
manifolds, the rigidity of the algebraic structure in bordered sutured Floer homology,
coupled with known properties of contact structures and their induced gluing maps can
sometime uniquely determine a given situation.

In the remainder of the introduction, we provide a more thorough discussion of the
geometric and algebraic objects under consideration and statements of the main theorems
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to be proved in subsequent sections. Here, as in there rest of the paper, we will focus
our attention on the direct limit invariants and only sketch the ideas behind the inverse
limit invariants since their definition and the proofs of their properties parallel those of
the direct limit invariants quite closely.

1.1. Limit Invariants. Let K be a knot in a closed 3–manifold Y . We denote the knot
compliment Y (K)\ν(K). We consider a sequence of pairs of longitudinal sutures Γi
on ∂Y (K) that “converge” the union of two meridional curves Γµ on ∂Y (K). More
precisely the curves that make up Γi+1 differ form those that make up Γi by sub-
tracting a meridian. We can think of (Y (K),Γi) as a subset of (Y (K),Γi+1) so that

Bi = (Y (K),Γi+1)\(Y (K),Γi) is T 2 × [0, 1]. On T 2 × [0, 1] there are (up to fixing the
characteristic foliations on the boundary) two contact structures ξ+ and ξ− for which
the boundary is convex and the dividing curves agree with the sutures.

In [31], Honda, Kazez and Matić defined a gluing map for sutured Floer homology.
Loosely speaking, if (M,Γ) is a sutured manifold which sits as a submanifold of (M ′,Γ′),
then a contact structure ξ on the complement M ′ −M which is compatible with Γ and
Γ′ induces a map

φξ : SFH(−M,−Γ)→ SFH(−M ′,−Γ′).

Thus, using the contact structure ξ− on on T 2 × [0, 1], we have the induced gluing map

φ− : SFH(−Y (K),−Γi)→ SFH(−Y (K),−Γi+1),

for each i.
Taking the directed limit of the above sequence of groups and maps yields our primary

object of study, the sutured limit homology of K

SFH−−→(−Y,K) = lim−→ SFH(−Y (Ki),−Γi).

Now, considering the contact structure ξ+ on Bi, we obtain maps

ψ+ : SFH(−Y (K),−Γi)→ SFH(−Y (K),−Γi+1).

Using simple facts concerning contact structures on thickened tori we will show that they
induce a well-defined map

Ψ : SFH−−→(−Y,K)→ SFH−−→(−Y,K).

Thus, the group SFH−−→(−Y,K) can be given the structure of an F[U ]-module, were U acts

by Ψ.
We further show that the F[U ]-module SFH−−→(−Y,K) is endowed with two natural

absolute gradings, which are reminiscent of the usual absolute Alexander and Maslov
gradings in knot Floer homology.

In Section 7, we prove the following theorem characterizing SFH−−→(−Y,K).

Theorem 1.1. Let K ⊂ Y be a smoothly embedded null-homologous knot. There exists
a isomorphism of graded F[U ]-modules

I− : SFH−−→(−Y, L)→ HFK−(−Y,L).
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Remark 1.2. Marco Golla [25] has obtained results similar to Theorems 1.1 and 1.5 for
Legendrian knots in the standard contact 3-sphere via an alternate characterization of the
maps induced on sutured Floer homology by bypass attachments. This characterization
involves holomorphic triangle counts originally developed by Rasmussen. Golla is further
able to show, in the S3 setting, that the HKM invariant of a Legendrian knot K is
determined by the pair of LOSS invariants {L(K),L(−K)} of K and its orientation
reverse −K. Examples discussed in Section 13 show this is not true in general contact
manifolds.

Each (Y (K),Γi) can be viewed as a subset of (Y (K),Γµ) so that (Y (K),Γµ)\(Y (K),Γi)
is T 2 × [0, 1]. As above, there are two possible tight contact structures ξ+ and ξ− on
T 2× [0, 1] with convex boundary realizing Γ∪Γi as dividing sets. Choosing ξ−, the HKM
gluing map gives

φ′SV : SFH(−Y (K),−Γi)→ SFH(−Y (K),−Γµ).

In [34], SFH(−Y (K),−Γµ) was canonically identified with ĤFK(−Y,K). Using this
identification we obtain the map

φSV : SFH(−Y (K),−Γi)→ ĤFK(−Y,K),

we use the subscript SV as these maps were originally defined by Stipsicz and Vértesi
in [64].

We can again appeal to facts about decompositions of contact structures on thickened
tori to show the maps φSV induce a map

ΦSV : SFH−−→(−Y,K)→ ĤFK(−Y,K).

With respect to the isomorphism given in Theorem 1.1, we have the following charac-
terization of ΦSV .

Theorem 1.3. Let K ⊂ Y be a null-homologous knot type, I− : SFH−−→(−Y,K) →
HFK−(−Y,K) the isomorphism given by Theorem 1.1, and p∗ : HFK−(−Y,K) →
ĤFK(−Y,K) the map induced on homology by setting the formal variable U equal to
zero at the chain level. The following diagram commutes.

SFH−−→(−Y,K) HFK−(−Y,K)

ĤFK(−Y,K)

I−

ΦSV p∗

There is an additional natural geometric operation one can perform to the sequence
(Y (K),Γi). Specifically, one can consider the effect of attaching a meridional contact
2-handle to the boundary of each (Y (K),Γi). As a sutured manifold, this space is
equal to Y (1) in the language of Juhász [34] and its sutured Floer homology can be

naturally identified with ĤF(−Y ). By considering the HKM gluing maps associated to
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this sequence of contact 2-handle attachments, for each i, we obtain a sequence of maps

φ2h : SFH(−Y (K),−Γi)→ ĤF(−Y ) that induce a map

Φ2h : SFH−−→(−Y,K)→ ĤF(−Y ).

With respect to the isomorphism given in Theorem 1.1, we have the following charac-
terization of Φ2h.

Theorem 1.4. Let K ⊂ Y be a null-homologous knot type, I− : SFH−−→(−Y,K) →
HFK−(−Y,K) the isomorphism given by Theorem 1.1, and π∗ : HFK−(−Y,K) →
ĤF(−Y ) the map induced on homology by setting the formal variable U equal to the
identity at the chain level. The following diagram commutes.

SFH−−→(−Y,K) HFK−(−Y,K)

ĤF(−Y )

I−

Φ2h π∗

1.2. Legendrian and Transverse Invariants. In 2007, Honda, Kazez, and Matić
defined an invariant of Legendrian knots taking values in sutured Floer homology [32].
Given a Legendrian knot K ⊂ (Y, ξ), the Honda-Kazez-Matić invariant — henceforth
referred to as the HKM invariant — is obtained via the following construction. First,
remove an open standard neighborhood of K from (Y, ξ) and denote the resulting space
(Y (K), ξK). The HKM invariant is then equal to the contact invariant

EH(K) = EH(Y (K), ξK) ∈ SFH(−Y (K),−ΓK),

where the set of sutures ΓK is equal to the natural dividing set obtained on torus bound-
ary ∂Y (K).

Later, in 2008, Lisca, Ozsváth, Stipsicz, and Szabó defined an alternate invariant of
both Legendrian and transverse knots taking values in knot Floer homology. Given a
null-homologous Legendrian knot K ⊂ (Y, ξ), the Lisca-Ozsváth-Stipsicz-Szabó invariant
— henceforth referred to as the LOSS invariant — is obtained via an open book decom-
position adapted to the knot K. Ultimately, their construction yields two invariants

L(K) ∈ HFK−(−Y,K) and L̂(K) ∈ ĤFK(−Y,K),

which take values in either the minus or hat version of knot Floer homology.
The LOSS invariants possess several features which distinguish them from the HKM

invariants. First, they take values in knot Floer homology and come in two flavors,
“minus” and “hat”. More strikingly, unlike the HKM invariants, the LOSS invariants

are unchanged by negative Legendrian stabilization. This implies that L and L̂ define
transverse invariants through a process known as Legendrian approximation.

A connection between the HKM and LOSS invariants was discovered by Stipsicz and
Vértesi in [64]. Given a null-homologous Legendrian knot K ⊂ (Y, ξ), Stipsicz and
Vértesi identify a natural contact geometric construction which ultimately yields a map

φSV : SFH(−Y (K),−ΓK)→ ĤFK(−Y,K),
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for which the image of EH(K) is L̂(K).
The map φSV is precisely the one discussed in the previous subsection. More specif-

ically, the Stipsicz-Vértesi map is obtained by attaching a contact T 2 × I layer to the
boundary of (Y (K), ξK) to obtain a space which we denote (Y (K), ξK). The contact
structure on T 2 × I is chosen in a way which is compatible with negative Legendrian
stabilization and which results in a pair of meridional dividing curves along the boundary
of the resulting space. Applying the HKM gluing map gives an identification between
EH(L) and the contact invariant EH(Y (K), ξK) ∈ SFH(−Y (K),−Γµ). Since the new
dividing set on ∂Y (K) consists precisely of two meridional curves, the sutured Floer

homology group SFH(−Y (K),−Γµ) is isomorphic to ĤFK(−Y,K). An explicit compu-
tation using open book decompositions then provides the desired identification between

EH(Y (K), ξK) and L̂(K).
This alternate view of the LOSS hat invariant — as the contact invariant of a space

associated to a given Legendrian or transverse knot — is quite useful in practice. It
frequently allows one to interpolate between geometric properties of Legendrian and
transverse knots and algebraic properties of the LOSS hat invariant. For instance, this
perspective was instrumental in the first and second author’s result that Giroux torsion
layers are necessarily intersected by the binding of any open book supporting the ambient
contact structre [17]. The above discussion motivates one to consider a refinement of the
Stipsicz-Vértesi construction which retains more geometric information associated to a
given Legendrian or transverse knot.

If K ⊂ (Y, ξ) is a Legendrian knot, we denote by Ki the ith negative stabilization
of K. Let (Y (K), ξi) denote the complement of an open standard neighborhood of Ki.
Note that the boundary of (Y (K), ξi) is convex, and, with the appropriate choice of
initial longitude, we can identify the dividing set with Γi from the previous subsection.
Work of Etnyre and Honda [14] shows that the complement (Y (K), ξi+1) is obtain from
(Y (K), ξi) by attaching a negatively signed basic slice (T 2 × I, ξ−) to the boundary of
(Y (K), ξi). Thus, the collection

{EH(Ki) ∈ SFH(−Y (K),−Γi)}
of HKM invariants satisfies φ−(EH(Ki)) = EH(Ki+1) and hence yields an element

EH−→(K) ∈ SFH−−→(−Y,K),

which defines an invariant of the Legendrian knot K. By construction, the invariant
EH−→(K) remains unchanged under negative stabilizations of the Legendrian knot K.

Therefore, through the process of Legendrian approximations, we see that EH−→ defines

an invariant of transverse knots. In what follows, we shall refer to these as the LIMIT
invariants of Legendrian and transverse knots.

With respect to the isomorphism I− promised by Theorem 1.1, we have the following
alternate characterization of the LIMIT invariant EH−→.

Theorem 1.5. Let K ⊂ (Y, ξ) be a null-homologous Legendrian knot. Under the iso-
morphism

I− : SFH−−→(−Y,K)→ HFK−(−Y,K)

given by Theorem 1.1, the Legendrian invariants EH−→(K) and L(K) are identified.
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Knowing that “LIMIT=LOSS” allows one to combine the intrinsic advantages of either
invariant when attempting to solve a given problem. In a similar spirit, the second
author, in joint work with Baldwin and Vértesi [4], showed that the Legendrian and
transverse invariants defined in [41] agree with the combinatorial (GRID) invariants of
Legendrian and transverse knots defined by Ozsváth, Szabó, and Thurston in [50]. Thus,
one can view Theorem 1.5 as the final chapter in a story relating the various Legendrian
and transverse invariants defined within the sphere of Heegaard Floer theory.

1.3. Sutured Inverse Limit Invariants. The sutured limit invariants are defined by
taking a sequence of tori in a knot complement with sutures that limit to meridional
sutures through negative longitudinal sutures. If instead one goes beyond the meridional
slope and limits through positive longitudinal sutures one can define an inverse limit
invariant

SFH←−−(−Y,K).

The details of the construction are very similar to those above and presented in Sec-
tion 3.6. Arguments analogous to the ones we use in proving the theorems above will
prove the following relations with Heegaard-Floer knot invariants.

Theorem 1.6. Let K ⊂ Y be a smoothly embedded null-homologous knot. There exists
a isomorphism of bigraded F[U ]-modules

I+ : SFH←−−(−Y,L)→ HFK+(−Y,L).

Theorem 1.7. Let K ⊂ Y be a Legendrian representative of a null-homologous knot
type, I+ : SFH−−→(−Y,K) → HFK−(−Y,K) the isomorphism given by Theorem 1.6, and

ι∗ : ĤFK(−Y,K) → HFK+(−Y,K) the map induced on homology by the inclusion of
complexes. Then there is a natural geometrically defined map ΦdSV so that the following
diagram commutes

SFH←−−(−Y,K) HFK+(−Y,K)

ĤFK(−Y,K)

I+

ΦdSV ι∗

.

Also, in Section 3.6 we define a class EH←−(K) in SFH←−−(−Y,K) for a Legendrian or

transverse knot K in a contact manifold (Y, ξ). While a corresponding invariant in knot
Floer homology has not previously been studies we can prove the following result.

Theorem 1.8. Let K ⊂ (Y, ξ) be a Legendrian knot. Under the map

ΦdSV : ĤFK(−Y,K)→ SFH←−−(−Y,K)

given in Theorem 1.7, the Legendrian invariant L̂(K) is sent to EH←−(K).
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1.4. Vanishing slopes. The construction of the limit invariants and examples com-
puted in Section 13 motivate the definition of an invariant of Legendrian or transverse
knots we dub the “vanishing slope”.

To be more precise, let K be an oriented null-homologous Legendrian knot, and
(Y (K), ξK) the complement of an open standard neighborhood of K. We define an
extension of (Y (K), ξK) to be contact manifold (Y (K), ξ′K), which is obtained from
(Y (K), ξK) by attaching a (tight) sequence of basic slices to ∂Y (K). One similarly de-
fines a positive or negative extension to be one in which all of the attached basic slices
are positive or negative, respectively.

Recall that if K± is obtained from K via positive or negative stabilization, then
(Y (K), ξK±) is obtained from (Y (K), ξK) by attaching a positive or negative basic slice
to ∂Y (K) respectively. In particular, (Y (K), ξK±) is either a positive or negative ex-
tension of (Y (K), ξK) depending on the sign of the stabilization. Similarly, the contact
3–manifold (Y (K), ξK), obtained via the Stipsicz-Vértesi attachment is a negative ex-
tension of (Y (K), ξK).

Let (Y (K), ξ′K) be an extension of (Y (K), ξK) (positive or negative). We define the
extension slope of (Y (K), ξ′K) to be s(Y (K), ξ′K) = (−n, r), where n is the amount of

Giroux (π-)torsion in (Y (K), ξ′K)\(Y (K), ξK) and r is the usual dividing slope of the
dividing curves in the boundary of (Y (K), ξ′K). Roughly, the extension slope is just
the usual dividing slope, enhanced to track the number of times the dividing curves of
convex tori contained within the extension rotate beyond the meridional slope as they
approach the boundary of (Y (K), ξ′K). From this interpretation, we see that extension
slopes come equipped with a natural lexicographical ordering.

Definition 1.9. Let K ⊂ (Y, ξ) be a null-homologous Legendrian knot with a given
Seifert framing and non-vanishing HKM invariant. We define the vanishing slope Van(K)
to be

sup{s(Γξ′K ) | (Y (K), ξ′K) extends (Y (K), ξK), EH(Y (K), ξ′K) = 0},
where all extensions must be by tight contact structures. We similarly define the positive
and negative vanishing slopes Van±(K) to be

sup{s(Γξ′K ) | (Y (K), ξ′K) positively extends (Y (K), ξK), EH(Y (K), ξ′K) = 0}

and

sup{s(Γξ′K ) | (Y (K), ξ′K) negatively extends (Y (K), ξK), EH(Y (K), ξ′K) = 0}

respectively.

The above definitions can be extended to the transverse category as well via the
process of Legendrian approximation. In this case, however, one must restrict the set(s)
of allowable extensions to sequences of basic slice attachments, the first of which is the
Stipsicz-Vértesi attachment. Otherwise, the corresponding definitions are identical.

We immediately obtain the following observation concerning the relationship of the
negative vanishing slope to other invariants considered in this paper.

Proposition 1.10. Let K ⊂ (Y, ξ) be a null-homologous Legendrian knot with given
Seifert framing.
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(1) If EH(K) 6= 0, then Van−(K) ≤ (0, tb(K)),

(2) If any of the invariants L(K) = EH−→(K), L̂(K), or EH←−(K) are non-vanishing,

then Var−(K) ≤ (0,−∞).

�

See Section 13 for some explicit computations of the vanishing slope.

1.5. Noncompact 3-manifolds. The work presented here is part of a broader program
to develop Heegaard Floer theoretic invariants for noncompact 3-manifolds with cylin-
drical ends and a generalized “suture” on the boundary at infinity. These invariants are
built in a fashion similar to SFH−−→(−Y,K) above, by taking directed limits over collec-

tions of maps induced by natural contact-geometric constructions. In the special case of
manifolds with T 2 × [0,∞)-ends, a generalized suture is equivalent to a choice of “slope
at infinity”, as defined in [66].

When these techniques are applied to a null-homologous knot complement Y −K, and
the slope at infinity is chosen to be meridional to K, the resulting group SFH(−Y,K) is
isomorphic to the minus variant of knot Floer homology HFK−(−Y,K).

Such generalizations are the subject of future papers.

1.6. Supplementary Results and Questions. To prove the theorems discussed above,
we must establish a number of supplementary results which may be of independent in-
terest. Most notably, we discuss a general framework which one can apply to effectively
and explicitly compute the HKM gluing maps. Additionally, as a corollary of our dis-
cussion regarding maps induced by bypass attachments, we obtain an independent proof
of Honda’s bypass exact triangle [27], see Section 6.

In Section 13, we provide an example an example of a Legendrian knot K1 for which
EH(K1) 6= 0 despite the fact that EH−→(K1) = L(K1) = 0. We further demonstrate the

existence of a Legendrian knot K2 for which L̂(K2) 6= 0 while EH←−(K) = 0. This suggests

attention be paid to the following question.

Question 1. What is the difference in information content between the various Legen-
drian and transverse invariants defined in the context of Heegaard Floer theory?

Marco Golla [25] has a beautiful answer to this question for Legendrian knots in the
standard contact 3–sphere. Specifically, he shows that, in terms of information content,
the HKM invariant of a Legendrian knot K is equivalent to the pair of LOSS invariants
{L(K),L(−K)}. That is, EH(K) determines the pair {L(K),L(−K)} and vice-versa.
As mentioned above our examples in Section 13 indicate this is not true in arbitrary
contact manifolds.

In a different direction, Lisca and Stipsicz [42] recently showed how to construct a new
invariant of Legendrian and transverse knots using contact surgery techniques. Although
their construction is substantially different from that presented in this paper, it is similar
in the sense that their invariants take values in an (inverse) limit on Heegaard Floer
homology groups. Thus, we ask the following question.

Question 2. What, if any, is the relationship between the inverse limit invariants defined
by Lisca and Stipsicz and the directed and inverse limit invariants defined here?
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Organization. Part 1 of the paper gives the definition and properties of the limit su-
tured homologies and discusses their properties. Specifically, Section 2 provides back-
ground on contact geometry and knot and sutured Floer homology. In Section 3, we
provide a rigorous definition of the sutured limit homologies and the associated Legen-
drian/transverse invariant. Part 2 uses bordered sutured Floer homology to identify the
invariants form Part 1 with their corresponding knot Floer homologies. We begin that
part with a review of bordered sutured Floer homology in Section 4 and discuss the al-
gebras associated to parameterized sutured surfaces used in our proofs in Section 5. The
following two sections identify our limit invariants with the corresponding knot Floer
homologies and the limit Legendrian invariants with the LOSS invariants, respectively.
Then in Sections 9 and 10 we prove various maps between the limit invariants and knot
Floer homology can be identified with corresponding maps purely in knot Floer homol-
ogy. In Section 11, we sketch proofs of the various results concerning sutured inverse
limit homology. Having completed our identification of limit invariants with knot Floer
homology, in Section 12 we show how to identify natural gradings on sutured limit ho-
mology with the classical absolute Alexander and (Z/2) Maslov gradings. Finally, in
Section 13, examples are presented of Legendrain knots exhibiting interesting behavior
from the perspective of the Legendrian and transverse invariants defined herein.
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Part 1. The sutured limit homology package

In this part of the paper, using only sutured Floer homology and contact geometry,
we define the sutured limit SFH−−→(Y,K) and sutured inverse limit SFH←−−(Y,K) homologies

of a null-homologous knot in a 3–manifold. Together with the sutured Floer homology
SFH(Y (K),Γµ) of the knot complement with meridional sutures, these groups are shown
to share many of the properties of the knot Floer homology packaged HFK±(Y,K) and

ĤFK(Y,K). We also show that given a Legendrian knot K in a contact manifold (Y, ξ)
that there is an invariant EH−→(K) ∈ SFH−−→(−Y,K) that shares many properties of the

LOSS invariant L(L) ∈ HFK−(−Y,L).

Remark 1.11. It will be clear from our discussion that any homology theory for sutured
manifolds that poses an appropriate “gluing” theorem and contact invariant will lead to
limit invariants for knots.
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2. Background

In this section, we review the basic definitions and results used in the first part of the
paper to define the sutured limit and inverse limit homologies. We begin by reviewing
standard notions in contact geometry, convex surfaces and Legendrian and transverse
knot theory. In the following subsections we recall basic definitions and results from knot
Floer homology, sutured Floer homology and invariants of Legendrian and transverse
knots.

2.1. Contact Geometry. Recall that a contact structure on an oriented 3-manifold Y
is a 2-plane field ξ satisfying an appropriate nonintegrability condition. In what follows,
we assume that our contact structures are always cooriented by a global 1-form α, called
a contact form. In this case, the nonintegrability condition is equivalent to the statement
that α∧ dα is a volume form defining the given orientation on Y . We refer the reader to
[12, 14, 28] for details concerning contact structures, Legendrian and transverse knots,
and convex surfaces, but recall below the basic facts we will need.

2.1.1. Convex Surfaces and Bypass Attachments. Recall that a surface Σ in a contact
manifold (Y, ξ) has an induced singular foliation TΣ∩ξ called the characteristic foliation
Σξ and the characteristic foliation determines ξ in a neighborhood of Σ. The surface Σ
is said to be convex if there exists a vector field v on Y which is transverse to Σ, and
whose flow preserves the contact structure ξ. Given such a surface and vector field the
dividing set Γ ⊂ Σ is the collection of points {p ∈ Σ : vp ∈ ξp}.

Dividing sets are so-called because they divide a convex surface Σ into a union of
two (possibly disconnected) regions. Orienting Σ so that the vector field is positively
transverse to Σ, the regions are called positive or negative according to whether the
transverse vector field v along Σ intersects the contact planes positively or negatively.

Convex surfaces have proven tremendously useful in the study of contact structures
on 3-manifolds for the following key reasons.

(1) If Σ is closed or compact with Legendrian boundary (and the twisting of ξ along
∂Σ is non-positive), then after possibly applying a C0-isotopy in a neighborhood
of the boundary, Σ is C∞-close to a convex surface.

(2) Giroux flexibility: Given a convex surface Σ with dividing set Γ, if F is a singular
foliation on Σ that is divided by Γ (see [28] for the precise definition of “divided
by” but in practice it means that F is the characteristic foliation on Σ in some
contact structure and Γ is isotopic to a dividing set for the foliation), then we
may C0-isotope Σ so that its characteristic foliation is F .

(3) Since the characteristic foliation of a surface determines the contact structure in
a neighborhood of Σ, the contact structure on ξ near Σ is almost determined by
a the dividing set Γ.

An important example of the use of Giroux flexibility is for convex tori. Suppose
T is a convex torus in (Y, ξ) with dividing set Γ consisting of two parallel curves that
split T into two annuli T+ and T−. According to Giroux flexibility we can C0-isotope
T so that its characteristic foliation consists of a two circles worth of singularities, one
the core of T+ and the other the core of T−. These are called Legendrian divides. The
rest of the foliation is non-singular and give a ruling of T by curves of any pre-selected
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slope other than the slope of the dividing curves. These non-singular leaves are called
the ruling curves. A torus with such a characteristic foliation will be called a standard
convex torus.

Let α be an arc contained in a convex surface Σ and suppose that α intersects the
dividing set of Σ in three points p1, p2 and p3, where p1 and p3 are the endpoints of α.
A bypass along α is a convex disk D with Legendrian boundary such that

(1) D ∩ Σ = α,
(2) tb(D) = −1,
(3) ∂D = α ∪ β,
(4) α ∩ β = {p1, p3} are corners of D and elliptic singularities of Dξ.

When a bypass is attached to a convex surface Σ, the dividing set on Σ changes in
the following predictable way.

Theorem 2.1 (Honda 2000, [28]). Suppose that Σ is an oriented convex surface in (Y, ξ).
The surface Σ locally splits Y into two pieces. Suppose that D is a bypass along α in Σ
lying on the positive side of Σ. If Σ× [0, 1] is a small one-sided neighborhood of Σ ∪D
so that Σ = Σ × {0}, then the dividing curves on Σ × {1} are the same as the dividing
curves on Σ except in a neighborhood of α where the change according to Figure 1. The
change in the dividing curves if Σ is pushed across a bypass on the negative side of Σ is
also shown in the figure.

α

P

N

Figure 1. Effect of a bypass attachment along α from the positive side
of the surface (top right) and negative side of the surface (bottom right).

2.1.2. Legendrian and Transverse Knots. When studying 3-dimensional contact mani-
folds (Y, ξ), it is profitable to focus attention on 1-dimensional subspaces which either lie
within or transversely intersect the contact planes. If a knot K ⊂ Y satisfied TpK ⊂ ξp
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for all p ∈ K, we say that K is Legendrian. Similarly, if K ⊂ Y satisfies TpK t ξp for
all p ∈ K, we say that K is transverse. Since our contact structures are always oriented,
we further require that each of the intersections between a transverse knot K and the
contact structure ξ be positive. Legendrian or transverse knots are said to be isotopic if
they are isotopic through Legendrian or transverse knots respectively.

Recall that a Legendrian knot always has a framing coming from the contact structure
called the contact faming. If L has a preferred framing F then we can associate an integer,
tw(L,F), to the contact framing. If L is null-homologous and its preferred framing is the
Seifert framing the we call the twisting tw(L,F) the Thurston-Bennequin invariant and
denote it tb(L). In addition, when L is null-homologous and oriented we can define the
rotation number r(L) to be minus the Euler number of ξ restricted to a Seifert surface,
relative to an oriented vector field in ξ along L. (This number is only well defined module
n, where n is the generator of the image of the Euler class of ξ in Z.)

It is well known, see [14], that any two Legendrian knots have contactomorphic neigh-
borhoods. Thus studying a model situation one can see that given a Legendrian knot
L there is a neighborhood of L with convex boundary having two dividing curves of
slope tb(L). If the boundary of this neighborhood is in standard form with any ruling
slope then we say this is a standard neighborhood of L. We also recall that given any
solid torus N in a contact manifold (Y, ξ) with convex boundary having two dividing
curves of slope n and standard form on the boundary and for which ξ|N is tight, is
the standard neighborhood of a unique Legendrian knot L in N ⊂ M . Thus studying
Legendrian knots in a given knot type in (Y, ξ) is equivalent to studying such solid tori
that represent the given knot type.

Given an oriented Legendrian knot K, one can produce new Legendrian knots S+(K)
and S−(K) in the same knot type by applying operations called positive, respectively
negative, stabilization. These operations, performed in a standard neighborhood of a
point on L are depicted in Figure 2. We will discuss the relation between stabilization
and standard neighborhoods of Legendrian knots in the next subsection.

S−

S+

Figure 2. Positive and negative Legendrian Stabilizations

Given a Legendrian knot K, one can produce a canonical transverse knot nearby
to K, called the transverse pushoff of K. If T is a transverse knot, we say that KT

is a Legendrian approximation of T if the transverse pushoff of KT is T . For a given
transverse knot, there are typically infinitely many distinct Legendrian approximations of
T . However, each of these infinitely many distinct Legendrian approximations are related
to one another by sequences of negative stabilizations. Thus, these two constructions
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are inverses to one another, up to the ambiguity involved in choosing a Legendrian
approximation of a given transverse knot (see [11, 14]).

2.1.3. Contact structures on thickened tori. Before discussing contact structures on T 2×
[0, 1] we first discuss curves on T 2. Choosing a product structure on T 2 we may identify
(unoriented) essential curves on T 2 with the rational numbers union infinity so that
S1 × {pt} is the ∞-curve and {pt} × S1 is the 0-curve. It will be useful to compactify
R to S1 and think of the added point as being both ∞ and −∞. Having done this the
essential curves on T 2 are represented by the rational points union infinity on S1. Recall
that two curves form an integral basis for H1(T 2;Z) if and only if they can be isotoped
to intersect exactly once. In terms of the rational numbers p0/q0 and p1/q1 associated
to the curves, they will form an integral basis if and only if pq′ − q′p = ±1.

We can encode these ideas in the Farey tessellation, see Figure 3. Let D be the

∞

0

1−1

−1/2 1/2

2−2

Figure 3. The Farey tesselation oriented for use with our convention of slopes.

unit disk in the complex plane. Label the complex number i by 0 and −i by ±∞ and
connect them with a geodesic in D (where we give D the standard hyperbolic metric).
Label 1 by 1 and connect it to the points labeled 0 and ±∞ by geodesics. We will now
inductively label the points on ∂D with positive real part. Given an interval on ∂D
with positive real part and end points two adjacent points that have been labeled by p/q
and p′/q′, label its midpoint by (p+ p′)/(q + q′) and connect it to the end points of the
interval by geodesics. (Here we think of 0 as 0/1 and ∞ as 1/0.) We can similarly label
points on ∂D with negative real part (except here we must think of 0 as 0/1 and ∞ as
−1/0). This procedure will assign all the rational numbers to points on ∂D and they
will appear in order, that is if a > b then a will be in the region that is clockwise of b
and counterclockwise of ∞. Moreover, the edges will not intersect and two points will
be connected by an edge if and only if they correspond to curves that form an integral
basis for H1(T 2;Z).

Turning to contact structures, let Γi be two parallel curves on T 2 with slope si, i = 0, 1.
Given a contact structure ξ on T 2 × [0, 1] with convex boundary having dividing curves
Γi on T 2 × {i}, i = 0, 1, we say ξ is minimally twisting if any other convex torus T
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in T 2 × [0, 1] that is isotopic to the boundary has dividing slope clockwise of s0 and
counterclockwise of s1. (Note that a minimally twisting contact structure is necessarily
tight.) Recall that the classification of contact structures on thickened tori implies that
given any slope that lies clockwise of s0 and counterclockwise of s1 is the dividing slope
for some convex torus, thus the minimally twisting condition says that the only convex
tori are the ones that must be there.

A basic slice is a tight, minimally twisting tight contact structure on T 2 × [0, 1], for
which each boundary component is convex with Γi being the dividing set on T 2 × {i},
Γi consisting of two curves each of slope pi/qi and p0q1 − p1q0 = ±1.

According to [22, 28] there are precisely two basic slice for any given dividing curves
(once the characteristic foliations on the boundary are arranged to be the same), called
positive and negative. We denote them by ξ±p0/q0,p1/q1 . They are distinguished by their

relative Euler class, but are the same up to contactomorphism. Moreover there is a
diffeomorphism taking any basic slice to another. The following theorem relates basic
slices to bypass attachments.

Theorem 2.2 (Honda 2000, [28]). Let (T 2×[0, 1], ξ+
−1,0) and (T 2×[0, 1], ξ−−1,0) be positive

and negative basic slices respectively with dividing slopes −1 and 0. The contact structures
ξ+
−1,0 and ξ−−1,0 are obtained from an invariant neighborhood of T 2 × {1} by attaching a

bypasses layer along the curves γ+ and γ− shown in Figure 4, respectively.

γ+ γ−

+ − + −

Figure 4. The bypass attachments for the positive and negative basic slice.

We now recall part of the classification of minimally twisting contact structures on
T 2 × [0, 1] that we will need below (for details see [28]).

(1) Given a minimally twisting contact structure on T 2× [0, 1] with standard convex
boundary having dividing slope si on T 2×i, i = 0, 1, there corresponds a minimal
path in the Farey tessellation that goes from s0 clockwise to s1 and signs on each
edge in the path.

(2) Given the contact structure above any slope s in the interval clockwise of s0 and
counterclockwise of s1 can be realized as the dividing slope on some convex torus.

(3) Given a minimal path in the Farey tessellation between two numbers s0 and s1

and any assignment of signs to the edges in the path, there is a unique minimally
twisting contact structure realizing that path. (Different assignments of signs
can correspond to the same contact structure, see [28].)



LEGENDRIAN AND TRANSVERSE INVARIANTS 17

(4) Given a non-minimal path in the Farey tessellation between two numbers s0 and
s1 and an assignment of signs to the edges it will correspond to a tight (and
minimally twisting) contact structure if and only if it can be shortened to a
minimal path, otherwise it corresponds to an overtwisted contact structure. A
path can be shortened if there are two edges in the path which can be replaced
by a third edge and the edges have the same sign, then in the shortening the
third edge is assigned the sign of the two edges it replaces.

We briefly note that each edge in the Farey tessellation corresponds to a basic slice. So
the above results basically say that a contact structure on T 2× [0, 1] can be factored into
basic slices and when you “glue” two basic slices together you get a minimally twisting
contact structure unless the basic slices have different signs and corresponds to a path
that can be shortened.

We now establish some important notation used in the following section to define our
limit invariants. Using the product structure above on T 2 we denote the basic slice
(T 2 × [0, 1], ξ±−i,−i+1) by B±i and (T 2 × [0, 1], ξ±−∞,−i) by A±i . Let (T 2 × [0, 1], ξ±i,∞,) be

denoted by Ã±i ; and finally, for i > j, let C±i,j denote the contact manifold T 2 × [0, 1]
corresponding to the minimal path in the Farey tessellation from −i to −j with all signs
being ±. We note that according to the classification results discussed above we have
the following facts.

Proposition 2.3. We have the following relations between contact structures on T 2 ×
[0, 1].

(1) The contact manifold A±i ∪ C
±
i,0 (with the two boundary components having the

same slope glued together) is contactomorphic to A±0 .
(2) For i > k > j, the contact manifold C±i,k∪C

±
k,j (with the two boundary components

having the same slope glued together) is contactomorphic to C±i,j.

(3) The contact manifold B±i ∪B
∓
i+1 (with the two boundary components having the

same slope glued together) is contactomorphic to the contact structure B∓i ∪B
±
i+1.

(This does not directly follow from the classification results above but is essentially
the ambiguity mentioned in Item (3) above, see [28].)

(4) The contact manifold A±i ∪ C
∓
i,0 (with the two boundary components having the

same slope glued together) is overtwisted.
(5) The contact manifold A±i ∪ B

±
i (with the two boundary components having the

same slope glued together) is contactomorphic to A±i−1.

(6) The contact manifold A±i ∪ B
∓
i (with the two boundary components having the

same slope glued together) is tight and minimally twisting.

Remark 2.4. Turning the first observation around we notice that there is a sequence
of tori Ti, i = 0, 1, . . . , in A−0 such that Ti is a standard convex torus (isotopic to the
boundary of A−0 ) with dividing slope −i such that Ti cuts A−0 into two pieces, namely
A−i and C−i,0. Moreover for j > i the torus Tj is contained in the A−i component of the
complement of Ti.

We have analogous results for Ã−0 . Specifically in Ã−0 there is a sequence of tori T̃i,

i = 0, 1, . . . , such that T̃i is a standard convex torus (isotopic to the boundary of Ã−0 ) with
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dividing slope i such that T̃i cuts Ã−0 into two pieces, namely Ã−i and C−0,−i. Moreover

for j > i the torus T̃j is contained in the Ã−i component of the complement of T̃i.

From the perspective of Legendrian and transverse knot theory we have the following
result.

Theorem 2.5 (Etnyre-Honda 2001, [14]). Let L ⊂ (Y, ξ) be a Legendrian knot and
identify the boundary of its complement with T 2 so that the meridional curve has slope
∞ and the longitude given by the contact framing has slope 0. Now let N be a standard
neighborhood of L, L+ and L− its positive and negative stabilizations inside N and N±
standard neighborhoods of L± inside N . The contact manifold N −N± is contactomor-
phic to B±1 (and C±0,1). In particular the (closure of the) complement of the standard

neighborhoods of L+ and L− are obtained from the (closure of the) complement of the
standard neighborhood of L by a positive and negative basic slice attachments respectively.

2.1.4. Open Book Decompositions. In recent years, the primary tool used to study con-
tact structures on 3-manifolds has been Giroux’s correspondence [24]. An open book
decomposition of a 3-manifold Y is a pair (B, π) consisting of an oriented, fibered link
B ⊂ Y , together with a fibration of the complement π : (Y −B)→ S1 by surfaces whose
oriented boundary is B. An open book (B, π) is said to be compatible with a contact
structure ξ if B is positively transverse to the contact planes and there exists a contact
form α for ξ so that dα restricts to an area form on the fibers Sθ = π−1(θ).

In was shown by Thurston and Winkelnkemper in [65] that, given an open book,
(B, π), one can always produce a compatible contact structure. Giroux showed in [24]
that two contact structures which are compatible with the same open book are, in fact,
isotopic. He further showed that two open books which compatible with the same contact
structure are related by a sequence of “positive stabilizations”, that is plumbing with
positive Hopf bands. In other words, Giroux proved the following result.

Theorem 2.6 (Giroux 2002, [24]). There exists a one-to-one correspondence between
the set of isotopy classes of contact structures supported by a 3-manifold Y and the set
of open book decompositions of Y up to positive stabilization.

One can alternatively specify an open book decomposition (B, π) of a 3-manifold Y by
specifying a pair (S, φ) consisting of a fiber surface S and a monodromy map φ : S → S
corresponding to the fibration π : (Y − B) → S1 (note that φ|∂S = Id). The data
(S, φ) is called an abstract open book, and determines an open book (B, π) on the 3-
manifold obtained via the appropriate mapping-cylinder construction, but only up to
diffeomorphism.

2.2. Knot Floer homology. The Heegaard Floer package possesses a specialization to
knots and links known commonly as knot Floer homology. This specialization was defined
independently by Ozsváth and Szabó [51] and by Rasmussen [60]. In what follows, we
review some basic definitions. The interested reader is encouraged to read the original
papers [51, 60] for a more complete and elementary treatment. We work with coefficients
in F = Z/2 throughout the remainder of the paper.

If K ⊂ Y is a knot, a doubly-pointed Heegaard diagram for K consists of an ordered
tuple H = (Σ,α,β, z, w). We require that the Heegaard diagram (Σ,α,β) specifies the
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3-manifold Y and that the knot K is obtained as follows. Choose oriented, embedded
arcs γα in Σ−α and γβ in Σ−β connecting the basepoint z to w and w to z respectively.
Now, form pushoffs γα and γβ by pushing the interior of these arcs into the α and β
handlebodies respectively. The knot is then the union K = γα ∪ γβ of the two curves.

To such a doubly-pointed diagram H, Ozsváth and Szabó associate a chain complex
CFK∞(H), which is freely generated as an F[U,U−1]-module by the intersections of the
tori Tα = α1 × · · · × αg and Tβ = β1 × · · · × βg inside the symmetric product Symg(Σ).
Given a pair of intersections x,y ∈ Tα∩Tβ, a Whitney disk connecting them φ ∈ π2(x,y)
and a generic path of almost complex structures on Symg(Σ), we denote the moduli space
of pseudo-holomorphic representatives of φ by M(φ). It has expected dimension given
by the Maslov index µ(φ) and possesses a natural R-action given by translation. We

denote the quotient of M(φ) under the R-action by M̂(φ). If p ∈ Σ − α − β, then we
denote by np(φ) the intersection number of φ with the subvariety Vp = {p}×Symg−1(Σ).

We define the differential

∂∞ : CFK∞(H)→ CFK∞(H)

on generators via

∂∞(x) =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

#M̂(φ) · Unw(φ)y.

For a knot K in a 3-manifold Y with b1 = 0, the complex (CFK∞(H), ∂∞) comes
equipped with two natural gradings. The Maslov (homological) grading, which is an
absolute Q-grading, is specified up to an overall shift by the formula

M(x)−M(y) = µ(φ)− 2nw(φ),

for x,y ∈ Tα ∩ Tβ and any φ ∈ π2(x,y), and the requirement that multiplication by U
drop the Maslov grading by two. The Alexander grading is again an absolute Q-grading,
specified up to an overall shift by the formula

A(x)−A(y) = nz(φ)− nw(φ),

and the requirement that multiplication by U drop the Alexander grading by one.
From these formulae, we see that the differential ∂∞ decreases the Maslov grading

by one and is Z-filtered with respect to the Alexander grading; A(∂∞(x)) ≤ A(x) for
any x ∈ Tα ∩ Tβ. There is an additional Z-filtration on (CFK∞(H), ∂∞) obtained by
recording the U -exponent multiplying a given generator x ∈ Tα ∩ Tβ.

By positivity of intersection, nw(φ) is always non-negative, so the Z[U ]-module CFK−(H) ⊂
CFK∞(H) freely generated by the intersections of the tori Tα and Tβ inside the sym-
metric product Symg(Σ) is a sub-complex of CFK∞(H). We denote ∂∞ restricted to
CFK−(H) by ∂−. We additionally denote by (CFK+(H), ∂+) the quotient complex.

Theorem 2.7 (Ozsváth-Szabo [51], Rasmussen [60]). Let K be a null-homologous knot
in a 3-manifold Y with b1 = 0, and H a doubly-pointed Heegaard diagram for the
pair (Y,K). Then the Q-graded, Z ⊕ Z-filtered chain homotopy type of the complexes
(CFK∞(H), ∂∞), (CFK−(H), ∂−) and (CFK+(H), ∂+) are invariants of (Y,K).
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The homologies of the associated graded object with respect to the Alexander filtration
give various types of knot Floer homology. It is customary to write them as

HFK∞(Y,K), HFK−(Y,K), and HFK+(Y,K).

Setting the formal variable U equal to zero in (CFK−(H), ∂−), we obtain the Q-graded,

Z-filtered complex (ĈFK(H), ∂̂). Taking the homology of the associated graded object
with respect to this filtration yields the hat version of knot Floer homology

ĤFK(Y,K).

The projection p : (CFK−(H), ∂−) → (ĈFK(H), ∂̂) obtained by setting U = 0 gives
rise to a natural map on homology

p∗ : HFK−(Y,K)→ ĤFK(Y,K).

In a similar spirit, setting the formal variable U equal to the identity gives a projection

π : (CFK−(H), ∂−)→ (ĈF(Y ), ∂̂), inducing a map

π∗ : HFK−(Y,K)→ ĤF(Y ),

from the minus version of knot Floer homology to the hat version of the Heegaard Floer
theory for the ambient 3-manifold.

We can also identify (ĈFK(H), ∂̂) as the kernel of the U map on (CFK+(H), ∂+).
Thus the inclusion induces a natural map on homology

ι∗ : ĤFK(Y,K)→ HFK+(Y,K).

2.3. The Lisca-Osváth-Stipsicz-Szabó invariant. There is an invariant of Legen-
drian knots which takes values in knot Floer homology. Let L ⊂ (Y, ξ) be a Legendrian
knot in the knot type K. In [41], Lisca, Ozsváth, Stipsicz and Szabo defined invariants

L(L) ∈ HFK−(−Y, L)

and
L̂(L) ∈ ĤFK(−Y,L).

Their invariants are constructed in a manor reminiscent of Honda, Kazez and Matić’s
construction of the usual contact invariant in Heegaard Floer homology. Since it will be
useful in what follows, we recall the construction from [41].

Given a Legendrian knot L ⊂ (Y, ξ), we choose an open book decomposition (B, π)
of (Y, ξ) which contains the knot L sits on a page S of (B, π). We can assume without
loss of generality that this page is given by S = S1/2, and that L is nontrivial in the
homology of S.

Now choose a basis {a0, . . . , ak} for S so that L is intersected only by the arc a0, and
does so transversally in a single point. Next, apply small isotopies to the ai to obtain
a collection of arcs {b0, . . . , bk}. We require that the endpoints of bi be obtained from
those of those of ai by shifting along the orientation of ∂S, and that bi intersect ai in a
single transverse point xi = ai ∩ bi (see Figure 5).

A doubly-pointed Heegaard diagram for the pair (−Y, L) can now be constructed as
follows. The diagram itself is specified by

(Σ, β, α) = (S1/2 ∪ −S0, (bi ∪ φ(bi)), (ai ∪ ai)),
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x0
x0

z z

w

w

−LL

Figure 5. Construction of the LOSS invariant.

where φ : S → S is the monodromy map of the fibration (B, π) and the arcs φ(bi) and
the second ai above sit on the page −S0. The basepoint z is placed on the page S1/2,
away from the thin strips of isotopy between the ai and bi. The second basepoint w is
placed inside the thin strip between a0 and b0 as shown in Figure 5. The two possible
choices for the placement of w correspond to the two possible choices of orientation for
the Legendrian knot L.

Definition 2.8. Let L ⊂ (Y, ξ) be a Legendrian knot and let (Σ, β, α, z, w) be a Heegaard

diagram adapted to L constructed as above. The invariants L(L) and L̂(L) are defined
to be

L(L) := [(x0, . . . , xk)] ∈ HFK−(−Y,L),

and

L̂(L) := [(x0, . . . , xk)] ∈ ĤFK(−Y,L)

respectively.

It was shown in [41] that L(L) and L̂(L) enjoy a number of useful properties, some of
which are the following:

(1) Under the map HFK−(−Y,L) → ĤFK(−Y, L) induced by setting U = 0 at the

chain level, L(L) is sent to L̂(L).

(2) Under the map HFK−(−Y,L)→ ĤF(−Y ) induced by setting U = 1 at the chain
level, L(L) is sent to EH(Y, ξ), the contact invariant of the ambient space.

(3) If the complement of L is overtwisted (see [41]) or has positive Giroux torsion

(see [67]), then both L(L) and L̂(L) vanish.
(4) If (Y, ξ) has non-vanishing contact invariant, then L(L) is non-vanishing for every

Legendrian L ⊂ (Y, ξ).

In addition we have the following interesting property.

Theorem 2.9 (Lisca-Osváth-Stipsicz-Szabó [41]). The invariants L and L̂ behave as
follows under stabilization. If L is a Legendrian knot and L− is its negative stabilization,
then

L(L−) = L(L) and L̂(L−) = L̂(L).

Similarly, if L+ is the positive stabilization of a Legendrian knot L, then

L(L+) = U · L(L) and L̂(L+) = 0.
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It immediately follows from Theorem 2.9 that L and L̂ define transverse invariants as
well. If K is a transverse knot and L is a Legendrian approximation of K, define

T(K) = L(L) and T̂(K) = L̂(L).

2.4. Sutured Floer homology. Recall that a sutured manifold (Y,Γ), with annular
sutures, is a manifold Y together with a collection of oriented simple closed curves Γ on
∂Y such that each component of ∂Y contains at least one curve in Γ and ∂Y −Γ consists
of two surface ∂Y+ and ∂Y− so that Γ is the oriented boundary of ∂Y+ and −Γ is the
oriented boundary of ∂Y−. We say that (Y,Γ) is balanced if ∂Y+ and ∂Y− have the same
Euler characteristic.

In [34] Juhász showed how to associate to a balanced sutured manifold (Y,Γ) the
sutured Heegaard-Floer homology groups SFH(Y,Γ). We will see a generalization of
this in Section 4 below, so we will not give the detail of the construction of SFH(Y,Γ)
here, but merely recall facts relevant to the definition of our limit sutured homology
and its properties. In addition we note that, as in ordinary Heegaard Floer theory, the
chain groups are generated by the intersection of tori coming from the curves used in
a Heegaard diagram for (Y,Γ). The first two results we need relate the sutured Floer
theory to previous flavors of Heegaard Floer homology.

Theorem 2.10 (Juhász 2006, [34]). Let Y be a closed 3-manifold and denote by Y (1)
the sutured manifold obtained from Y by deleting an open ball and placing a single suture
on the resulting 2–sphere boundary. Then, there exists an isomorphism

SFH(Y (1))→ ĤF(Y ).

Theorem 2.11 (Juhász 2006, [34]). Let K be a knot in a closed 3-manifold Y and
denote by Y (K) the complement of an open tubular neighborhood of K in Y . Let Γµ be
two disjoint meridional sutures on ∂Y (K). Then there is an isomorphism

SFH(Y (K),Γµ)→ ĤFK(Y,K).

2.5. Relative SpinC structures and gradings. Here, we discuss how to put a grading
on the sutured Floer homology groups using relative SpinC structures [35] and, in the
case where the sutured manifold comes from a null-homologous knot complement (with
meridional sutures), we can see that this grading and Theorem 2.11 can be used to
recover the Alexander grading on knot Floer homology.

2.5.1. Relative SpinC structures. Given a manifold Y with boundary, choose a non-zero
vector field v0 in TY along ∂Y . We can define the relative SpinC structures on Y to be
is the set of homology classes of non-zero vector field on Y that restrict to v0 on ∂Y . We
say two non-zero vector fields are homologous if they are homotopic in the compliment
of a 3-ball in the interior of Y . Notice that if v′0 is another non-zero vector field along
∂Y that is homotopic to v0 through non-zero vector fields then we can use the homotopy
to identify the relative SpinC structures defined by v0 and those defined by v′0 and, if
we restrict attention to a contractible set of choices for v0, then these identifications are
canonical.

Consider a sutured manifold (Y,Γ). In [35] relative SpinC structures were defined by
choosing a vector field v0 that points out of Y along ∂Y+ and into Y along ∂Y− (and is
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tangent to ∂Y along Γ and pointing into ∂Y+). The set of relative SpinC structures on
(Y,Γ) defined using such a v0 is denoted by SpinC(Y,Γ) and is well defined independent
of v0 since the possible choices for v0 form a contractible set.

There is the standard map from the generators of the sutured homology chain groups
to SpinC structures

s : Tα ∩ Tβ → SpinC(Y,Γ)

defined by using the intersections corresponding to points in Tα ∩Tβ to pair the critical
points of a Morse function corresponding to the chosen Heegaard diagram which used
to compute the sutured Floer homology. The sutured Floer homology groups can be
decomposed by SpinC strucure

SFH(Y,Γ) =
⊕

s∈SpinC(Y,Γ)

SFH(Y,Γ, s).

Given a vector field v representing an element s ∈ SpinC(Y,Γ) let v⊥ denote the
orthogonal complement of v (using some fixed auxiliary metric). If each component S
of ∂Y satisfies χ(S+) = χ(S−) then (Y,Γ) is called strongly balanced. (For manifolds
with connected boundary this is of course the same as being balanced.) In this case v⊥0
is necessarily a trivial plane field, [35], so there is a non-zero section which we denote
t0. We can then define the Euler class of s relative to t0, c1(s, t0) ∈ H2(Y, ∂Y ;Z) as the
obstruction to extending t0 to a non-zero section of v⊥.

2.5.2. Knot complements and the Alexander grading. We now consider the case of knot
complements. Suppose that K ⊂ Y is a null-homologous knot, and let F be a Seifert
surface for K. To the pair (Y,K), we associate the compact sutured manifold (Y (K),Γµ)
as discussed above; where Y (K) is the complement of an open tubular neighborhood of
K, and Γµ consists of a pair of oppositely-oriented meridional sutures on ∂Y (K).

The set of relative SpinC structures on (Y (K),Γµ) is naturally an affine space over
H2(Y (K), ∂Y (K)).

Choosing an orientation on the knot K, we have the natural map

i∗ : H2(Y (K), ∂Y (K);Z)→ H2(Y ;Z),

induced by Poincaré duality and the inclusion of Y (K) into Y . Given a relative SpinC

structure on (Y (K),ΓK), Ozsváth and Szabó show in Sections 2.2 and 2.4 of [57] how
to extend this relative SpinC structure to a SpinC structure on Y .1 Thus, we obtain the
natural map

GY,K : SpinC(Y (K),Γµ)→ SpinC(Y ),

which is equivariant with respect to the actions of H2(Y (K), ∂Y (K)) and H2(Y ) on
SpinC(Y (K),Γµ) and SpinC(Y ), respectively.

Let [F, ∂F ] be a homology class Seifert surface in H2(Y (K), ∂Y (K);Z) for the null-
homologous (oriented) knot K ⊂ Y , and let s ∈ SpinC(Y (K),ΓK) be a relative SpinC

structure, with non-zero section along the boundary given by the oriented meridional

1Strictly speaking, Ozsváth and Szabó’s construction takes a relative SpinC on Y (K), normalized to
point outward along the boundary, and produces an absolute SpinC structure on Y . A careful reading of
Sections 2.2 and 2.4 of [57], however, indicates that their techniques apply in this more general context.
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vector field tµ. We define the Alexander grading of s with respect to [F, ∂F ] via the
formula

(1) A[F,∂F ](s) =
1

2
〈c1(s, tµ), [F, ∂F ]〉

and notice that the isomorphism in Theorem 2.11 preserves Alexander gradings. (In
essence the kernel of the map GY,K is Z and we can get a map from SpinC(Y (K),ΓK)
to Z by a choice of Seifert surface for K. Moreover, for the choices made here c1(s, tµ)
is an even cohomology class and so we can divide by 2 to obtain a map onto Z.)

2.5.3. Convex surfaces and relative SpinC structures. We now extend our discussion of
relative SpinC from above so that they are better suited for contact geometry. To a
sutured manifold (Y,Γ) notice that the set of vector fields v0 that are positively trans-
verse to ∂Y+, negatively transverse to ∂Y−, and in T∂Y is positively tangent to Γ, is
contractible. So we could use any such v0 to define relative SpinC structures of (Y,Γ)
instead of the ones used above. Moreover by a homotopy supported near Γ that will take
one of these vector fields to one of those from Section 2.5.1 and vice versa. Thus when
defining relative SpinC structures on (Y,Γ) we are free to use either type of vector field
along ∂Y .

Notice that the plane field v⊥0 is transverse to Γ. More generally, we can homotope
v0 so that the plane field v⊥0 intersected with T∂Y induces any characteristic foliation
for a convex surface divided by Γ. (Note we are not bringing contact geometry into the
picture yet, just indicating the flexibility we have in choosing v0.)

When (Y,Γ) is a sutured manifold with torus boundary and Γ consists of two parallel
curves then we can always choose a v0 so that v⊥0 induces a standard foliation on the
boundary (that is agrees with the standard characteristic foliation on a torus described
in Section 2.1.3). Given this situation we can take a section t0 of v⊥0 that is tangent to
the ruling curves to define c1(ξ, t0). One may easily check, cf. [28, Lemma 4.6], that the
class c1(ξ, t0) ∈ H2(Y, ∂Y ;Z) is independent of the ruling slope on ∂Y .

We discuss a particular case of the relative Euler classes that will be useful in our
construction. Recall from Section 2.1.3 the basic slice A±i has dividing slope ∞ on the
back torus and slope −i on the front torus. Once may easily compute, or consult [28,
Section 4.7.1], that the relative Euler class c1(ξ, t0) is the Poincaré dual of ±[(i+1)µ+λ]
(where t0 is a section as above so that the oriented tangent vector to an∞-curve followed
by t0 induces the positive orientation on the torus). Similarly the relative Euler class for

Ã±i is the Poincaré dual of ∓[(i− 1)µ+ λ].
More generally once can compute that the relative Euler class of the contact structure

on C±j,i (see Section 2.1.3 to recall this notation) is the Poincaré dual of ±(i− j)µ.

2.6. Contact structures and sutured Floer homology. Given a balanced sutured
manifold (Y,Γ) and any contact structure ξ on Y that has convex boundary with dividing
set Γ, Honda, Kazez and Matić [32] defined a class

EH(ξ) ∈ SFH(−Y,−Γξ, sξ)
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that is an invariant of ξ, where sξ is the relative SpinC structure on Y corresponding to
ξ. Actually this invariant is only defined up to sign when using Z-coefficients, but in this
paper we work exclusively over F = Z/2, and can thus ignore the sign ambiguity.

A key component of our constructions will be the following gluing theorem for sutured
Floer homology of Honda, Kazez and Matić. The map in the theorem spiritually amounts
to “tensoring with the contact class”. Henceforth, we will refer to this map as the HKM
gluing map.

Theorem 2.12 (Honda-Kazez-Matić [31]). Let (Y1,Γ1) and (Y2,Γ2) be two balanced
sutured 3–manifolds, Suppose that Y1 ⊂ Y2 and ξ is a contact structure on Y2 − int(Y1)
with convex boundary divided by Γ1 ∪Γ2 so that each component of Y2− int(Y1) contains
a boundary component of Y2. Then there exists a “gluing” map

φξ : SFH(−Y1,−Γ1)→ SFH(−Y2,−Γ2).

The map in this theorem is only well defined up to sign when Z-coefficients are used,
but we can again ignore this ambiguity since we are working over F.

Furthermore, the map above respects contact invariants.
The invariant EH(ξ) of a contact structure respects the map in Theorem 2.12.

Theorem 2.13 (Honda-Kazez-Matić [31]). Let (Y1, ξ1) and (Y2, ξ2) be a compact con-
tact 3-manifolds with convex boundary, and suppose that (Y1, ξ1) ⊂ (Y2, ξ2). If each
component of Y2\int(Y1) contain a boundary component of Y2, then the map φξ2−ξ1 from
Theorem 2.12 respects contact invariants. That is,

φξ2−ξ1(EH(Y1, ξ1)) = EH(Y2, ξ2).

By associating Honda, Kazez and Matić’s contact invariant to the complement of an
open standard neighborhood of a Legendrian knot L, one obtains an invariant of L

EH(L) ∈ SFH(−Y (L),−ΓL),

which lives in the sutured Floer homology groups of the complement Y (L), with sutures
given by the resulting dividing curves on ∂Y (L).

Since EH(L) is, by definition, the contact invariant of the complement (Y (L), ξL), it
follows from the theorem above that EH(L) vanishes if the complement of L possesses a
compact submanifold (N, ξ|N ) with EH(N, ξ|N ) = 0. Recall that convex neighborhoods
of both overtwisted disks [32] and Giroux torsion layers [20] have vanishing contact
invariant. Therefore, the invariant EH(L) vanishes if either the complement of L is
overtwisted or has positive Giroux torsion.

2.7. Relationships between sutured Legendrian invariants. It is natural to seek
connections and commonalities between the invariant defined by Honda, Kazez and Matić
and those defined by Lisca, Ozsváth, Stipsicz and Szabó. The first substantive progress
along these lines was accomplished by Stipsicz and Vértesi in [64]. There, they proved

Theorem 2.14 (Stipsicz-Vértesi [64]). Let L ⊂ (Y, ξ) be a Legendrian knot. Then there
exists a map

φSV : SFH(−Y (L),−ΓL)→ ĤFK(−Y, L)

which sends the invariant EH(L) to L̂(L).
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Stipsicz and Vértesi use the of Honda, Kazez and Matić gluing map from Theorem 2.12
to construct their map as follows. First, they attach a basic slice to the boundary of
Y (L) so that the dividing set on the resulting manifold consists of two meridional sutures.
A picture of this basic slice attachment is depicted on the left hand side of Figure 6.
Recall from Section 2.1.1 that there are two possible signs, positive and negative, one
can choose for this basic slice. Stipsicz and Vertesi choose to attach a negative basic slice
to ensure that the contact 3-manifold obtained via their construction does not change if
we modify L by negative stabilization.

Definition 2.15. Let L ⊂ (Y, ξ) be a Legendrian knot and (Y (L), ξL) the complement
of an open standard neighborhood of L. We call the basic slice attachment discussed
in the above paragraph a Stipsicz-Vértesi attachment, and denote the resulting contact
3-manifold (Y (L), ξL)

Figure 6. The Stipsicz-Vértesi attachment and a factorization.

It follows immediately from this definition that the space (Y (L), ξL) depends only on
the Legendrian L up to negative stabilization. Recall from the discussion in Section 2.1.1
that if L− is the negative stabilization of L, then the complement of (Y (L−), ξL−) is
obtained form (Y (L), ξL) by attaching a negatively signed basic slice A−n where n is the
Thurston-Bennequin invariant of L. By factoring the basic slice attachment yielding
(Y (L), ξL) as shown on the right hand side of Figure 6, we see it as a composition of two
attachments, the first yielding (Y (L−), ξL−) and the second (Y (L−), ξL−) = (Y (L), ξL).

Since the dividing set on (Y (L), ξL) consists of two meridional sutures, it follows from
[34] that

SFH(−Y (L),−ΓξL
) ∼= ĤFK(−Y, L).

By analyzing a Heegaard diagram adapted to both EH(L) and L̂(L), Stipsicz and Vértesi

are able to conclude that EH(Y (L), ξL) = L̂(L).

From this construction, one obtains a simple proof of Theorem 2.9 for L̂. If L+ is
the positive stabilization of L, then (Y (L+), ξL+) is obtained from (Y (L), ξL) by attach-
ing a positive basic slice to the boundary of Y (L). The composition of this positive
basic slice with the Stipsicz-Vértesi basic slice attachment is then overtwisted, forcing
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EH(Y (L+), ξL+) to vanish. Since, as discussed above, negative stabilizations of L factor
through the Stipsicz-Vértesi attachment, Theorem 2.9 follows.

We also notice that EH(Y (L), ξL) = L̂(L) sits in the SpinC component of suture Floer
homology SFH(−Y (L),−Γµ, sξL

), so to see its Alexander grading we need to evaluate

c1(sξL
, tµ) on the Seifert surface F for L. Choosing ruling curves on all tori involved that

are parallel the ∂F we see that 〈c1(s, tµ), [F, ∂F ]〉 can be evaluated in two steps. When
the Euler class of ξL is evaluated on the component of F contained in Y (L) it is well
known to contribute minus the rotation number −r(L), see [14]. In Section 2.5.3 above
we saw that the contact structure on A−n will evaluate to n+ 1 on the annulus F ∩A−n ,
where n = tb(L) is the Thurston-Bennequin invariant of L. Thus, the Alexander grading

of EH(Y (L), ξL) = L̂(L) is

(2)
1

2
〈c1(s, tµ), [F, ∂F ]〉 =

1

2
(tb(L)− r(L) + 1).

3. Limits and Invariants of Knots

In Subsections 3.1 and 3.2 we present definitions of the sutured limit invariant, SFH−−→,

and its F[U ]-module structure. In Subsection 3.3 an “Alexander grading” is given to
SFH−−→. We then discuss some of the properties of this invariant in Subsection 3.4. In

Subsection 3.5 we define the limit invariant EH−→ of Legendrian and transverse knots and

discuss its properties. The definition of the inverse limit invariant SFH←−− is quite similar

to the definition of SFH−−→. In Subsection 3.6 we quickly define the inverse limit invari-

ants SFH←−−, discuss it properties and define the corresponding Legendrian and transverse

invariant EH←−.

3.1. The sutured limit homology groups of a knot. Given a knot K in a closed
3–manifold Y denote the complement of an open tubular neighborhood of K by Y (K).
A choosing a framing on K is equivalent to choosing a longitude λ on ∂Y (K). We now
fix a choice of longitude λ and let Γ0 be a union of two disjoint, oppositely oriented
copies of λ on ∂Y (K). Then (Y (K),Γ0) is a balanced sutured manifold.

Using notation from the end of Subsection 2.1.3 we define the meridional completion
of Y (K) to be

(Y (K),Γµ) := [(Y (K),Γ0) ∪A−0 ]/ ∼,

where T 2 × {1} is identified to ∂Y (K) so that S1 × {pt} is mapped to a meridian of K
and the dividing curves on T 2 × {1} are mapped to the sutures on ∂Y (K). (Note that
this can be done since the dividing curves and sutures are “longitudinal”.) The manifold
(Y (K),Γµ) is naturally a sutured manifold with sutures Γµ coming from the dividing
curves on ∂A−0 , that is Γµ consists of two meridional curves. As noted in Subsection 2.1.3
there are convex tori Ti in A−0 ⊂ (Y (K),Γµ) whose dividing curves are parallel to λ− iµ
and such that Tj is closer to the boundary of (Y (K),Γµ) than Ti if j > i. Thus, we have
a sequence of sutured manifolds (Y (K),Γi) given as the closure of the component of the
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complement of Ti in (Y (K),Γµ) not containing ∂(Y (K),Γµ), with sutures coming from
the dividing curves of Ti

2.
Note that for any j > i we have the inclusion (Y (K),Γi) ⊂ (Y (K),Γj) and that

(Y (K),Γj)\(Y (K),Γi) has a contact structure on it. More specifically

(Y (K),Γj)\(Y (K),Γi)

is the contact manifold C−j,i. Using the HKM-gluing maps in sutured Floer homology
discussed in Theorem 2.12 we obtain maps

φij : SFH(−Y (K),−Γi)→ SFH(−Y (K),−Γj)

if i ≤ j.

Proposition 3.1. Let K be a knot in Y . With the notation above the collection

({SFH(−Y (K),−Γi)}, {φij})
of sutured Floer homology groups and maps together form a directed system.

Proof. From Proposition 2.3 we know the contact structure on

(Y (K),Γj)\(Y (K),Γi)

is the same as the one on

(Y (K),Γj)\(Y (K),Γk) ∪ (Y (K),Γk)\(Y (K),Γi)

for any j > k > i. The proposition follows by the well-definedness of the gluing map in
sutured Floer homology. �

This leads us to the following definition.

Definition 3.2. Let K ⊂ (Y, ξ) be a null-homologous Legendrian knot and consider the
associated directed system ({SFH(−Y (K),−Γi)}, {φij}) given by Proposition 3.1. The
sutured limit homology of (−Y,K) is defined by taking the directed limit

SFH−−→(−Y,K) = lim−→
φij

SFH(−Y (K),−Γi).

Denoting φi,i+1 by φ− for each i, and noting that the maps

SFH(−Y (K),−Γ0) SFH(−Y (K),−Γ1) SFH(−Y (K),−Γ2) . . .
φ− φ− φ−

form a cofinal sequence in our directed system, we can compute the sutured limit ho-
mology using just the φ− maps.

The only choices made in the definition of the sutured limit homology was that of a
framing on K. We note that the sutured limit homology is independent of that choice
and so is only an invariant of the knot K in Y .

Theorem 3.3. The sutured limit invariant SFH−−→(−Y,K) depends only on the knot type

of K in Y and not the choice of framing used in the definition.

2Strictly speaking, we have a sequence of distinct manifolds {Yi(K)}, each contained in the next.
However, since the Yi(K) are all pairwise diffeomorphic, we drop the subscript to avoid obscuring future
discussions.
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Proof of Theorem 3.3. Let λa and λb be two longitudes for a knot K in Y . Let Y ac(K)
and Y bc(K) be the meridional completions of Y (K) with respect to the two different
longitudes. We note that both these completions are canonically diffeomorphic to Y (K)
with meridional sutures. Moreover we can assume that there is some non-positive number
n such that λa = λb + nµ. Given this we see that (Y b

n+i(K),Γbn+i) is canonically (up
to isotopy) diffeomorphic to (Y a

i (K),Γai ). These diffeomorphism induce isomorphisms
of the sutured Floer homology groups SFH(−Y b

n+i(K),−Γbn+i) and SFH(−Y a
i (K),−Γai ).

These isomorphisms commute with the maps φij and thus induce an isomorphism of the
resulting direct limits. �

3.2. The U-action on the sutured limit homology. Recall, using the notation from
the previous section, that

(Y (K),Γi+1)\(Y (K),Γi)

is the basic slice B−i+1. And the contact structure on B−i+1 gave rise to the gluing map

φ− : SFH(−Y (K),−Γi)→ SFH(−Y (K),−Γi+1).

The region (Y (K),Γi+1)\(Y (K),Γi) can also be given the contact structure B+
i+1. That

contact structure will induce a gluing map

ψ+ : SFH(−Y (K),−Γi)→ SFH(−Y (K),−Γi+1).

The maps φ− and ψ+ together fit into a diagram, shown in Figure 7 whose commuta-
tivity is the content of Proposition 3.4.

SFH(−Y (K),−Γ0) SFH(−Y (K),−Γ1) SFH(−Y (K),−Γ2) . . .

SFH(−Y (K),−Γ1) SFH(−Y (K),−Γ2) SFH(−Y (K),−Γ3) . . .

φ− φ− φ−

φ− φ− φ−

ψ+ ψ+ ψ+

Figure 7.

Proposition 3.4. The diagram shown in Figure 7 is commutative.

Proof. On the thickened torus (Y (K),Γi+2)\(Y (K),Γi) one can consider the contact
structures B+

i+1 ∪ B
−
i+2 and B−i+1 ∪ B

+
i+2. The former induces the map ψ+ ◦ φ− and the

later induces the map φ− ◦ ψ+. Item (3) in Proposition 2.3 says that B+
i+1 ∪ B

−
i+2 and

B−i+1 ∪B
+
i+2 are the same contact structure so the well-definedness of the gluing maps in

sutured Floer homology implies that ψ+ ◦ φ− = φ− ◦ ψ+. �

It follows from Proposition 3.4 that the collection of maps {ψ+} together induce a
well-defined map on sutured limit homology

Ψ : SFH−−→(−Y,K)→ SFH−−→(−Y,K).

As an immediate consequence, we obtain the following theorem.
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Theorem 3.5. Let K be a smoothly embedded null-homologous knot in a 3-manifold Y .
The sutured limit homology SFH−−→(−Y,K) of the pair (Y,K) can be given the structure of

an F[U ]-module, where U acts on elements of SFH−−→(−Y,K) via the map Ψ:

U · [x] = Ψ([x]).

�

3.3. An Alexander grading. In this section, we show how to endow the sutured limit
homology groups with an absolute Alexander grading which will later be shown to agree
with the usual Alexander grading on knot Floer homology. We note that in the previous
subsections all definitions could be made whether or not K in Y was null-homologous.
To define the Alexander grading it is important that K is null-homologous and that in
the definition of SFH−−→(−Y,K) we take our initial longitude λ to be the one coming from

the Seifert surface for K.
Let K be a null-homologous knot in a 3–manifold Y and F a Seifert surface for K. If

H = (Σ,α,β, z, w) is a sutured Heegaard diagram for the space (Y (K),Γi), we define
the Alexander grading of a generator x ∈ G(H) via the formula

A[F,∂F ](x) =
1

2
〈c1(s(x)), t0), [F, ∂F ]〉,

where t0 is any non-zero section as discussed in Section 2.5.3.
Recall that the maps φij : SFH(−Y (K),−Γi)→ SFH(−Y (K),−Γj) used to define the

sutured limit invariants are defined via the contact manifold C−j,i. From the discussion
at the end of Section 2.5.3, we see that the map φij is Alexander-homogeneous of degree
(j − i)/2. We similarly see that the maps ψ+, which are induced by positive basic slice
attachment, are Alexander homogeneous of degree −1/2.

To obtain a well-defined Alexander grading on the sutured limit homology groups
SFH−−→(−Y,K), we introduce shift operators into the directed system. Specifically, we

consider the sequence

SFH(−Y (K),−Γ0)[−1/2] . . . SFH(−Y (K),−Γi)[−(i+ 1)/2] . . .
φ− φ− φ−

It follows from the discussion in Section 2.5.3 above that each of the maps in the
collections {φ−} and {ψ+} are Alexander-homogeneous of degrees 0 and −1 respectively.
Thus, upon taking the direct limit, we obtain a well-defined Alexander grading on sutured
limit homology for which multiplication U decreases grading by a factor of 1. The initial
grading shift [−1/2] ensures that the Alexander grading we have just defined on sutured
limit homology matches the usual one knot Floer homology.

3.4. Natural Maps. We now turn our attention to natural maps on sutured limit
homology induced by the Stipsicz-Vértesi basic slice attachment and meridional 2-handle
attachment respectively. Proofs of Theorems 1.3 and 1.4, which characterize the maps
ΦSV and Φ2h in terms of the identification between SFH−−→(−Y,K) and HFK−(−Y,K) will

be given in Sections 9 and 10 respectively.
We begin by focussing on the map induced by the Stipsicz-Vértesi basic slice attach-

ment — henceforth referred to as the “SV attachment”. Recall that given (Y (K),Γi)
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we can attach the basic slice A−i to obtain the manifold (Y (K),Γµ). As noted in Sub-

section 2.4 we know that SFH(−Y (K),−Γµ) is isomorphic to ĤFK(−Y,K). Thus the
gluing map coming from the contact structure on A−i induces the Stipsicz-Vértesi map

φSV : SFH(−Y (K),−Γi)→ ĤFK(−Y,K).

Proposition 3.6. The collection of gluing maps formed by applying the SV attachment
to (Y (K),Γi), for each i ≥ 0, together fit into the commutative diagram depicted in
Figure 8 and all maps in the diagram respect the Alexander grading.

SFH(−Y (K),−Γ0) SFH(−Y (K),−Γ1) SFH(−Y (K),−Γ2) . . .

ĤFK(−Y,K)

φ− φ− φ−

φSV φSV φSV

Figure 8.

Proof. This is again a simple consequence of the classification of contact structures given
in Proposition 2.3 and the naturality of the HKM gluing maps. �

Therefore, the collection {φSV : SFH(−Y (K),−Γi) → ĤFK(−Y,K)} induces a map
on the sutured limit homology.

Proposition 3.7. Let K be a null-homologous knot in a 3–manifold Y . There exists

a well-defined, Alexander grading preserving map ΦSV : SFH−−→(−Y,L) → ĤFK(−Y,L)

which is induced by the SV attachment, and whose constituent maps are depicted in
Figure 8. �

There is one additional geometrically meaningful construction one can perform to the
space (Y (K),Γi) — meridional contact 2–handle attachment. We obtain the topological
manifold Y 2h(K) from Y (K) by attaching a topological 2–handle along a meridional
curve in Y (K) that intersects Γi minimally (twice). The boundary of Y 2h(K) consists
of the annulus A that was part of the boundary of Y (K) and two disks coming form
the 2–handle. The sutures Γ2h on Y 2h(K) consists of A ∩ Γi (that is two arcs) and
an arc in each disk coming from the 2–handle that connects the endpoints of A ∩ Γi.
Notice that ∂Y 2h(K) is a sphere and Γ2h is a simple closed curve. In other words,
(Y 2h(K),Γ2h) = Y (1). Thus, as discussed in Subsection 2.4, there exists a natural
identification

SFH(−Y 2h(K),−Γ2h)→ ĤF(−Y ).

There is a unique tight contact structure (up to a choice of compatible characteristic
foliation on the boundary) on the 2-handle so that the boundary is convex with corners
and the sutures are the induced dividing curves. We use this contact structure to obtain
the gluing map

φ2h : SFH(−Y (K),−Γi)→ ĤF(−Y ).
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It follows that the collection of gluing maps formed by attaching meridional contact 2-
handles to (Y (K),Γi), for each i ≥ 0, together fit into the diagram depicted in Figure 9,
whose commutativity is the subject of Proposition 3.8.

SFH(−Y (K),−Γ0) SFH(−Y (K),−Γ1) SFH(−Y (K),−Γ2) . . .

ĤF(−Y )

φ− φ− φ−

φ2h φ2h φ2h

Figure 9.

Proposition 3.8. There exists a well-defined map Φ2h : SFH−−→(−Y,L)→ ĤF(−Y ) which

is induced by meridional contact 2-handle attachment, and whose constituent maps are
depicted in Figure 9.

Proof. Let M be the contact manifold obtained from the vertically invariant contact
structure on T 2× [0, 1] with dividing curves of slope −i by attaching a contact 2–handle
to T 2 × {0}. Similarly let M ′ be the contact manifold obtained from the basic slice
B−i+1 by attaching a contact 2–handle to T 2 × {0}. One may easily check that both of
these contact structures are contactomorphism to the complement of an open standard
contact ball inside the tight contact structure on the solid torus with convex boundary
having dividing slope i. Thus, the naturality of the HKM gluing maps yields the claimed
result. �

3.5. Legendrian and Transverse Invariants: Definition and Properties. We now
turn our attention to defining an invariant EH−→ of Legendrian and transverse knots which

takes values in the sutured limit homology groups SFH−−→(−Y,K). Although its definition

is qualitatively different, we will see Section 8 that the invariant EH−→ is identified with

the Legendrian/transverse invariants defined by Lisca, Ozsváth, Stipsicz and Szabó in
[41] under the isomorphism given in Theorem 1.1.

3.5.1. Definition of the Legendrian/transverse invariant. Let K ⊂ (Y, ξ) be a Legendrian
knot. In Section 3.1, we defined the sutured limit homology group SFH(−Y,K) by
forming the directed limit of the following sequence of groups and maps.

SFH(−Y (K),−Γ0) SFH(−Y (K),−Γ1) SFH(−Y (K),−Γ2) . . .
φ− φ− φ−

We also showed that the resulting F[U ]-module SFH−−→(−Y,K) depends only on the topo-

logical type of the Legendrian knot K.
Notice that if we choose the framing on K used in the definition of SFH−−→ to be the

contact framing, then the sutured manifold (Y (K),Γ0) is precisely the sutured manifold
one obtains by removing a standard neighborhood of K from Y . Moreover (Y (K),Γi) is
precisely the sutured manifold obtained by removing a standard neighborhood of the i-
times negatively stabilized K, Si−(K), from Y . Thus there is a natural contact structure
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ξK,i on (Y (K),Γi) coming from the complement of a standard neighborhood of Si−(K).
Therefore, associated to the Legendrian knot K, we have a collection of contact invariants
{EH(Si−(K)) ∈ SFH(−Y (K),−Γi)}.

Theorem 2.5 says that the contact manifold (Y (K), ξK,i) with the basic slice B−i+1

attached to it, is contact isotopic to (Y (K), ξK,i+1). Thus the collection {EH(Si−(K))}
satisfies φi(EH(Si−(K))) = EH(Si+1

− (K)) for each i ≥ 0.

Definition 3.9. Let K ⊂ (Y, ξ) be a Legendrian knot and Si−(K) its ith negative stabi-
lization. We define the LIMIT invariant of K to be the element EH−→(K) ∈ SFH−−→(−Y,K)

given as the residue class of the collection {EH(Si−(K))} of HKM invariants associated

to the Si−(K)s inside SFH−−→(−Y,K).

From the discussing at the end of Section 2.7, we have that the Alexander grading of
EH−→(K) in SFH−−→(−Y,K) is 1

2(tb(K)− r(k) + 1).

From Definition 3.9, we see that the class EH−→ defines a Legendrian invariant. Fur-

thermore, since the invariant EH−→ is obtained as a residue class over all possible negative

stabilizations of a given Legendrian knot, we have the following.

Theorem 3.10. Let K be a null-homologous Legendrian knot and let K− denote its
negative Legendrian stabilization, then EH−→(K−) = EH−→(K).

It follows immediately from Theorem 3.10 that EH−→ gives rise to a transverse invariant

through Legendrian approximation.

Definition 3.11. Let K ⊂ (Y, ξ) be a transverse knot and LK a Legendrian approxi-
mation of K. We define EH−→(K) = EH−→(LK).

3.5.2. Properties of the Legendrian/Transverse Invariant. We now take a moment to
discuss some useful and important properties of the Legendrian/transverse invariant
EH−→ defined above. These properties should be compared with their analogues for the

invariant L defined by Lisca, Ozsváth, Stipsicz and Szabó in light of the equivalence
promised by Theorem 1.5.

Recall that Theorem 3.10 states that EH−→ remains unchanged under negative Legen-

drian stabilization. The following theorem describes the corresponding behavior of EH−→
under positive Legendrian stabilization.

Theorem 3.12. Let K be a Legendrian knot and let K+ denote its positive Legendrian
stabilization, then

EH−→(K+) = U · EH−→(K).

Proof. Denote the ith negative stabilizations of K and K+ by Ki and K+,i, respectively.
Then, for each i ≥ 0, the contact manifold (Y (K+), ξK+,i) is obtained from (Y (K), ξKi)
by attaching a positively signed basic slice to its boundary. The gluing maps induced
by these basic slice attachments are precisely the ψ+ maps defining U -multiplication on
SFH−−→(−Y,K), and discussed in Section 3.2.

Since the HKM gluing maps respect contact invariants, we have that, for each i ≥ 0,

EH(K+,i) = ψ+(EH(Ki)).
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Thus,

EH−→(K+) = Ψ(EH−→(K)) = U · EH−→(K),

completing the proof of Theorem 3.12. �

The next three theorems illustrate some natural relations connecting EH−→ to previously

defined invariants of Legendrian and transverse knots. We begin with a theorem con-
cerning the relationship between the LIMIT invariant and the HKM invariant, whose
truth follows immediately from the definitions of the sutured limit homology SFH−−→ and

the LIMIT invariant EH−→.

Theorem 3.13. Let K ⊂ (Y, ξ) be a null-homologous Legendrian knot and (Y (K), ξK)
the contact manifold obtained by removing a open standard tubular neighborhood of K
from (Y, ξ). Under the natural map

ι : SFH(−Y (K),−ΓK)→ SFH−−→(−Y,K),

induced by inclusion, the invariant EH(K) is sent to EH−→(K). �

The next theorem describes the result of applying the Stipsicz-Vértesi map to the
invariant EH−→.

Theorem 3.14. Let K ⊂ (Y, ξ) be a null-homologous Legendrian knot. Under the

Stipsicz-Vértesi map ΦSV : SFH−−→(−Y,K)→ ĤFK(−Y,K), the class EH−→(K) is identified

with the LOSS invariant L̂(K).

Proof. The main theorem of [64] states that under the map

φSV : SFH(−Y (K),−ΓK)→ ĤFK(−Y,K),

the HKM invariant EH(K) is identified with L̂(K). Combining this result with the
definition of EH−→(K) and the commutativity of the diagram shown in Figure 8 defining

the map ΦSV , we have that ΦSV (EH−→(K)) = L̂(K). �

The theorem below illustrates how the LIMIT invariant of a Legendrian or transverse
knot relates to the classical contact invariant of the ambient space.

Theorem 3.15. Let K ⊂ (Y, ξ) be a null-homologous Legendrian knot. Under the map

Φ2h : SFH−−→(−Y,K) → ĤF(−Y ) induced by 2-handle attachment, the class EH−→(K) is

identified with the contact invariant EH(Y, ξ) of the ambient space.

The proof of this theorem is similar to that of Theorem 3.14, so we omit it. The key
observation is that since the HKM gluing maps respect contact invariants, the constituent
maps defining Φ2h each identify the elements EH(Ki) with EH(Y, ξ). Otherwise, the
proof is identical.



LEGENDRIAN AND TRANSVERSE INVARIANTS 35

3.6. The sutured inverse limit homology of a knot. As usual, given a knot K
in a closed 3–manifold Y , we let Y (K) denote the complement of an open tubular
neighborhood of K. Choosing a framing on K is equivalent to choosing a longitude λ
on ∂Y (K). Let Γµ be the union of two disjoint copies of the meridian of K on ∂Y (K),
and consider the sutured manifold (Y (K),Γµ).

Using notation from the end of Subsection 2.1.3 we define a longitudinal completion
of Y (K) to be

(Y (K),Γλ) = [(Y (K),Γµ) ∪ Ã−0 ]/ ∼,
where T 2×{0} is identified to ∂Y (K) so that {pt}×S1 is mapped to the chosen longitude
λ of K and the dividing curves on T 2 × {0} are mapped to the sutures Γµ on ∂Y (K).
The manifold (Y (K),Γλ) is naturally a sutured manifold with sutures Γλ coming from
the dividing curves on ∂Y (K). That is, Γλ consists of two longitudinal curves.

For notational ease in the following discussion, we will henceforth denote the longitu-
dinal suture set Γλ by Γ0.

As noted in Subsection 2.1.3 there are convex tori T̃i in Ã−0 ⊂ (Y (K),Γ0) whose di-

viding curves are parallel to λ+ iµ and such that T̃i is closer to the (convex) boundary of

(Y (K),Γ0) than T̃j if j > i. Thus we have a sequence of sutured manifolds (Y (K),Γ+
i )

given as the closure of the component of the complement of T̃i in (Y (K),Γ0) not con-

taining the boundary of (Y (K),Γ0), with sutures coming from the dividing curves of T̃i.
(As in Section 3.1, strictly speaking, we have a sequence of distinct manifolds {Yi(K)},
each contained in its successor. However, as before, since each of the Yi(K) are pairwise
diffeomorphic, we drop the subscript to avoid obscuring the discussion.)

Note that for any j > i we have the inclusion (Y (K),Γ+
j ) ⊂ (Y (K),Γ+

i ), and that

(Y (K),Γ+
i )\(Y (K),Γ+

j ) has a contact structure on it. More specifically

(Y (K),Γ+
i )\(Y (K),Γ+

j )

is the contact manifold C−−i,−j . Using the HKM gluing maps in sutured Floer homology
discussed in Theorem 2.12, we have maps

φ′ji : SFH(−Y (K),−Γ+
j )→ SFH(−Y (K),−Γ+

i )

if i ≤ j. Just as in Proposition 3.1 we have the following result.

Proposition 3.16. Let K be a knot in Y . With the notation above the collection

({SFH(−Y (K),−Γ+
i )}, {φ′ji})

of sutured Floer homology groups and maps together form a directed system. �

This leads us to the following definition.

Definition 3.17. Let K ⊂ (Y, ξ) be a null-homologous Legendrian knot and consider
the associated directed system ({SFH(−Y e

i (K),−Γ+
i )}, {φeji}) given by Proposition 3.16.

The sutured inverse limit homology of (−Y,K) is defined by taking the inverse limit

SFH←−−(−Y,K) = lim←−
φ′ji

SFH(−Y (K),−Γ+
i ).
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One may easily show, as in the proof of Theorem 3.3, that this invariant is independent
of the choice of longitude.

Theorem 3.18. The sutured limit invariant SFH←−−(−Y,K) depends only on the knot type

of K in Y and not the choice of framing used in the definition.

Analogously to the sutured limit homology, we can define a U -action. To this end we
set φ′− = φ′i+1,i and obtain the cofinal sequence

SFH(−Y (K),−Γ0) SFH(−Y (K),−Γ+
1 ) SFH(−Y (K),−Γ+

2 ) . . .
φ′− φ′− φ′−

from which SFH←−−(−Y,K) can be computed.

Each φ′− is defined using the contact structure on the basic slice B−−i. We can similarly
define

ψ′+ : SFH(−Y (K),−Γ+
i+1)→ SFH(−Y (K),−Γ+

i ).

using the basic slice B+
−i.

The same arugments used in the proof of Proposition 3.4 show that the maps φ′− and
ψ′+ together fit into the commutative diagram shown below.

SFH(−Y (K),−Γ0) SFH(−Y (K),−Γ+
1 ) SFH(−Y (K),−Γ+

2 ) . . .

SFH(−Y (K),−Γ+
1 ) SFH(−Y (K),−Γ+

2 ) SFH(−Y (K),−Γ+
3 ) . . .

φ′− φ′− φ′−

φ′− φ′− φ′−

ψ′+ ψ′+ ψ′+

Thus the collection of maps {ψ′+} together induce a well-defined map on sutured
inverse limit homology

Ψ′ : SFH←−−(−Y,K)→ SFH←−−(−Y,K).

As an immediate consequence, we obtain the following theorem.

Theorem 3.19. Let K be a smoothly embedded null-homologous knot in a 3-manifold
Y . The sutured inverse limit homology SFH←−−(−Y,K) of the pair (Y,K) can be given the

structure of an F[U ]-module, where U acts on elements of SFH←−−(−Y,K) via the map Ψ′:

U · [x] := Ψ′([x]).

�

The sutured inverse limit homology groups can be endowed with a well-defined Alexan-
der grading using the method discussed in Section 3.3.
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3.6.1. A Natural Map. Recall that (Y (K),Γµ) sits as a sutured submanifold of (Y (K),Γλ),

and that the basic slices Â−i gives a contact structure on (Y (K),Γ+
i )\(Y (K),Γµ). Thus,

the HKM gluing map from Theorem 2.12 gives a maps

φdSV : SFH(−Y (K),−Γµ)→ SFH(−Y (K),−Γ+
i )

and since SFH(−Y (K),−Γµ) is isomorphic to ĤFK(−Y,L), we have the commutative
diagram in Figure 10.

SFH(−Y (K),−Γ0) SFH(−Y (K),−Γ+
1 ) SFH(−Y (K),−Γ+

2 ) . . .

ĤFK(−Y,K)

φ′− φ′− φ′−

φdSV φdSV φdSV

Figure 10.

It follows that the maps {φdSV : ĤFK(−Y,K)→ SFH(−Y (K),−Γ+
i )} together induce

a map to the sutured inverse limit homology.

Proposition 3.20. Let K be a null-homologous knot in a 3-manifold Y . There exists

a well-defined, grading preserving map ΦdSV : ĤFK(−Y, L) → SFH←−−(−Y,L) which is

induced by the constituent maps depicted in Figure 10. �

3.6.2. A Legendrian/transverse invariant in sutured inverse limit homology. Let K ⊂
(Y, ξ) be a Legendrian knot. Let ν(K) be a standard neighborhood of K and notice that

the sutured manifold (Y (K),Γµ) used to define SFH←−−(−Y,K) is obtained from (Y \ν(K))

by attaching a negative bypass as in the Stipsicz-Vértesi’s construction from Section 2.7.
As noted there, we have a contact structure ξK on the sutured manifold (Y (K),Γµ)

and hence we have a contact structure ξK,i on each (Y (K),Γ+
i ) by extending ξK by the

contact structure on Ã−i . From this we obtain a contact invariant

EH(ξK,i) ∈ SFH(−Y (K),−Γ+
i )

for each i and, as when defining the direct limit Legendrian invariant, each element in
the collection {EH(ξK,i)} is taken to another element in the collection by the φ′ji maps

used in the definition of SFH←−−(−Y,K). Thus, we can define a inverse limit invariant as

well.

Definition 3.21. Let K ⊂ (Y, ξ) be a Legendrian knot. We define the inverse LIMIT
invariant of K to be the element EH←−(K) ∈ SFH←−−(−Y,K) given as the residue class of the

collection {EH(ξK,i)} of HKM invariants associated to the K inside SFH←−−(−Y,K).

From Definition 3.21, we see that the class EH←− defines a Legendrian invariant. Notice

that the bypass attached to (Y \ν(K)) to obtain the complement of the negatively sta-

bilized K embeds in the Stipsicz-Vértesi bypass but the bypass attached to (Y \ν(K))
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to obtain the complement of the positively stabilized K when glued to the Stipsicz-
Vértesi bypass yields an overtwisted contact structure. From this one easily concludes
the following result.

Theorem 3.22. Let K be a null-homologous Legendrian knot and let K− and K+ denote
its negative and positive Legendrian stabilization, respectively, then EH←−(K−) = EH←−(K)

and EH←−(K+) = 0.

It follows immediately from this theorem that EH←− defines a transverse invariant

through Legendrian approximation.

Definition 3.23. Let K ⊂ (Y, ξ) be a transverse knot and LK a Legendrian approxi-
mation of K. We define EH←−(K) := EH←−(LK).

Lastly we observe the following result.

Theorem 3.24. Let K ⊂ (Y, ξ) be a null-homologous Legendrian knot. Under the

map ΦdSV : ĤFK(−Y,K) → SFH←−−(−Y,K), defined in Proposition 3.20, the the LOSS

invariant L̂(K) is mapped to the class EH←−(K).

Part 2. Identifying the sutured limit homology package with the knot Floer
homology package

This part of the paper is devoted to proving our main theorems connecting the sutured
limit invariants defined in Part 1 with the more standard knot Floer homology package.

4. Bordered Sutured Floer Homology

We begin by reviewing some of the basic constructions and definitions from bordered
sutured Floer homology. For a more thorough and elementary treatment, we refer to
interested reader to the book [38] on bordered Floer homology by Lipshitz, Ozsváth
and Thurston, and to the third author’s paper [71] extending this theory to the sutured
category.

4.1. Sutured manifolds and surfaces. We recall the definition of a sutured 3-manifold,
originally due to Gabai [19].

Definition 4.1. A sutured manifold is a pair (Y,Γ), where Y is an oriented 3-manifold
with boundary and Γ is a collection of oriented, disjoint, simple closed curves on ∂Y
called sutures. We further require that Y contains no closed components, all boundary
components of Y have sutures and that the suture set Γ divides ∂Y into two regions R+

and R− satisfying χ(R+) = χ(R−).

Remark 4.2. The definition presented above is actually that of a balanced annular
sutured manifold [34]. Since the sutured 3-manifolds encountered in Heegaard Floer
theory are annular and generally satisfy the balancing condition, it is customary to omit
the words “balanced” and “annular” when referring to such a space.

Paralleling the above, in [71], the third author introduced the following 2-dimensional
analogue of a sutured manifold.
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Definition 4.3. A sutured surface is a pair F = (F,Λ), where F is an oriented 2-
manifold, and Λ is a collection of oriented, disjoint points on ∂F called sutures. We
further require that F contains no closed components, and that the suture set Λ intersects
each component of ∂F nontrivially, dividing it into two components S+ and S− satisfying
∂S± = ±Λ.

Definition 4.4. Let F = (F,Λ) be a sutured surface. A dividing set for F is a finite
collection Γ of disjoint, embedded, oriented arcs and simple closed curves in F for which
∂Γ = −Λ, as oriented submanifolds. We further require that the dividing set Γ separates
F into two regions R+ and R− with ∂R± = (±Γ) ∪ S±.

For examples of a sutured surface, and a dividing set on a sutured surface, see Fig-
ure 11.

S+

S−
−
+

R+

R+R−

R−

Figure 11. On the left is a sutured surface. On the right is a sutured
surface equipped with a dividing set.

4.2. Arc diagrams and bordered sutured manifolds.

Definition 4.5. An arc diagram of rank k is a triple Z = (Z,a,M) consisting of a finite
collection Z of oriented arcs, a set of 2k disjoint points a = {a1, . . . , a2k} ⊂ Z, and a
2-to-1 matching M : a → {1, . . . , k} such that the 1-manifold obtained by performing
0-surgery along each 0-sphere M−1(i) in Z has no closed components.

Given an arc diagram Z, one can associate a a graph G(Z) obtained from Z by
attaching 1–cells to points in a according to the matching M . In addition, one can
associate a sutured surface F(Z) = (F (Z),Λ(Z)) to it in the following way. Starting
with the product Z×[0, 1], attach (oriented) 2-dimensional 1-handles along the 0-spheres
in M−1(i)×{0}, for i = 1, . . . , k. The suture set is given by Λ(F) = −(∂Z×{1/2}), and
the positive and negative regions are the portions of the boundary ∂F (Z) containing
Z×{1} and Z×{0} respectively, see Figure 12. We also notice that there is an obvious
embedding of G(Z) in F(Z) such that Z goes to Z × {1/2} and the 1-cells map to
(extensions) of the cores of the 1-handles. When discussing the subset of arcs Z inside
F(Z), we will always mean Z × {1/2}.

Let F = (F,Λ) be a sutured surface and let F(Z) be the sutured surface associated
to an arc diagram Z. If there exists a proper diffeomorphism ι : F(Z) → F , then we
say that Z parametrizes F = (F,Λ).

Definition 4.6. A bordered sutured manifold Y = (Y,Γ,Z) is a (not necessarily bal-
anced) sutured manifold (Y,Γ), together with an embedding of the sutured surface F(Z)
into ∂Y that sends Z, in an orientation preserving way, into Γ.



40 JOHN B. ETNYRE, DAVID SHEA VELA-VICK, AND RUMEN ZAREV

+

−

−

+

=→

S+

S+

S−

S−

Figure 12. An arc diagram and its associated parametrized sutured surface.

An example of a bordered sutured manifold is depicted in Figure 13.

F(Z)

R+

R+

R−

R−

Figure 13. A bordered sutured manifold with sutured surface F
parametrized by the arc diagram Z.

Remark 4.7. So far, the discussion has been focused exclusively on the bordered sutured
category. In “classical” bordered Floer homology, the concept of an arc diagram is
replaced by that of a pointed matched circle — roughly, an arc diagram with a single
arc, whose tip and tail are identified via a marked point. When working with bordered
Heegaard diagrams, and when computing their corresponding invariants, this marked
point plays the role of a usual basepoint in Heegaard Floer theory, as the sutures do
in the discussion to follow. So, a “classical” bordered manifold can be thought of as a
sutured bordered manifold with suture a circle bounding a disk.

4.3. The strands algebra. We now recall the definition of the strands algebra and
bordered algebra from [71]. These will both be differential graded algebras, but we omit
the discussion of gradings in what follows and refer the interested reader to [71].

Definition 4.8. The strands algebra A(n, k) is a free F-module with generators µ =
(S, T, φ), where S and T are both k-element subsets of {1, . . . , n}, and φ : S → T is a
non-decreasing bijection. We denote by Inv(µ) the set of inversions of the map φ, that
is, pairs i < j in S such that φ(i) > φ(j). We also denote the cardinality of Inv(µ) by
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inv(µ) = inv(φ). Multiplication in A(n, k) is then given by

(S, T, φ) · (U, V, ψ) =

{
(S, V, ψ ◦ φ) if T = U and inv(φ) + inv(ψ) = inv(ψ ◦ φ),

0 else.

The differential is obtained by summing over all possible ways of “resolving” inversions
(see below).

The strands algebra is so-called because it has an obvious interpretation in terms of
moving strands from the points of S to those of T . From this perspective, the differential
corresponds precisely to resolving topological crossings between two strands. There is
an additional interpretation of the strands algebra in terms of Reeb chords along Z,
see below and [71], and we use the terms “strand” and “Reeb chord” interchangeably
according to context.

In the bordered sutured setting, we require a slight generalization of the strands
algebra. The extended strands algebra of the tuple (n1, . . . , n`; k) is

A(n1, . . . , n`; k) =
⊕

k1+···+k`=k
A(n1, k1)⊗ · · · ⊗ A(n`, k`).

We can view A(n1, . . . , n`; k) as a subalgebra of A(n1 + · · · + n`, k) by thinking of the
components A(ni, ki) as acting on {(n1 + · · · + ni−1) + 1, . . . , (n1 + · · · + ni−1) + ni}
instead of {1, . . . , ni}.

Let (Z,a) be a finite collection of oriented arcs and a subset of 2k points as in
Section 4.2 above. Denote by Zi the ith oriented arc in Z and let ai = Zi ∩ a be the
subset of a contained in Zi. The strands algebra associated to the pair (Z,a) is

A′(Z,a) =
2k⊕
i=1

A(|a1|, . . . , |a`|; i)

Let Z = (Z,a,M) be a rank k arc diagram and A′(Z,a) the strands algebra associ-
ated to (Z,a). To each i-element subset S ⊂ {1, . . . , 2k}, there exists and idempotent
I(S) = (S, S, idS) ∈ A′(Z,a). If s ⊂ {1, . . . , k} is an i-element subset, then a section
of s is a subset S ⊂ M−1(s) such that M |S : S → s is a bijection. For each subset
s ⊂ {1, . . . , k} there is an idempotent

Is =
∑

S a section of s

I(S),

obtained by summing over over all idempotents associated to sections over s.

Definition 4.9. The ground ring I(Z) associated to the arc diagram Z = (Z,a,M) is
the rank 2k subalgebra of A′(Z,a) spanned by the collection of idempotents {Is | s ⊂
{1, . . . , k}}.

If we let I(Z, i) denote the subalgebra of I(Z) generated by the set {Is | s ⊂
{1, . . . , k}, |s| = i}, then there exists a natural decomposition

I(Z) =
n⊕
i=0

I(Z, i).
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It is frequently convenient to focus on the subset of triples (S, T, φ), where S, T ⊂
{1, . . . , 2k}, and φ : S → T is a strictly increasing bijection. In such a situation, we
say that a subset U ⊂ {1, . . . , 2k} completes the pair (S, T ) if U ∩ (S ∪ T ) = ∅. Given,
(S, T, φ) as above, we let

ai(S, T, φ) =
∑

U completes (S,T )
|U∪S|=i

(S ∪ U, T ∪ U, φU ) ∈ A′(Z,a),

where φU |S = φ, and φU |U = IdU .

Definition 4.10. The bordered algebra associated to the arc diagram Z = (Z,a,M) is
the algebra

A(Z) = I(Z) · A′(Z,a) · I(Z) ⊂ A′(Z,a).

It is generated over F by I(Z) and elements of the form I · ai(S, T, φ) · I.

The bordered algebra A(Z) is a module over the idempotent subalgebra I(Z) and
decomposes as a direct sum

A(Z) =

k⊕
i=0

A(Z, i),

where the constituents A(Z, i) = I(Z, i) · A(Z) · I(Z, i) are modules over I(Z, i).
One can alternatively describe the strands algebra A(Z) in terms of Reeb chords

as follows. If Z = (Z,a,M) is an arc diagram, then, up to isotopy, there exists a
unique (compatibly oriented) contact structure on the collection of arcs Z. If we endow
Z with this contact structure, then the elements of a ⊂ Z are Legendrian. In this
case, there exists a family of positively oriented Reeb chords whose beginning and end-
points lie in a. If ρ = {ρ1, . . . , ρn} is a collection of Reeb chords in (Z,a), then we let
ρ− = {ρ−1 , . . . , ρ−n } and ρ+ = {ρ+

1 , . . . , ρ
+
n } denote the beginning and endpoints of the

elements of ρ respectively.
The idea is to use Reeb chords as geometric manifestations of the strictly increas-

ing pairing functions discussed above. For this to be possible, we must introduce an
appropriate compatibility condition.

Definition 4.11. Let Z = (Z,a,M) be an arc-diagram. A collection of Reeb chords
ρ = {ρ1, . . . , ρn} in (Z,a), where |a| = 2k, is said to be i-compatible if none of the ρj
are constant, the points M(ρ−1 ), . . . ,M(ρ−n ) and, independently, M(ρ+

1 ), . . . ,M(ρ+
n ) are

all distinct, and #(M(ρ−) ∪M(ρ+)) ≤ k − (i− n).

Thinking of a collection of Reeb chords as a strictly increasing pairing function, the
final condition above guarantees the existence of at lease one (i − n)-element subset
s ⊂ {1, . . . , k} which is disjoint from M(ρ−) ∪M(ρ+), and which “completes” ρ. That
is, if ρ is an i-compatible collection of Reeb chords and s is an i-completion, then

a(ρ, s) =
∑

S is a section of s

(ρ− ∪ S, ρ+ ∪ S, φS),

defines an element of A(Z, i), where φS(ρ−i ) = ρ+
i and φS is the identity on S. Defining

ai(ρ) =
∑

s an i-completion of ρ

a(ρ, s),
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we see that A(Z, i) is generated over I(Z) by the collection of elements {ai(ρ)}, where
ρ is an i-compatible collection of Reeb chords.

4.4. A∞-modules and Type-D structures. We now review basic definitions sur-
rounding A∞-modules and Type-D structures. Although everything that follows can
be extended to Z-coefficients, we work exclusively over F = Z/2 since this is all that is
needed to define the bordered invariants, and to avoid sign complications.

Recall an A∞-algebra over F is a pair A = (A, {µi}) where A is graded F-module and
the µi are a sequence of multiplication maps

µi : A⊗i → A[2− i]

for i = 1, 2 . . ., satisfying, for each n, the compatibility conditions∑
i+j=n+1

n−j+1∑
l=1

µi(a1 ⊗ · · · ⊗ al−1 ⊗ µj(al ⊗ · · · ⊗ al+j−1)⊗ al+j ⊗ · · · ⊗ an) = 0

and the unital condition that there is an element 1 ∈ A for which µ2(a, 1) = µ2(1, a) = a
for all a ∈ A and µi vanishes on i-tuples containing 1 for i 6= 2. Here and throughout
this paper we denote by A[n] is the module A with grading shifted down by n and by
A⊗i the tensor product over F of i copies of A. If µi = 0 for i > 2 then A is simply a
differential graded algebra (with differential µ1 and multiplication µ2).

Definition 4.12. Let A be a unital, (graded) A∞-algebra over F, with multiplication
maps µi, and I the subalgebra of idempotents with orthogonal basis {Ii} satisfying∑
Ii = 1 ∈ A. A (right unital) A∞-module over A is a graded module M over the base

ring I
MA =

⊕
i

M · Ii,

together with a family of homogeneous maps

(3) mi : M ⊗A⊗i−1 →M [2− i], i ≥ 1

which together satisfy the A∞ structure conditions

0 =
n−1∑
j=1

n−j∑
i=1

mn(x⊗ a1 ⊗ · · · ⊗ µj(ai ⊗ · · · ⊗ ai+j)⊗ · · · ⊗ an−1)

+
n∑
i=1

mn−i+1(mi(x⊗ a1 ⊗ . . . ai−1)⊗ · · · ⊗ an−1).

and unital conditions

m2(x⊗ 1) = x

mi(x⊗ · · · ⊗ 1⊗ . . . ) = 0, i ≥ 2.

We say that the A∞-module MA is bounded if mi = 0 for all sufficiently large i.

It is frequently convenient to represent a structure equation like (3) graphically. For
the case of an A∞-module, this is depicted in Figure 14.
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M M

M M

A⊗i A⊗i

µ

m

+
0 =

m

m

Figure 14. The structure equation for an A∞ module M .

Remark 4.13. If Z is an arc diagram, then the associated strands algebra A(Z) is
actually a DG-algebra — meaning that µi = 0 for all i > 2. Thus, the first summand
in the structure equation for an A∞-module over such an A(Z) involves only terms
containing µ1 and µ2.

Definition 4.14. Let A be a unital DG-algebra over F, with idempotent subalgebra I
as above. A (left) Type-D structure over A is a graded module N over the base ring I

AN =
⊕
i

Ii ·N

together with a homogeneous map

δ : N → (A⊗N)[1],

satisfying the compatibility relation

(µ1 ⊗ IdN ) ◦ δ + (µ2 ⊗ IdN ) ◦ (IdA ⊗ δ) ◦ δ = 0

Iterating, we obtain a collection of maps indexed by k ∈ {0, 1, . . . }

δk : N → (A⊗k ⊗N)[k],

where

δk =

{
IdN for k = 0

(IdA ⊗ δk−1) ◦ δ for k ≥ 0.

The structure equation for a Type-D modules is shown in Figure 15. We say a Type-D
structure AN is bounded if δk = 0 for all sufficiently large k.

Given two Type-D structures (N, δ) and (N ′, δ′) over A an F-module homomorphism
ψ : N → A⊗N ′ is a D-structure homomorphism if it satisfies

(µ2 ⊗ IdN ′) ◦ (IdA ⊗ ψ) ◦ δ + (µ2 ⊗ IdN ′) ◦ (IdA ⊗ δN ′) ◦ ψ + (µ1 ⊗ IdN ′) ◦ ψ = 0.

Given two D-structure homomorphisms φ : N → A ⊗ N ′ and ψ : N ′ → A ⊗ N ′′ their
composition is defined to be the D-structure homomorphism ψ ◦φ form N to N ′′ defined
by

(µ2 ⊗ IdN ′′) ◦ (IdA ⊗ ψ) ◦ φ.
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MA

M

δ

µ

0 =

Figure 15. The structure equation for a Type-D structure on M .

We say that two Type-D structure homomorphisms φ : N → A⊗N ′ and ψ : N → A⊗N ′
are homotopic if there is a D-structure homotopy between them. That is, a F-module
homomorphism h : N → A⊗N ′[−1] satisfying

(µ2 ⊗ IdN ′) ◦ (IdA ⊗ h) ◦ δ + (µ2 ⊗ IdN ′) ◦ (IdA ⊗ δN ′) ◦ h+ (µ1 ⊗ IdN ′) ◦ h = ψ − φ.

Given an A∞-module MA and a Type-D structure AN , at least one of which is
bounded, we can form their box tensor product MA � AN = (M ⊗I N, ∂�), with differ-
ential given by the formula

∂�(x⊗ y) =
∞∑
k=0

(mk+1 ⊗ IdN )(x⊗ δk(y)).

The boundedness assumption ensures that the above sum is finite.

M N

M N

δ

m

∂� =

Figure 16. The structure equation for ∂�.

The following definition from [38] shows how to induce maps on box tensor products.

Definition 4.15. Let φ : N → N ′ be a map of D-modules and IdM the identity. then
box tensor product of IdM and φ is a map

IdM � φ : M �N →M �N ′
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given by

IdM � φ(x⊗ y) =
∞∑
k=0

(mk+1 ⊗ IdN ′) ◦ (x⊗ φk(y)),

where the maps φk → A⊗k ⊗N are defined inductively by

φk :=
∑

i+j=k−1

(IdA⊗(i+1) ⊗ δ′j) ◦ (IdA⊗i ⊗ φ) ◦ δi.

Graphically, the map IdM � φ can represented as in Figure 17.

M N

M N ′

δ

φ

δ′

m

Figure 17. The map IdM � φ.

We will also make use of A∞-bimodules. As the A∞-algebras we will be concerned
with are differential graded algebras we will define our bimodules over such algebras. See
[39] for the more general definition.

Definition 4.16. Let A and B be two differential graded algebras with underlying F-
modules A and B, differential denoted ∂A and ∂B and multiplication denoted µA and
µB, respectively. A Type-DA structure over A and B, denoted AMB, is a graded vector
space M over F together with a collection of graded maps

mk : M ⊗B⊗(k−1) → A⊗M [2− k]

satisfying

k∑
p=1

(µA ⊗ IdM ) ◦ (IdA ⊗mk−p+1) ◦ (mp ⊗ IdB⊗(k−p)) + (∂A ⊗ IdM ) ◦mk

+

k−2∑
p=0

mk ◦ (IdM ⊗ IdB⊗p ⊗ ∂B ⊗ IdB⊗(k−p−2))

+

k−3∑
p=0

mk ◦ (IdM ⊗ IdB⊗p ⊗ µB ⊗ IdB⊗(k−p−3)) = 0,

for all k ≥ 0, and the unital condition that m2(x⊗ 1) = 1⊗ x and mk is zero when any
entry is 1 for k 6= 2.
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Given such a Type-DA structure, we can define maps mi
k : M ⊗ B⊗(k−1) → A⊗i ⊗

M [1 + i − k] by setting m0
1 = IdM ,m

0
k = 0 for k > 1, m1

k = mk and then inductively
define

mi
k =

k−1∑
j=0

(IdA⊗(i−1) ⊗mj+1) ◦ (mi−1
k−j ⊗ IdB⊗j ).

Notice that, in the case that A or B is the trivial algebra, we get an A∞-module over
B or a Type-D structure over A (by ignoring the mi

k for k > 1), respectively. There
are notions of maps between Type-DA modules and homotopies between such maps
analogous to those for Type-D modules discussed above. For details see [39].

Now, given two Type-DA structures AMB and BNC with maps {mi
k} and {njl }, re-

spectively, we define their box tensor product AMB � BNC to be the Type-DA structure
A(M ⊗N)C with operations

(m� n)ik =
∑
j≥1

(mi
j ⊗ IdN ) ◦ (IdM ⊗ nj−1

k ).

If both A and C are trivial then one notes that this definition agrees with the box tensor
product defined above.

4.5. The bordered invariants. Let Z = (Z,a,M) be an arc diagram.

Definition 4.17. A bordered sutured Heegaard diagram is a quadrupleH = (Σ,α,β,Z)
comprised of the following

• Σ a compact surface with no closed components
• α = αc ∪αa a collection of pairwise disjoint, properly embedded circles αc and

arcs αa in Σ.
• β a collection of pairwise disjoint, properly embedded circles.
• An embedding of the associated graph G(Z) → Σ such that Z is sent to ∂Σ in

an orientation preserving way, and the 1-cells of G(Z) are identified with the arcs
αa.

We further require that each component of Σ− (αc ∪αa) and each component of Σ−β
intersects ∂Σ−Z.

From a bordered sutured Heegaard diagram H = (Σ,α,β,Z) we can constructed a
bordered sutured 3–manifolds (Y,Γ,Z) as follows. The manifold Y is simply Σ × [0, 1]
with 2–handles attached to Σ×{1} along the circles in β and attached to Σ×{0} along the
circles in αc. The sutures Γ are ∂Σ×{1/2}. Finally we construct the embedding of F(Z)
into ∂Y by first embedding G(Z). To this end, we embed Z as Z×{1/2} ⊂ ∂Σ×{1/2}
and to each α ∈ αa we attach the 1-cell (∂α×[0, 1/2])∪α×{0}. Now a small neighborhood
of G(Z) in ∂Y gives an embedding of F(Z) into ∂Y .

Given a bordered sutured Heegaard diagram H = (Σ,α,β,Z), a generator for bor-
dered sutured Floer homology is a collection of intersections x = (x1, . . . , xg) in α ∩ β
such that exactly one point comes from each α-circle, exactly one point comes from each
β circle, and at most one point comes from each α-arc. We denote this generating set
G(H).
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Let H be a bordered sutured Heegaard diagram and x ∈ G(H) a generator. The set
of α-arcs containing points of the generator x is denoted o(x) and is called the set of
occupied arcs. Similarly, we denote by o(x) = αa − o(x) the complement of the set of
occupied arcs.

To a bordered sutured Heegaard diagram H = (Σ,α,β,Z) one associates two basic
algebraic objects. The first is a right A∞-module over the bordered strands algebra A(Z)

and is denoted B̂SA(H)A(Z). The second is a left Type-D structure over A(−Z), and

is denoted A(−Z)B̂SD(H). More specifically the A∞-module B̂SA(H) is X(H), where
X(H) is the F-vector space generated by G(H) and given a right I(Z)-module structure
by the action

x · I(s) =

{
x if s = o(x)

0 else.

In a similar spirit, the Type-D structure B̂SD(H) is defined to be A(−Z)⊗I(−Z) X(H)
where the left action of I(−Z) on X(H) is given by

I(s) · x =

{
x if s = o(x)

0 else.

The A∞-module and Type-D structures on B̂SA(H) and B̂SD(H), respectively, are ob-
tained by counting holomorphic curves in Σ × [0, 1] × R with appropriate asymptotic
— we refer the reader to [38] and [71] for details, but make a few remarks in the next
subsection that are relevant to our computations below.

The third author showed in [71] that B̂SA(H) and B̂SD(H) are both invariants of
the underlying bordered sutured manifold specified by H up to homotopy equivalence.
In addition, the third author established a pairing theorem which describes how these
invariants behave if one glues together two bordered sutured 3-manifolds along a common
parametrized sutured surface Z.

Theorem 4.18. Let (Y1,Γ1,Z) and (Y2,Γ2,−Z) be two bordered sutured 3-manifolds
and (Y,Γ) = (Y1 ∪Z Y2,Γ1 ∪Γ2) the sutured 3-manifold obtained by gluing them together
along Z. Then there exists a graded homotopy equivalence

SFC(Y,Γ) ' B̂SA(Y1,Γ1)� B̂SD(Y2,Γ2) ' B̂SA(Y1,Γ1)⊗̃A(Z)B̂SD(Y2,Γ2),

where ⊗̃ denotes the derived (A∞) tensor product.

Moving to bi-modules, letH = (Σ,α,β,−Z1∪Z2) he a bordered sutured Heegaard dia-
gram where the parameterized surface has two disjoint components one parameterized by

−F(Z1) and the other by F(Z2). We define the Type-DA structure A(Z1)B̂SDA(H)A(Z2)

to be A(Z1) ⊗I(Z1) X(H) where the left I(−Z1) and right I(Z2) module structures on
X(H) are defined by

I(s1) · x · I(s2) =

{
x if s1 = o(x) and s2 = o(x)

0 else.

The operators {mk} are defined by counting holomorphic curves in Σ × [0, 1] × R with
appropriate asymptotic.



LEGENDRIAN AND TRANSVERSE INVARIANTS 49

We also have a generalization of Theorem 4.18.

Theorem 4.19. Given two bordered sutured manifolds (Y1,Γ1,−Z1∪Z2) and (Y2,Γ2,−Z2∪
Z3) we can glue them together along F(Z2) to get a sutured cobordism from F(Z1) to
F(Z2). Then there is a graded homotopy equivalence of bimodules

B̂SDA(Y1 ∪F(Z2) Y2) ' B̂SDA(Y1)� B̂SDA(Y2) ' B̂SDA(Y1)⊗̃B̂SDA(Y2).

4.6. Nice Heegaard diagrams. In [63], Sarkar and Wang showed how to compute the
differential in Heegaard-Floer homology combinatorially if the Heegaard diagram was
“nice”. As discussed in [71], the same is true in the bordered sutured category.

A bordered sutured Heegaard diagram H = (Σ,α,β,Z) is nice if every region of
Σ \ (α ∪ β) either contains part of ∂Σ \ Z or is a disk with at most four vertices. For

such diagrams we can define the Type-D structure δ on B̂SD(H) as follows. For each

generator x of B̂SD(H) the differential δ(x) is computed as follows:

(1) Suppose y is another generator that differs from x in only one double point and
S is a convex bigon embedded in Σ with boundary consisting of one arc from α
and one arc from β, no points of x∩y in the interior of the bigon, traversing ∂S
near one of the double points of x in the direction induced from the orientation
of S one encounters the arc from β and then the one from α, and traversing
the boundary near one of the double points of y one encounters the arcs in the
opposite order. Then S contributes I(o(x))⊗ y to δ(x).

(2) Suppose y is another generator that differs from x at exactly two double points
and S is a convex rectangle embedded in Σ with boundary consisting of two arcs
from α and two arcs from β, no points of x ∩ y in the interior of the rectangle,
traversing ∂S near one of the double points of x in the direction induced from
the orientation of S one encounters the arc from β and then the one from α, and
traversing the boundary near one of the double points of y one encounters the
arcs in the opposite order. Then S contributes I(o(x))⊗ y to δ(x).

(3) Suppose y is another generator that differs from x in only one double point and
and S is a convex rectangle embedded in Σ with boundary consisting of two arcs
from α, one arc from β and one Reeb chord −ρ ∈ Z, no points of x ∩ y in
the interior of the rectangle, traversing ∂S near one of the double points of x in
the direction induced from the orientation of S one encounters the arc from β
and then the one from α, and traversing the boundary near one of the double
points of y one encounters the arcs in the opposite order. Then S contributes
I(o(x))a(ρ)I(o(y))⊗ y to δ(x).

Not all of our diagrams are nice but when computing Type-D structures all the re-
gions we compute will be (possibly immersed) bigons and rectangles, or embedded annuli.
They will count towards δ in an entirely analogous way to the situation for nice diagrams
(see for example, the computations in Appendix A of [38]). When computing Type-AD
structures we make similar counts but in that case we will also need to consider (possi-
bly immersed) annuli with varying numbers of corners on each boundary components.
(Again see the computations in Appendix A of [38] for the fact that these are counted
analogously.)
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4.7. SpinC structures in bordered sutured Floer homology. Let Y be a 3-manifold
(possibly with boundary), and X ⊂ Y a subspace of Y . Fix a non-zero vector field v0

on the subspace X. As discussed in Section 2.5.2 for the case of knot complements
(where X = ∂Y = T 2), the space of relative SpinC-structures SpinC(Y,X, v0), or simply
SpinC(Y,X) consists of non-vanishing vector fields v on Y , such that v|∂Y = v0, consid-
ered up to homology in Y −X. The set SpinC(Y,X, v0) is an affine space over H2(Y,X)
whenever it is non-empty.

In the bordered setting, there are two flavors of (relative) SpinC-structure which de-
pend on a chosen boundary normalization convention. To understand the two conven-
tions, let H be a bordered sutured Heegaard diagram given by a boundary-compatible
Morse function f , and let x ∈ G(H) be a generator of the associated bordered sutured
Floer complex. Consider the gradient vector field ∇f , which vanishes only at the critical
points of f . Each intersection of x lies on a unique gradient trajectory connecting an
index-1 and index-2 critical point of f . As these intersections have opposite parity, we
can alter the vector field ∇f to be non-vanishing in a neighborhood of each of these
trajectories. The few remaining critical points of f are all contained in F (Z) ⊂ ∂Y .
It is straightforward to modify ∇f in a neighborhood of each such critical point to be
nonzero. The resulting nonzero vector field is denoted v(x).

Consider the vector fields v0 = v(x)|∂Y−F = ∇f |∂Y−F and vo(x) = v(x)|∂Y . The vector
field vo(x) depends on the collection of occupied α-arcs o(x), while v0 does not depend
on any information coming from the generator x. For different choices of boundary-
compatible Morse function and metric, the vector fields v0 and vo(x) may vary within a

contractible set. Thus, we consider the following two sets of relative SpinC-structures:
SpinC(Y, ∂Y−F ) and SpinC(Y, ∂Y, o), where o ⊂ {1, . . . , k} lists the collection of occupied
α-arcs.

Let H = H1∪H2 be a decomposition of a (bordered) sutured Heegaard diagram into a
pair of bordered sutured heegaard diagrams, glued along their common boundary. If x ∈
G(H) is a generator of the (bordered) sutured Floer complex associated to H, then x =
x1⊗x2, where x1 ∈ G(H1) and x2 ∈ G(H2). By fixing the natural vector field associated
to s(x) = s(x1 ⊗ x2) along the gluing surface, we further obtain a decomposition of
s(x) into the pair of relative SpinC-structure: s(x1) ∈ SpinC(Y1, ∂Y1, o(x1)) and s(x2) ∈
SpinC(Y2, ∂Y2, o(x2)). Moreover, we have a splitting of Chern classes

c1(x1 ⊗ x2) = c1(x1)⊗ c1(x2).

4.8. Bordered invariants and knot Floer homology. Given a null-homologous knot
K ⊂ Y , one can form the bordered manifold by removing a tubular neighborhood of
K and parametrizing the resulting torus boundary using the meridian and (Seifert-
framed) longitude toK. The resulting space is a bordered 3-manifold which is canonically
associated to the knot K. From this space we compute A∞ and Type-D modules denoted

ĈFA(K)AT and AT ĈFD(K), each over the torus algebra (see Section 5).
Lipshitz, Ozsváth and Thurston observed in [38] that the knot Floer homology groups

HFK−(Y,K) and ĤFK(Y,K) can be recovered form either of the bordered invariants
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ĈFA(K) or ĈFD(K). Concretely, this can be obtained by considering the doubly-
pointed, bordered Heegaard diagram Hc = (H, z, w) for the solid torus shown in Fig-
ure 18.

x2

1

x2

1w z

3

2 1

0

Figure 18. Diagram (H, z, w) yielding HFK−.

The doubly-pointed diagram Hc in Figure 18 specifies a solid torus S1 ×D2 together
with its core curve γ = S1 × pt. The arcs α1 and α2 specify the longitude and meridian
of γ respectively. Identifying these curves of this solid torus with their pairs on the
complement Y \ν(K) amounts to performing infinity-surgery and further identifies the
core curve γ of S1 ×D2 with the knot K.

To Hc one associates three distinct Type-D modules, which compute the knot Floer

homology groups HFK−(Y,K), HFK+(Y,K) and ĤFK(Y,K), respectively, when paired

with ĈFA(K). We denote the first by K− := ATCFD−(Hc). This module is generated
over F[U ] by the single intersection point x. It is understood that holomorphic disks
passing over the second basepoint w in Hc, with multiplicity n, contribute a factor of
Un to the differential. Thus, the Type-D module K− is specified by the relation

δ(U i · x) = ρ23 ⊗ (U i+1 · x),

or, graphically

x U · x U2 · x U3 · x . . .
ρ23 ρ23 ρ23

We denote the second Type-D module associated to Hc by K+ := ATCFD+(Hc). As
an F[U ]-module, it is equal to F[U−1]. Again, we have that holomorphic disks passing
over the second basepoint w in (H, z, w), with multiplicity n, contribute a factor of Un

to the differential. The Type-D structure on K+ is specified graphically as

x U−1 · x U−2 · x U−3 · x . . . .
ρ23 ρ23 ρ23 ρ23

Finally, there is a third Type-D structure associated to (H, z, w), which we denote

K∞ := AT ĈFD(Hc). The module K∞ is again generated by the single intersection x,
but now over the field F. The differential on K∞ is trivial:

δ(x) = 0.
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4.9. Gluing maps. In [72], the third author defined a gluing map for sutured 3-manifolds.
Specifically, he showed the following.

Theorem 4.20 (Zarev [72]). Let (Y1,Γ1) and (Y2,Γ2) be balanced sutured 3-manifolds
which can be glued along some surface F . Then there exists a well-defined map

ΨF : SFH(Y1,Γ1)⊗ SFH(Y2,Γ2)→ SFH(Y1 ∪ Y2,Γ1 ∪ Γ2),

which is symmetric, associative and equals the identity for topologically trivial gluing.

These maps are well-defined, even when the two manifolds are bordered sutured, pro-
vided the surface along which the gluing is performed is part of the sutured boundary.
It has further been shown by the third author [70] that the gluing map given by Theo-
rem 4.20 are equivalent to the contact gluing map defined by Honda, Kazez and Matić
in [31].

The main advantage of the bordered sutured interpretation of the Honda-Kazez-Matić
(HKM) gluing map is that it is defined purely algebraically. The utility of this algebraic
perspective will become apparent quickly. Indeed, the algebraic framework surrounding
bordered sutured Floer homology, combined with some standard non-vanishing results
for the HKM gluing maps will propel many of the computations that follow.

5. Parametrized Surfaces and Associated Algebras

We now give explicit descriptions of the strands algebras to be encountered in sub-
sequent sections. There are three such surfaces and they are depicted in Figures 19
and 20.

a1

a2

a3

a4

1

2
a1

a2

a3

a4

1

2

Figure 19. On the left the sutured disk FD = (D2,ΛD) and correspond-
ing arc diagram WD. On the right sutured annulus FA = (A,ΛA) and
corresponding arc diagram WA.

The Parametrized Sutured Disk. We begin with the sutured surface FD = (D2,ΛD),
depicted on the left in Figure 19. This surface is topologically a disk, with suture
set ΛD consisting of six marked points along its boundary. Figure 19 also depicts a
parametrization of FD and the corresponding arc diagram WD.

From Figure 19, we see that there is a single Reeb chord ρ in WD connecting a2 to
a3. In turn, the algebra A(WD) has trivial differential and decomposes as a direct sum
of three subalgebras: A(WD, 0), A(WD, 1) and A(WD, 2).
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The summands A(WD, 0) = 〈I∅〉 and A(WD, 2) = 〈I12〉 are both trivial, while the
A(WD, 1)-summand is given by

A(WD, 1) = 〈I1, I2, ρ
′〉,

where ρ′ = a({ρ}, ∅) and the idempotent compatibilities are given by

I2 ρ
′ I1 = ρ′.

The Parametrized Sutured Annulus. Next, we turn to the sutured surface FA = (A,ΛA),
depicted on the right in Figure 19. Topologically, this is an annulus with suture set ΛA
consisting of a pair of marked points on each boundary component. As before Figure 19
also depicts a parametrization of FA together with the corresponding arc diagram WA.

In WA, there are three Reeb chords — ρ1 connecting a2 to a3, ρ2 connecting a3 to a4,
and ρ12 connecting a2 to a4. It follows that the algebra A(WA) decomposes as a sum of
three subalgebras: A(WA, 0), A(WA, 1) and A(WA, 2).

As before, the summand A(WA, 0) = 〈I∅〉 is trivial.
The A(WA, 1)-summand, is described by

A(WA, 1) = 〈I1, I2, ρ
′
1, ρ
′
2, ρ
′
12〉,

where ρ′1 = a({ρ1}, ∅), ρ′2 = a({ρ2}, ∅) and ρ′12 = a({ρ12}, ∅). The idempotent compati-
bilities and nontrivial products in A(WA, 1) are given by

I1 ρ
′
1 I2 = ρ′1, I2 ρ

′
2 I1 = ρ′2, I2 ρ

′
12 I2 = ρ′12, ρ′1ρ

′
2 = ρ′12.

Finally, we have that
A(WA, 2) = 〈I12, ρ

′′
12, ρ

′′
2 · ρ′′1〉,

where ρ′′12 = a({ρ12}, {2}) and ρ′′2 · ρ′′1 = a({ρ1, ρ2}, ∅). The idempotent compatibilities
are given by

I12 ρ
′′
12 I12 = ρ′′12, I12 ρ

′′
2 · ρ′′1 I12 = ρ′′2 · ρ′′1,

and there are no nontrivial products. There is a single nontrival differential in A(WA, 2)
given by ∂ρ′′12 = ρ′′2 · ρ′′1.

a1

a2

a3

a4

1

2

Figure 20. The sutured torus FT = (T,ΛT ) and corresponding arc dia-
gram WT .

The Parametrized Sutured Torus. Finally, we consider surface FT = (T,ΛT ), depicted in
Figure 20. As a sutured surface, this is a punctured torus with a suture set ΛT consisting
of a pair of marked point along its boundary. An explicit parametrization of FT by WT

is also shown in Figure 20.
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In WT , there are several Reeb chords — ρ1 from a1 to a2, ρ2 from a2 to a3, ρ3 from
a3 to a4, ρ12 from a1 to a3, ρ23 from a2 to a4 and, finally ρ123 from a1 to a4.

The algebra A(WT ) associated to this punctured torus is equivalent to the “torus alge-
bra” from [38]. As above, A(WT ) decomposes as a sum of three subalgebras: A(WT , 0),
A(WT , 1) and A(WT , 2).

In this case, only the A(WT , 0)-summand is trivial: A(WT , 0) = 〈I∅〉.
We have that A(WT , 1) is given by

A(WT , 1) = 〈I1, I2, ρ
′
1, ρ
′
2, ρ
′
3, ρ
′
12, ρ

′
23, ρ

′
123〉,

where ρ′1 = a({ρ1}, ∅), ρ′2 = a({ρ2}, ∅), ρ′3 = a({ρ3}, ∅), ρ′12 = a({ρ12}, ∅), ρ′23 =
a({ρ23}, ∅) and ρ′123 = a({ρ123}, ∅). The idempotent compatibilities and nontrivial prod-
ucts in A(WT , 1) are given by

I2 ρ
′
1 I1 = ρ′1, I1 ρ

′
2 I2 = ρ′2, I2 ρ

′
3 I1 = ρ′3,

I2 ρ
′
12 I2 = ρ′12, I1 ρ

′
23 I1 = ρ′23, I2 ρ

′
123 I1 = ρ′123,

ρ′1ρ
′
2 = ρ′12, ρ′2ρ

′
3 = ρ′23, ρ′1ρ

′
23 = ρ′123, ρ′12ρ

′
3 = ρ′123

Since it is not strictly needed in the discussion to follow, we leave it as an interesting
exercise for the reader to compute the summand A(WT , 2). As a hint, this subalgebra
contains both nontrivial products and nontrivial differentials.

6. Bypass Attachment Maps

In this section, we begin discussing a general method for computing the HKM map
induced on sutured Floer homology by bypass attachment. The key result from [70],
which propels this computation in this section, states that the HKM gluing maps extends
to the bordered sutured category. Specifically, the third author proves the following
extension of Theorem 2.12.

Theorem 6.1. Let Y1 = (Y1,Γ1,Z) and Y2 = (Y2,Γ2,Z) be two bordered sutured 3–
manifolds such that Y1 ⊂ Y2, Y2\int(Y1) is balanced sutured, and let ξ be a contact
structure on Y2\int(Y1) with convex boundary divided by Γ1 ∪ Γ2. Then there exists a
map of Type-D structures induced by the contact structure ξ

φξ : B̂SD(−Y1)→ B̂SD(−Y2),

which is natural with respect to gluings of bordered sutured 3–manifolds along subsets of
the boundary which are parametrized sutured surfaces.

The discussion to follow focuses on a small tubular neighborhood of a bypass attach-
ment arc. Within this neighborhood, there exists a natural sequence of three suture sets,
each obtained from the last by a bypass attachment. Together, this sequence is known
as a “bypass exact triangle”. It is so-called because it represents an exact triangle in
Honda’s contact category (see [27]). The sequence of attachments and resulting dividing
sets are depicted in Figure 21.

Theorem 6.2 (Honda [27]). Denote the sutured manifolds in the above mentioned se-
quence by (Y,ΓA), (Y,ΓB) and (Y,ΓC) respectively. The trio of HKM gluing maps
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ΓA

ΓBΓC

Figure 21. Honda’s bypass exact triangle.

induced by the collection of bypass attachments moving between these three manifolds
together form an exact triangle in sutured Floer homology:

SFH(−Y,−ΓC) SFH(−Y,−ΓB).

SFH(−Y,−ΓA)

φC

φB φA

In Subsection 6.1 we will reduce this theorem to a computation about simple bordered
sutured manifolds and in the following section we will make the relevant computations
giving a bordered sutured Floer proof of this theorem.

6.1. The Bordered Analogue. We translate the above discussion into the language
of bordered sutured Floer homology by decomposing the sutured manifold (−Y,−ΓA),
as depicted in Figure 22, into a pair of bordered sutured manifolds: (−Y,Γ′,WD) and
(D2 × I,ΓA,−WD).

(−D2 × I,Γ′A,−F1)

(−Y,Γ′, F1)

Figure 22. Decomposing (−Y,ΓA).

Mirroring the discussion above, we consider the trio of bordered sutured manifolds
DA = (D2 × I,Γ′A,−WD), DB = (D2 × I,Γ′B,−WD) and DC = (D2 × I,Γ′C ,−WD)
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Γ′A

Γ′BΓ′C

Figure 23. The bordered bypass exact triangle.

depicted in Figure 23. The sutured manifolds (−Y,−ΓA), (−Y,−ΓB) and (−Y,−ΓC)
are obtained from Y = (−Y,Γ′,WD) by gluing on DA, DB or DC respectively.

Below we compute the trio of HKM gluing maps φ′A, φ′B and φ′C induced by the bypass

attachments in Figure 21 on the Type-D structures A(WD)B̂SD(DA), A(WD)B̂SD(DB)

and A(WD)B̂SD(DC). We will then see that B̂SD(DA) is the mapping cone of φ′B with
φ′A and φ′C being the projection and inclusion maps respectively. It then follows from
Theorem 6.1 that the gluing maps φA, φB and φC are equivalent to H∗(I�φ′A), H∗(I�φ′B)
and H∗(I� φ′C), under the identifications

SFH(−Y,−ΓA) ∼= H∗(B̂SA(Y)� B̂SD(DA))

SFH(−Y,−ΓB) ∼= H∗(B̂SA(Y)� B̂SD(DB))

SFH(−Y,−ΓC) ∼= H∗(B̂SA(Y)� B̂SD(DC)).

Properties of the derived tensor product then imply that SFC(−Y,ΓA) ∼= B̂SA(Y) �

B̂SD(DA) is the mapping cone of I � φB with I � φA and I � φC being the projection
and inclusion maps respectively. Theorem 6.2 then follows upon taking homology.

6.2. Bordered Bypass Attachment Maps. Our computation of the maps φ′A, φ′B
and φ′C proceeds as follows.

We begin by computing the Type-D structures B̂SD(DA), B̂SD(DB) and B̂SD(DC).
From the form of these modules, it follows that there exist unique nontrivial maps which
connect these Type-D structures in sequence and these maps form a mapping cone as
discussed above. The fact that the maps φ′A, φ′B and φ′C are nontrivial follows from
Theorem 6.1 and the fact that there exist contact manifolds with convex boundaries
which are related by a single bypass attachment and whose sutured contact invariants
are nonzero.
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Computation of Modules. We now compute the Type-D structures B̂SD(DA), B̂SD(DB)

and B̂SD(DC). Figure 24 depicts the parametrized bordered sutured manifolds DA, DB
and DC .

Figure 24. From left to right the parameterized bordered sutured man-
ifolds DA, DB and DC .

As we will now verify, the corresponding bordered sutured Heegaard diagrams HA,
HB and HC are shown in Figure 25. We will check that HA does indeed give a Heegaard

2
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1

1
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x
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2

2

1

1
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ρ

2

2

1

1

w

ρ

Figure 25. From left to right he bordered sutured Heegaard diagrams
HA, HB and HC associated to DA, DB and DC , respectively. Each Hee-
gaard surface is an annulus obtained by identifying the two round black
circles in the diagrams. The blue circles give β and the red arcs form α.

diagram for DA and leave it to the reader to make the analogous arguments for the other
two diagrams. We first notice that HA = (Σ,α,β,Z) where Z is the arc diagram for FD
from Section 5 and consists of the vertical black lines and the red arcs. Now recall from
Section 4.5 how to build a bordered sutured manifold form a bordered sutured Heegaard
diagram. The manifold Y is obtained from the Heegaard surface Σ by attaching 2–
handles to Σ × [0, 1] along the α and β circles. Thus Y is a solid torus (that is an
annulus times interval) with one 2–handle attached along a longitude. So Y is clearly a
3-ball. Now on the left in Figure 26 we see the boundary of Σ× [0, 1] with the embedding
of the graph of the arc diagramWD for FD, the curve β and the dividing curves Γ shown.
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Figure 26. On the left is ∂(Σ× [0, 1]) with β shown in blue, the sutures
Γ the union of the green and black arcs and G(Z) the union of the black
and red arcs. On the right is ∂Y with F(Z) shaded.

After surgery on β we see ∂Y on the left of Figure 26 together with the embedding of
FD = F(WD). This is clearly isotopic to the bordered sutured manifold DA in Figure 24.

To the diagram HA, depicted in Figure 25, we associate the Type-D structure MA :=
A(WD)B̂SD(DA). As a module, MA is generated by two elements, x and y, whose idem-
potent compatibilities are given by

I1 · x = x, I2 · y = y.

The diagram HA is a nice in the sense of Section 4.6 so we can use the algorithm there
to compute the boundary map δ. From Figure 253, we see that there is a single domain
contributing to the boundary map δ. It corresponds to a source S which is a rectangle
from y to x with one edge mapping to −ρ. Thus, the only nontrivial term in the structure
map δ is given by

δ(y) = ρ′ ⊗ x.
Next, to the diagram HB, depicted in Figure 25, we associate the Type-D structure

MB := A(WD)B̂SD(DB). As a module, MB is generated by a single element z whose
idempotent compatibility is given by

I2 · z = z.

The boundary map in this case is trivial since all regions in HB are adjacent to sutured
portions of the boundary.

Finally, to the diagram HC in Figure 25, we associate the Type-D structure MC :=
A(WD)B̂SD(DC). As above, MC is generated by a single element w, whose idempotent
compatibility is given by

I1 · w = w,

with trivial boundary map owing to the fact that all regions in HC are adjacent to
portions of the boundary which are sutured.

3As an aid to the reader, regions adjacent to a sutured boundary components in bordered sutured
Heegaard diagrams have been lightly shaded orange. This signals that any domain which contributes
nontrivially to the corresponding differential in Floer homology must have multiplicity zero in that region.
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Nontrivial Maps. Having computed the Type-D structures MA, MB and MC , the task of
computing the HKM gluing maps φ′A, φ′B and φ′C is essentially a triviality. The reason is
that any map of Type-D structures must respect idempotent compatibilities. Combining
this with the previously observed nontriviality requirement, one quickly checks that the
desired maps are determined as follows.

The only nontrivial, idempotent compatible map from MA to A(WD)⊗MB is

φ′A : MA → A(WD)⊗MB

φ′A(y) = I2 ⊗ z
φ′A(x) = 0

Similarly, the only nontrivial, idempotent compatible map from MB to A(WD)⊗MC

is

φ′B : MB → A(WD)⊗MC(4)

φ′B(z) = ρ′ ⊗ w

Finally, the only nontrivial, idempotent compatible map from MC to A(WD)⊗MA is

φ′C : MC → A(WD)⊗MA

φ′C(w) = I1 ⊗ x

Observe that the Type-D structure MA is the mapping cone of the Type-D morphism
φ′B, and that the maps φ′A and φ′C are the projection and inclusion maps respectively.

7. Limit Invariants and Knot Floer Homology

In this section, we prove a version of Theorem 1.1, which states that there exists
an isomorphism relating the sutured limit homology of a null-homologous knot with the
minus version of knot Floer homology. Specifically, we establish an isomorphism of F[U ]-
modules, deferring the identification of absolute Alexander and (Z/2) Maslov gradings
until Section 12.

Proving Theorem 1.1 requires a precise understanding of how the gluing maps induced
by positive and negative Legendrian stabilization act on the sutured Floer homology of
a Legendrian knot complement. Computation of these gluing maps, at the level neces-
sary to prove Theorem 1.1, has not historically been possible. These gluing maps are
defined in terms of inclusions of complexes, which, themselves are generally explicitly
computable in only elementary situations. Our strategy employs bordered Floer homol-
ogy, which provides a sufficiently robust background structure that circumventing the
general computability problem is possible in the present situation.

We have broken this section into three main parts. The first discusses the overall
geometric setup, remarking on an appropriate method of decomposing a knot comple-
ment which leads to simplified gluing map computations. Next, we compute the various
modules and bi-modules which will be encountered in later computations. Finally, we
conclude the section with a proof of the ungraded version of Theorem 1.1.
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7.1. The Geometric Setup. Let Y be a 3–manifold and K ⊂ Y a null-homologous
knot with chosen Seifert surface F . Consider the sutured manifold (−Y (K),−Γλ) =
(−Y (K),−Γ0), where Y (K) denotes the complement of an open tubular neighborhood
of K, and Γλ consists of two oppositely-oriented Seifert-framed sutures on the boundary
of Y (K).

We decompose (−Y (K),−Γ0) into a pair of bordered sutured manifolds

(−Y (K),−Γ0) = (−Y (K),Γ′,FT ) ∪ T0,

consisting of the knot complement (−Y (K),Γ′,FT ) together with a thickened, punctured
torus T0, as depicted in Figure 27.

bordered sutured

Figure 27. Decomposing (−Y (K),−ΓK) into the union
(−Y (K),Γ′,FT ) ∪ (T × I,Γ′K ,−FT ). (The light blue regions are
the parameterized surfaces FT as seen on the “front” of Y (K) and the
“back” of T × I.)

Decomposing (−Y (K),−ΓK) in this way, we can restrict our attention to computing
the gluing maps induced on bordered sutured Floer homology by attaching positive or
negative bypasses to the simpler space T0 = (T × I,Γ′K ,−FT ), depicted in Figure 28.
We denote the space resulting from n such bypass attachments by Tn (see Figure 28).

As described in Section 2.1.3, the bypass attachments corresponding to positive or
negative basic slice layer can be constrained to lie in the annular strip A, which is
shaded grey in Figure 28. The collection of sutures Γn+1 on the resulting space Tn+1 are
obtained from those on Tn by applying a single negative Dehn twist along a core curve
of the annulus A (note the orientation reversal).

This observation suggests that we consider the further decomposition of Tn into a
union

Tn = T ∪ Cn ∪ A0

of three bordered sutured manifolds as depicted in Figure 29. Like the Tn, the space
T is diffeomorphic to a thickened punctured torus. The spaces Cn and A0 are each
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Figure 28. The bordered sutured manifold T0 = (T,−Γ′0,−WT ) and
Tn = (T,−Γ′n,−WT ) on the left hand and, respectively, right hand sides.
The annular strip A is shaded in grey.

diffeomorphic to thickened annuli A× I (see Sections 7.2.3 and 7.2.4 for descriptions of
spaces An and Cm).

Figure 29. A decomposition of Tn into the union T ∪ Cn ∪ A0.

As before, we can use this further decomposition of the Tn to systematically compute
the relevant gluing maps. This is the content of Lemmas 7.2, 7.3 and 7.4, which we wield
to ultimately establish Theorem 1.1.

7.2. Computations of Bordered Sutured Modules and Bi-Modules. In this sec-
tion, we compute the various modules and bi-modules which will be used below in the
proof of Theorem 1.1.

7.2.1. Torus Modules. We begin by computing the Type-D modules B̂SD(T0) and B̂SD(Tn)
associated to the spaces depicted in Figures 28. Admissible bordered sutured Heegaard
diagrams for these spaces are presented in Figure 30.

To the diagram on the left in Figure 30, we associate the Type-D module K0 :=
A(WT )B̂SD(T1), defined over the strand algebra A(WT ) from Section 5. The module K0
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Figure 30. Bordered sutured Heegaard diagrams for the spaces T0 and
Tn, n ≥ 1. (As usual the black circles are identified.)

is generated by a single element a, whose idempotent compatibility is given by

I2 · a = a.

The boundary operator on K0 is trivial since all of the regions in the bordered sutured
Heegaard diagram are adjacent to portions of the boundary which are sutured.

Similarly, to the of diagram on the right in Figure 30, representing the bordered

sutured manifold Tn, we associate the Type-D module Kn := A(WT )B̂SD(Tn). For an in-
teger n ≥ 1, the module Kn is generated by the collection of intersections {a, b1, . . . , bn}.
The idempotent compatibilities of these generators are given by

I2 · a = a, I1 · bi = bi.

From the diagram shown in Figure 30, we compute the following nontrivial terms in
the boundary operator on Kn:

δ(b1) = ρ′2 ⊗ a
δ(bi) = ρ′23 ⊗ bi−1, i = 2, . . . n.

To see this, observe that, for each i ≥ 1, there is a single domain contributing to
δ(bi). In the case i = 1, it corresponds to a domain that is described in the algorithm
for computing δ for nice diagrams in Section 4.6. For i ≥ 2, there are many non-trivial
(index 1) domains emanating from bi, but only one which (potentially) contributes non-
trivially to the boundary operator — the domain connecting bi to bi−1. The domain
is a 6-gon with with 2 edges going to Reeb chords −ρ2 and −ρ3, in that order. The
contribution to δ is analogous to the algorithm described in Section 4.6 except that the
two Reeb cords are multiplied together to yield ρ23 when determining their contribution
to δ.

Remark 7.1. In the discussion to follow, we will not generally provide justification
for our boundary operator computations. Instead, we leave them as straight-forward
exercises for the reader, each of which follows from a line of reasoning similar to that
above.
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7.2.2. Torus Bi-module. We now compute the Type-DA bi-module associated to the
space T := (T × [0, 1],Γ,−WT ∪ WA), depicted in Figure 31. An admissible bordered
sutured Heegaard diagram for T is also shown on the right of Figure 31.

2

1

2

1

2

1

2

1x y

y x

ρ π

Figure 31. On the left hand side is the decorated sutured cobordism
T between the sutured surfaces F3 and F1. On the right hand side is
an admissible bordered sutured Heegaard diagram for T . (As usual the
black circles are identified by reflections along horizontal lines.)

To this bordered sutured Heegaard diagram, we associate the Type-DA bi-module

N := A(WT )B̂SDA(T )A(WA).

We content ourselves with computing the middle summand B̂SDA(T , 1), since that
is all we need in our proof of Theorem 1.1. Indeed, the modules (A∞ or Type-D) to
be paired with N have all other summands vanishing, owing to the fact that they arise
from bordered sutured manifolds with a single bordered boundary component.

From Figure 31, we see that B̂SDA(T , 1) is generated by elements x and y, whose
idempotent compatibilities are given by

I2 · x · I2 = x, I1 · y · I1 = y.

(Other collections of intersection points will not lie in B̂SDA(T , 1).)
There are three domains which each contribute a term to m2 — two correspond to

8-gons with 2 edges mapping to Reeb chords and one which is an annulus with one
boundary component having 4 edges — one mapping to a Reeb chord — and the other

having 6 edges with 2 mapping to Reeb chords. The nontrivial operations in B̂SDA(T , 1)
are given by:

m2(y, π′1) = ρ′2 ⊗ x
m2(x, π′2) = ρ′3 ⊗ y
m2(y, π′12) = ρ′23 ⊗ y.

7.2.3. Annular Modules. We now focus on the collection of spacesA0 := (A×[0, 1],Γ0,−WA)
and An := (A×[0, 1],Γn,−WA) depicted in Figure 32. Admissible bordered sutured Hee-
gaard diagrams for the An are given in Figure 33.
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Figure 32. Thickened bordered sutured annuli representing the “twist region”.
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1

ρ

Figure 33. Bordered sutured Heegaard diagrams for the thickened bor-
dered sutured annuli A0 and An. (As usual the black circles are identi-
fied.)

To the diagram on the left hand side of Figure 33, we associate the Type-D module

M0 := A(WA)B̂SD(A0). The module M0 is generated by a single element a, whose
idempotent compatibility is given by

I2 · a = a.

The corresponding boundary operator δ is trivial since all of the regions in the corre-
sponding bordered sutured Heegaard diagram are adjacent to portions of the boundary
which are sutured.

Similarly, to the collection of diagrams depicted on the right hand side of Figure 33,

we associate the Type-D modules Mn := A(WA)B̂SD(An). For an integer n ≥ 1, the
module Mn is generated by the collection of intersections {a, b1, . . . , bn}. The idempotent
compatibilities of these generators are given by

I2 · a = a, I1 · bi = bi.
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From the diagram shown in Figure 33, we see that the nontrivial terms in the boundary
map on δ are given by:

δ(b1) = ρ′1 ⊗ a(5)

δ(bi) = ρ′12 ⊗ bi−1, i = 2, . . . n.

The justification for this calculation is identical to that for the torus modules Kn in
Section 7.2.1.

7.2.4. Annular Bi-modules. Here, we compute the Type-DA bi-modules associated to
the collection of spaces Cn := (A×[0, 1],Γn,−WA∪WA) depicted in Figure 34. Admissible
bordered sutured Heegaard diagrams for the Cn are given in Figure 34, to which we

associate the Type-DA bi-module Cn := A(WA)B̂SDA(Cn)A(WA).

2

1

2

1

2

1

2

1
a

b1
bn
c

ρ π

Figure 34. Doubly bordered annulus and its bordered diagram. (As
usual the black circles are identified by reflections along horizontal lines.)

As was the case above for the bi-module N , we content ourselves with computing

the middle summand B̂SDA(Cn, 1) since, that is all we use in our proof of Theorem 1.1.

The bi-module B̂SDA(Cn, 1) is generated by the intersections, {a, b1, . . . , bn, c}, whose
idempotent compatibilities are given by

I2 · a · I2 = a, I1 · bi · I2 = bi, I1 · c · I1 = c.

(Notice that for each intersection point in {a, b1, . . . , bn, c} there is a unique second

intersection between the α and β curves that will produce an element of B̂SDA(Cn, 1),

so we denote the generators of B̂SDA(Cn, 1) by the points {a, b1, . . . , bn, c}.)
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From Figure 34, we see that the nontrivial operations in B̂SDA(An, 1) are given as
follows:

m1(b1) = ρ1 ⊗ a
m1(bi) = ρ12 ⊗ bi−1

m2(c, π1) = ρ12 ⊗ bn
m2(c, π12) = ρ12 ⊗ c

mk+2(a, π2, π12, . . . , π12, π1) = ρ2 ⊗ bk
mk+2(bi, π2, π12, . . . , π12, π1) = I1 ⊗ bi+k
mk+2(bn−k, π2, π12, . . . , π12) = I1 ⊗ c

mn+2(a, π2, π12, . . . , π12) = ρ2 ⊗ c,
where k ≥ 1.

The above computation is straightforward but somewhat involved, and entirely anal-
ogous to the computations made in Appendix A of [38].

7.2.5. Bypass Attachment Annuli. We conclude by computing the Type-DA bi-modules
associated to the two spaces B1 := (A×[0, 1],Γ′,−WA∪WD) and B2 := (A×[0, 1],Γ′′,−WA∪
WD) depicted in Figure 35. These spaces will be used to study the attachment of bypass
by gluing them to the bordered sutured manifolds DA, DB or DC from Subsection 6.1.

Figure 35. Bordered sutured manifolds for the two possible bypass
attachments to an annulus: B1 := (A × [0, 1],Γ′,−WA ∪ WD) and
B2 := (A× [0, 1],Γ′′,−WA ∪WD)

To the bordered sutured Heegaard diagrams shown on the left and right hand side

of Figure 36, we associate the Type-DA bi-modules B1 := A(WA)B̂SDA(B1)A(WD) and

B2 := A(WA)B̂SDA(B2)A(WD), respectively. As before, we compute only the summand

B̂SDA(Bi, 1), since that is all we need in our proof of Theorem 1.1.

The bi-module B̂SDA(B1, 1) is generated by the intersections, {d, e, f}, whose idem-
potent compatibilities are given by

I1 · d · I1 = d, I2 · e · I1 = e, I2 · f · I2 = f.
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Figure 36. Heegaard diagrams for the possible bypass attachments to an
annulus B1 and B2. (As usual the black circles are identified by reflections
along horizontal lines.)

There are two nontrivial domains, one contributes a term to m1 and another to m2.

The nontrivial operations in B̂SDA(B1, 1) are given by:

m1(d) = ρ′1 ⊗ e
m2(f, π′) = I2 ⊗ e.

The bi-module B̂SDA(B2, 1) is again generated by the intersections, {d, e, f}, with
idempotent compatibilities

I1 · d · I1 = d, I2 · e · I1 = e, I2 · f · I2 = f.

There are again two domains which contribute terms to either m1 or m2. The non-

trivial operations in B̂SDA(B2, 1) are given by:

m1(d) = ρ′1 ⊗ e
m2(f, π′) = ρ′2 ⊗ d.

7.3. Computation of Gluing Maps. Having finished computing the various modules
and bi-modules which are needed to prove Theorem 1.1, we now determine the various
maps on Floer homology induced by either positive or negative bypass attachment.

After reversing orientation, the lemma below describes the effect on bordered Floer
homology of attaching either a positive or negative bypass to the bordered sutured
annulus A0.

Lemma 7.2. The map on bordered sutured Floer homology induced by attaching a pos-
itive bypass to the thickened annulus A0 of slope zero is given by the following equation:

ψp : M0 →M1

a 7→ I2 ⊗ a.
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Similarly, the map on bordered sutured Floer homology induced by attaching a negative
bypass to the thickened annulus A0 of slope zero is given by the following equation:

ψn : M0 →M1

a 7→ ρ′2 ⊗ b1.

Proof. The proof of Lemma 7.2 centers around the following key diagram.

B2 �MB

B1 �MB

B2 �MC

B1 �MC

M0 M1

IdB2 � φB

ψn

ψp

IdB1
� φB

The Type-D module in the upper left-hand corner of this diagram correspond to gluing
the bordered sutured 3-manifolds B1 and DB depicted in Figures 35 and 24 together along
their bordered boundaries. The resulting bordered sutured 3-manifold is the thickened
annulus A0 of slope zero depicted in Figure 32.

Similarly, the Type-D module in the lower left-hand corner of this diagram correspond
to gluing the bordered sutured 3-manifolds B2 and DB depicted in Figures 35 and 24
together along their bordered boundaries. The resulting bordered sutured 3-manifold is,
again, the thickened annulus A0 of slope zero depicted in Figure 32.

The same is true for the modules on the right-hand side of the diagram. The Type-
D module in the upper right-hand corner of this diagram correspond to gluing the
bordered sutured 3-manifolds B1 and DC depicted in Figures 35 and 24 together along
their bordered boundaries, while the module in the lower right corresponds to gluing the
spaces B2 and DC in Figures 35 and 24. The resulting bordered sutured 3-manifolds are
both equal to the thickened annulus A1 of slope one depicted in Figure 33.

Observe that there exist canonical identifications between the Type-D modules B1 �
MB and B2 �MB with M0 given by:

(6) f ⊗ z = a = f ′ ⊗ z.
Similarly, by idempotent considerations, and by Equation (5), we see that there are

canonical identifications of the Type-D modules B1 �MC and B2 �MC with M1 given
by

d⊗ w = b1 = d′ ⊗ w and(7)

e⊗ w = a = e′ ⊗ w.
We now turn to computing the associated gluing maps ψp and ψn induced by positive

and negative bypass attachment respectively. These maps are each defined by

IdB1 � φB : B1 �MB → B1 �MC
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and

IdB2 � φB : B2 �MB → B2 �MC

under the identifications given by Equations 6 and 7, respectively. To see that the first
map corresponds to positive stabilization and the second to negative stabilization, simply
compare the associated bordered sutured manifolds shown in Figure 35 with Figure 4,
and recall that in the former setting, orientations are reversed.

Applying Definition 4.15 to compute the map IdB1 � φB:

IdB1 � φB(f ⊗ z) = m2(f, π′)⊗ w
= I2 ⊗ (e⊗ w)

Similarly, applying Definition 4.15, to the map IdB2 � φB, we obtain:

IdB2 � φB(f ′ ⊗ z) = m2(f ′, π′)

= ρ′2 ⊗ (d′ ⊗ w)

Therefore, under the identifications given in Equations (6) and (7), we have that

ψp(a) = I2 ⊗ a
and

ψn(a) = ρ′2 ⊗ b1,
completing the proof of Lemma 7.2

�

Lemma 7.3. The map on bordered sutured Floer homology induced by attaching a pos-
itive bypass to the thickened annulus Am of slope m is given by the following equation

ψp,m : Mm →Mm+1

bi 7→ I1 ⊗ bi
a 7→ I2 ⊗ a.

Similarly, the map on bordered sutured Floer homology induced by attaching a negative
bypass to the thickened annulus Am of slope m is given by the following equation

ψn,m : Mm →Mm+1

bi 7→ I1 ⊗ bi+1

a 7→ ρ′2 ⊗ b1.

Proof. The proof of Lemma 7.3 is very similar to that of Lemma 7.2. In this case, the
proof centers around the following key diagram.

Mm = Cm �M0 Cm �M1 = Mm+1

ψp,m := IdCm
� ψp

ψn,m := IdCm � ψn
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There exists a canonical identification between Cm �M0 and Mm given by

a⊗ a = a and

bi ⊗ a = bi.

Similarly, there exists a canonical identification between Cm �M1 and Mn+1 is given
by

a⊗ a = a,

bi ⊗ a = bi, i = 1, . . . n, and

c⊗ b1 = bn+1.

As in the proof of Lemma 7.2, Lemma 7.3 now follows by applying Definition 4.15 to
compute the maps IdCm � ψp and IdCm � ψn.

�

Lemma 7.4. The map on bordered sutured Floer homology induced by attaching a pos-
itive bypass to the thickened punctured torus Tm of slope m is given by the following
equation

ηp,m : Kn → Km+1

bi 7→ I1 ⊗ bi
a 7→ I2 ⊗ a.

Similarly, the map on bordered sutured Floer homology induced by attaching a negative
bypass to the thickened punctured torus Tm of slope m is given by the following equation

ηn,m : Km → Km+1

bi 7→ I1 ⊗ bi+1

a 7→ ρ′3 ⊗ b1.

Proof. As before, the proof of Lemma 7.4 centers around the following key diagram.

Km = N �Mm N �Mn+1 = Km+1

ηp,m := IdN � ψp,m

ηn,m+1 := IdN � ψn,m

We leave the remainder of the proof as an exercise to the reader, noting that the
argument is similar to those establishing Lemmas 7.2 and 7.3 above.

�

7.3.1. Proof of Theorem 1.1. Having set up the necessary algebraic machinery, we now
complete the proof of Theorem 1.1.

As shown in Section 7.2.1, the Type-D module Kn associated to the thickened, punc-
tured, bordered sutured torus Tn of slope n torus is given by
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bn bn−1 . . . b1 a.
ρ23 ρ23 ρ23 ρ2

(Recall this diagram shows the generators of the Type-D structures as vertices and the
edges denote the map δ.)

According to Lemma 7.4, positive and negative bypass attachments induce maps

ηp,m : Km → Km+1

bi 7→ I1 ⊗ bi
a 7→ I2 ⊗ a

and

ηn,m : Km → Km+1

bi 7→ I1 ⊗ bi+1

a 7→ ρ′3 ⊗ b1
respectively.

The groups Ki and maps ηp,j and ηn,j can, therefore, be organized neatly into the
diagram given in Figure 37. The columns of this diagram depict the Type-D modules
Kn. The south eastern pointing (blue) arrows depict the maps ηp,m : Km → Km+1,
while the eastern pointing (red) arrows depict the maps ηn,m : Km → Km+1.

a b1 b2 . . . bn−1 . . .

a b1 . . . bn−2 . . .

a . . . bn−3 . . .

. . . . . . . . .

a . . .

. . .

ρ3

ρ3

ρ3

ρ3

ρ2 ρ23 ρ23

ρ2 ρ23

ρ23

ρ2

Figure 37. Direct limit diagram.

As discussed in Section 3, the invariant SFH−−→(−Y,K) is obtained by taking a directed

limit of sutured Floer homology groups over HKM gluing maps arising form iterated
negative basic slice attachments. In the bordered setting, this means that we are taking



72 JOHN B. ETNYRE, DAVID SHEA VELA-VICK, AND RUMEN ZAREV

the directed limit of the collection of modules {Km} and maps {ηn,m} connecting them.
Doing so, the resulting module is given as follows.

δ0 δ1 δ2 δ3
. . .

ρ23 ρ23 ρ23

From Figure 37, we see that the two flavors of η-maps commute in the sense that

ηn,i+1 ◦ ηp,i = ηp,i+1 ◦ ηn,i : Ki → Ki+2,

corresponding geometrically to the fact that the associated bypasses attachments can
be made along disjoint annuli. As discussed in Section 3.5 for the limit invariant
SFH−−→(−Y,K), this commutativity property implies that the collection of maps {ηp,m}
together yield a well-defined U -action on the module K−→ := Lim−−→nKn which sends each δi
to δi+1.

It follows that the Type-D module K−→ is isomorphic under the identification given

below to the Type-D module K− yielding the minus version of knot Floer homology
that was discussed in Section 4.8.

K−→ :=

K− =

δ0 δ1 δ2 δ3
. . .

x U · x U2 · x U3 · x . . .

ρ23 ρ23 ρ23

ρ23 ρ23 ρ23

U · U · U · U ·

Finally, on the level of sutured Floer homology, we have

SFH−−→(−Y,K) := lim−→ SFH(−Y (K),−Γi)

∼= lim−→H∗(B̂SA(−Y (K),Γ′,FT )� B̂SD(Tn))

∼= H∗(lim−→(B̂SA(−Y (K),Γ′,FT )� B̂SD(Tn)))

∼= H∗(B̂SA(−Y (K),Γ′,FT )� lim−→ B̂SD(Tn))

∼= H∗(B̂SA(−Y (K),Γ′,FT )� K−→)

∼= H∗(B̂SA(−Y (K),Γ′,FT )�K−)

∼= HFK−(−Y,K).

In the above, the third equality follows form work of Bökstedt and Neeman [6], who
showed that the homology functor and direct limits commute in the homotopy category
of complexes. The forth equality follows from a standard fact asserting the commutativity
of direct limits and (A∞) tensor products.

This completes the proof of Theorem 1.1. �

8. Equivalence of Legendrian invariants

In this section, we prove Theorem 1.5, which states that the LIMIT invariant EH−→
defined in Section 3.5 agrees with the LOSS invariant L under the identification given
by Theorem 1.1. This result, together with the main theorems of [64] and [4], completes a



LEGENDRIAN AND TRANSVERSE INVARIANTS 73

body of work which clarifies relationships between the various Legendrian and transverse
invariants defined in the context of Heegaard Floer theory.

Let K ⊂ (Y, ξ) be a given null-homologous Legendrian knot inside the contact 3-
manifold (Y, ξ). Recall that the LIMIT invariant EH−→(K) is defined to be the residue

class of the collection of HKM invariants {EH(Si−(K))} inside the sutured limit ho-
mology group SFH−−→(−Y,K). To relate the LIMIT and and LOSS invariants, we begin

by constructing a bordered sutured diagram which can be simultaneously completed to
compute either the HKM invariant EH(K) or the LOSS invariant L(K).

With this in mind, recall that the LOSS invariant is defined using an open book and
collection of basis arcs as depicted on the left hand side in Figure 38 (see Section 2.3). In
this figure, we see the Legendrian knot K sitting on the page S1/2 of the open book (S, φ)
for the ambient contact 3-manifold (Y, ξ). Observe that K is pierced by the single basis
element a0 transversally in a single point. Following the process discussed in Section 2.3,
we obtains the doubly-pointed Heegaard diagram denoted H for the pair (−Y,K). The
collection of intersections x := {x0, . . . , xn} on the page S1/2 defines a generator of

CFK−(−Y,K), and the LOSS invariant is defined as

L(K) := [x] ∈ HFK−(−Y,K).

L

Figure 38. On the left is the doubly pointed Heegaard diagram defin-
ing the LOSS invariant. On the right is the sutured Heegaard diagram
constructed by Stipsicz and Vértesi computing the HKM invariant.

In [64], Stipsicz and Vértesi showed how to slightly modify the open book decom-
position (S, φ) for (Y, ξ) to produce a partial open book decomposition (S, P, φP ) for
the space (Y (K), ξK) obtained by removing an open standard neighborhood of K. The
result of their procedure is depicted on the right hand side of Figure 38. If P denotes
the result of removing an open tubular neighborhood of K from S and we set φP = φ|P ,
then the modified partial open book is equal to (S, P, φP ). Given a basis {a0, . . . , an}
for S adapted to K, we obtain a new basis {a1, . . . , an} for P by dropping the arc which
previously intersected K.

We denote by H′ the sutured Heegaard diagram obtained from the partial open
book (S, P, φP ) and basis arcs {a1, . . . , an}. Again, the collection of intersections x′ :=
{x1, . . . , xn} on the subsurface P defines a cycle in SFC(H′), and the HKM invariant is
equal to

EH(K) := [x′] ∈ SFH(−Y (K),−ΓK).

To deduce a relationship between the LIMIT and LOSS invariants, we begin by mod-
ifying the Heegaard diagrams H′ and H as shown in Figure 39 to obtain new diagrams

denoted by by H̃′ and H̃ respectively.
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Remark 8.1. Figure 39 depicts a pair of Heegaard diagrams one can use to compute the
LOSS and HKM Legendrian knot invariants. These invariants each live in the homology
of an appropriate manifold with reversed orientation. This ambient orientation reversal
is typically effectuated on the level of Heegaard diagrams by reversing the roles of the
α and β-curves. That is, exchanging the Heegaard diagram (Σ,α,β) for (Σ,β,α).
This same orientation reversal can be accomplished by exchanging all α-curves for β-
curves and vice-versa, while retaining the usual diagrammatic ordering (Σ,α,β). This
second convention conforms more naturally with preexisting conventions in bordered
Floer theory — that all decompositions occur along α-curves — and is what we adopt
in the discussion to follow.

a

b

x0

γ′ zw
y b

x0

γ

Figure 39. Modified Heegaard diagrams for the HKM diagram, left, and
LOSS digram, right. (As usual the black circles are identified.)

2

1

2

1
a

ρ

2

1

2

1

y

w

z

ρ

Figure 40. Bordered Heegaard diagrams for the HKM and LOSS pieces
of H. (As usual the black circles are identified.)

On the HKM side, the Heegaard diagram H̃′ is obtained from H′ by performing a pair

of stabilizations. To see this we show how to destabilize H̃′ to get H′. First destabilize
the Heegaard diagram by erasing the two back circles, the blue circle and the red circle
that runs over the removed handle corresponding to the black circles. Now for the second
destabilization remove the remaining blue circle and then surger along the red circle. One
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may easily check the resulting Heegaard diagram is isotopic to the one on the right of
Figure 38.

There is a canonical isomorphism on homology induced by the chain map CF(H′)→
SFC(H̃′) which acts on generators by sending y ∈ SFC(H′) to (a, b,y) ∈ SFC(H̃′).
Correspondingly, in this new diagram, the generator representing the HKM invariant is
given by the collection of intersections (a, b, x1, . . . , xn).

On the LOSS side, the Heegaard diagram H̃ is obtained form H by performing a single
stabilization. Again, there is a canonical isomorphism on homology induced by the chain

map CFK−(H) → CFK−(H̃) which acts on generators by sending y ∈ CFK−(H) to
(y,y). In this case, the new new generator representing the LOSS invariant is given by
the collection of intersections (y, x0, . . . , xn).

Observe that the Heegaard diagrams H̃′ and H̃ differ only in the the C-shaped region
bounded by the orange curves γ′ and γ shown in Figure 39. We denote the common
bordered Heegaard diagram lying outside the curves γ′ and γ by HK .

The decomposition of H̃′ along γ′ is the diagrammatic equivalent to the bordered
sutured decomposition

(−Y (K),−ΓK) = (−Y (K),Γ′,FT ) ∪ T0

used to establish Theorem 1.1 and discussed in detail in Section 7.1. It corresponds to the
removal of a T×I neighborhood of ∂(−Y (K)) from the sutured manifold (−Y (K),−ΓK).

The bordered sutured Heegaard diagram for the portion of H̃′ contained within γ′

is depicted on the left hand side of Figure 40. It is identical to the bordered sutured
diagram shown in Figure 30 for the space T0.

In a similar spirit, decomposing the diagram H̃ along the orange curve γ corresponds
to excising a tubular neighborhood ν(K) of the knot K from the 3-manifold Y . In this

case, however, the portion of H̃ contained within the curve γ forms a doubly pointed
bordered Heegaard diagram for the core curve “K” of the solid torus neighborhood ν(K)
(see Figure 40).

As noted above, the Heegaard diagrams H̃′ and H̃ which compute the invariants HKM
and LOSS invariants have been specially constructed to agree outside the curves γ′ and
γ respectively. This construction allows us to track the image of the HKM invariant
under the gluing maps induced by negative stabilization, and, ultimately, the image
of EH−→(K) under the isomorphism given by Theorem 1.1 identifying SFH−−→(−Y,K) with

HFK−(−Y,K).
In Section 7.3, we performed a detailed computation of the HKM gluing maps induced

by stabilization on the type D modules Kn. Proving Theorem 1.5 requires that we also
understand at least part of the parallel story on the type A side. Lemma 8.2 below

computes the portion of the type A module B̂SA(HK)A(WT ) needed to to establish
Theorem 1.5.

Lemma 8.2. In the type A module B̂SA(HK)A(WT ) we have the following operations

m2((b, x1, . . . , xn), π3) = (x0, x1, . . . , xn)

m3((b, x1, . . . , xn), π3, π2) = 0
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Proof of Lemma 8.2. In order to contribute a term to m2((b, x1, . . . , xn), π3) a necessary
condition is that the corresponding domain must have multiplicity zero in the regions
bordering the Reeb chords π1, and π2 and multiplicity one in the region bordering the
Reeb chord π3.

This fact has two important consequences. First, it forces the region D southwest
of the intersection b and northwest of the intersection x0 in Figure 39 to have multi-
plicity one, and that all other regions of bordering γ′ have multiplicity zero. This, in
turn implies that the intersection points x1, . . . , xn are all fixed under the operation
m2((b, x1, . . . , xn), π3).

It follows that

m2((b, x1, . . . , xn), π3) = (x0, x1, . . . , xn),

with the sole nontrivial term corresponding to a source S which is topologically a rec-
tangle with one edge mapping to π3.

In a similar spirit, for a domainD to contribute non-trivially tom3((b, x1, . . . , xn), π3, π2),
it must be the case that D have multiplicity one in the regions bordering the Reeb cords
π3 and π2 and multiplicity zero in the region bordering the Reeb cord π1 and in the
region bordering the suture.

From this observation, we can read off the multiplicities of the regions surrounding the
intersection point b. Beginning with the northeast region and moving clockwise, these
multiplicities are 0, 0, 1, and 1, respectively. It follows from this multiplicity calculation
that the intersection b is fixed under the operation m3((b, x1, . . . , xn), π3, π2).

Denote by A, B, C and D the multiplicities of the regions surrounding the intersection
point x0, beginning with the northeast region and listed in clockwise order. Since the
intersection point x0 and b lie on a common β-curve, and since b is must be fixed by
m3((b, x1, . . . , xn), π3, π2), the multiplicities of the regions surround x0 satisfy the relation

A+ C = B +D,

with each of A, B, C and D non-negative by positivity of intersection. From the para-
graph above, however, we know that A = 0, C = 0 and D = 1. Thus, B = −1,
contradicting positivity of intersection.

From the above, we conclude that no such (positive) domain exists, and that

m3((b, x1, . . . , xn), π3, π2) = 0

�

We are now ready to proceed with the proof of Theorem 1.5.

Proof of Theorem 1.5. As discussed above, the HKM Legendrian invariant EH(L) is rep-
resented by the generator

(b, x1, . . . , xn)⊗ a ∈ ĈFA(H, α, β)�K0.
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Under the map Id� ηn,0 induced by the first negative stabilization, we have by Lem-
mas 7.4 and 8.2 that

Id� ηn,0((b, x1, . . . , xn)⊗ a) = m2((b, x1, . . . , xn), π3)⊗ b1
+m3(b, x1, . . . , xn), π3, π2)⊗ a

= (x0, x1, . . . , xn)⊗ b1.

Continuing, we have that for each integer i ≥ 1,

Id� ηn,i((x0, x1, . . . , xn)⊗ bi) =
i∑

k=0

m2+k((x0, x1, . . . , xn), I1, π23, . . . , π23)⊗ bi−k+1

+m2+i+1((x0, x1, . . . , xn), I1, π23, . . . , π23, π2)⊗ a
= m2((x0, x1, . . . , xn), I1)⊗ bi+1

= (x0, x1, . . . , xn)⊗ bi+1.

Thus, under the isomorphism given by Theorem 1.1, the LIMIT invariant EH−→(K)

is identified with the class [(x0, . . . , xn) ⊗ y]. Since this is, by construction, the LOSS
invariant, Theorem 1.5 follows.

�

9. The Stipsicz-Vértesi Attachment Map and Sutured Limit Homology

In this section, we prove Theorem 1.3 — that the map induced on sutured limit homol-
ogy by the SV attachment is equivalent under the identification given by Theorem 1.1
to the map

HFK−(−Y,K)→ ĤFK(−Y,K)

induced on knot Floer homology by setting the formal variable U equal to zero at the
chain level. Our proof of Theorem 1.3 is similar to that of Theorem 1.1 in the sense that
local computations of the HKM gluing maps can be utilized to deduce the desired global
result.

Let K ⊂ (Y, ξ) be a null-homologous Legendrian knot. Recall that the SV attachment
is given by gluing an appropriately signed basic slice to the complement (Y (K), ξK). As
in the case of positive or negative Legendrian stabilization, the SV attachment can be
effectuated through bypass attachment, as shown in Figure 41.

Reversing orientation, the left hand side of Figure 41 depicts the sutured boundary of
the complement (−Y (K),−ΓK). The attaching curve for the SV bypass attachment is
shown in dark grey and is lies within a vertical annulus (meridional when measured with
respect to the knot K). To ensure compatibility with negative Legendrian stabilization,
the endpoints of the SV bypass attachment are chosen to lie on the dividing curve shown.

The contact 3-manifold which results from the SV bypass attachment is shown on the
right hand side of Figure 41. As a sutured manifold, this space is equal to (−Y (K),−Γµ).
It is obtained from Y by removing an open tubular neighborhood of the knot K and
placing two parallel meridional sutures along its torus boundary.

Since the SV bypass attachment can be performed within a vertical annulus, we may
apply the techniques used in Section 7 to establish Theorem 1.3. First, we decompose
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Figure 41. The bypass attachment arc that realizes the Stipsicz-Vértesi
basic slice attachment. The arc and dividing curves before the attachment
are shown on the left hand side and the result on the level of dividing
curves is shown on the right hand side.

the sutured 3-manifolds (−Y (K),−Γn) as

(−Y (K),−Γn) = (−Y (K),Γ′,FT ) ∪ T ∪ Cn ∪ A0,

where T , Cn and A0 are discussed in Sections 7.2.2, 7.2.4 and 7.2.3, respectively. Next,
Lemmas 9.1, 9.2 and 9.3, compute the HKM gluing maps on bordered sutured Floer
homology induced by the SV attachment performed on the spaces A0, An = Cn ∪ A0

and Tn = T ∪An respectively. Finally, in Lemma 9.3 below we deduce the HKM gluing
map induced on the limit module K−→, which is then seen to agree with the map given by

setting the formal variable U equal to zero under the identification between K−→ and the

module K which gives rise to HFK−(−Y,K).
We now recall from Section 4.8 the definitions of the Type-D modules K− and K∞,

associated to the doubly-pointed solid torus, which computes the minus and hat variants
of knot Floer homology. The module K− is given by

x U · x U2 · x U3 · x . . . ,
ρ23 ρ23 ρ23 ρ23

where each of the U i · x live in the idempotent I1. The module K∞ is generated by the
single element x, which lives in idempotent I1 and satisfies δ(x) = 0.

At the level of Type-D modules, the natural map HFK−(Y,K) → ĤFK(Y,K) given
by setting U equal to zero at the chain level is given by

K− → K∞

x 7→ x

U i · x 7→ 0, i ≥ 1.
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Equivalently, in the language of sutured limit homology, under the isomorphism identi-
fying the Type-D modules K−→ and K, this map is given by

K−→→ K∞

δ0 7→ x

δi 7→ 0, i ≥ 1.

Following the strategy discussed several paragraphs above, we now study the map on
bordered sutured Floer homology induced by attaching a SV bypass to the space A0.
Restricted to this space, the SV bypass attachment is depicted on the left hand side of
Figure 42. The arc of attachment is shown in grey. The bordered sutured manifold which
results from this attachment is denoted by A∞ and depicted in the middle of Figure 42.
A corresponding bordered sutured Heegaard diagram for the space A∞ is show on the
right hand side of Figure 42.

1

2

1

2

ρ

w

Figure 42. On the left hand side is the SV bypass attachment viewed
on A0. The middle figure is the space A∞ which results from attaching a
SV bypass to An. On the right hand side is a bordered sutured Heegaard
diagram for the space A∞. (As usual the black circles are identified.)

Using the conventions already set forth in Section 7.2, we associate to the diagram

shown on the right hand side of Figure 42 the Type-D module M∞ := A(WA)B̂SD(A∞),
which is defined over the strand algebra A(WA). The module M∞ is generated by the
single element w, whose idempotent compatibility is given by

I1 · w = w.

The corresponding boundary map δ is trivial since all of the regions in the associated
bordered sutured Heegaard diagram are adjacent to portions of the boundary which are
sutured.

As discussed in Section 7.2, the Type-D module M0 associated to the space A0 is
generated by a single element a, whose idempotent compatibility is given by I2 · a = a.

Lemma 9.1. The map on bordered sutured Floer homology induced by the Stipsicz-
Vértesi attachment to the thickened annulus A0 of slope zero is given by the following
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equation:

φSV : M0 →M∞

a 7→ ρ′2 ⊗ w

Proof. Observe that the HKM map induced on Type-D modules by the SV bypass
attachment must be non-trivial. This follows, for instance, from the fact that there exist
Legendrian knots whose LOSS hat invariants are nontrivial — the Legendrian unknot
with maximal Thurston-Bennequin invariant is such a knot.

It is now elementary to check that the unique non-trivial map M0 →M∞ of Type-D
modules is precisely the map φSV given in the statement of Lemma 9.1. �

Next, we compute the HKM gluing map induced by attaching a SV bypass to the
spaces An = Cm ∪ A0.

Lemma 9.2. The map on bordered sutured Floer homology induced by the Stipsicz-
Vértesi attachment to the thickened annulus Am of slope m is given by the following
equation:

φSV : Mm →M∞

bn 7→ I1 ⊗ w
bi 7→ 0 for i < n

a 7→ 0

Proof. This follows by a computation which similar to those given in the proofs of Lem-
mas 7.3 and 7.4. In this case, the proof centers around the following key diagram.

Mm = Cm �M0 Cm �M∞ = M∞
IdCm

� φSV

As before, the canonical identification between Cm �M0 and Mm is given by

a⊗ a = a

bi ⊗ a = bi

The identification between Cm �M∞ and M∞ is given by

c⊗ w = w.

Lemma 9.2 now follows immediately from these identifications and Definition 4.15
applied to the map ICm � φSV . �

We now compute the HKM gluing map induced by attaching a SV bypass to the
spaces Tn = T ∪ Am.
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Lemma 9.3. The map on bordered sutured Floer homology induced by the Stipsicz-
Vértesi attachment to the thickened punctured torus Tm of slope m is given by the fol-
lowing equation:

φSV : Kn → K∞

bn 7→ I1 ⊗ x
bi 7→ 0

a 7→ 0

Proof. This follows from a computation similar to that given in the proof of Lemma 9.2.
In this case, the computation centers around the following key diagram.

Km = N �Mm N �M∞ = K∞
IdN � φSV

We leave the remaining details as an elementary exercise to the reader. �

We are now in position to prove Theorem 1.3.

Proof of Theorem 1.3. From Lemma 9.3, we see that the HKM gluing map induced on
the limit module K−→ by attaching a SV bypass is given by:

ΦSV : K−→→ K∞

δ0 7→ I1 ⊗ x
δi 7→ 0, i ≥ 1.

As discussed earlier in this section, under the identification between SFH−−→(−Y,K) and

HFK−(−Y,K) given by Theorem 1.1, this is precisely the analogue at the level of Type-

D modules of the natural map HFK−(−Y,K) → ĤFK(−Y,K) induced by setting the
formal variable U equal to zero at the chain level. �

10. Two handle attachments and the proof of Theorem 1.4

We now prove Theorem 1.4. Recall that this theorem states that the HKM gluing
map

Φ2h : SFH−−→(−Y,K)→ ĤF(−Y ),

which is induced by meridional 2-handle attachment is equivalent to the map

HFK−(−Y,K)→ ĤF(−Y ),

which is given by setting the formal variable U equal to the identity at the chain level.
Our proof of Theorem 1.4 is substantially similar to that of Theorem 1.3 given in

Section 9. As before, we begin by decomposing the sutured 3-manifolds (−Y (K),−Γn)
as

(−Y (K),−Γn) = (−Y (K),Γ′,FT ) ∪ T ∪ Cn ∪ A0,

where T , Cn and A0 are discussed in Sections 7.2.2, 7.2.4 and 7.2.3, respectively. Lem-
mas 10.1, 10.2 and 10.3 compute the HKM gluing maps induced by performing meridional
contact 2-handle attachments on the spaces A0, An = Cn ∪ A0 and Tn = T ∪ An re-
spectively. From Lemma 10.3, we are then able to compute the gluing map induced on
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the limit module K−→, which we show agrees with the map given by setting the formal

variable U equal to the identity under the identification between K−→ and the module K

which gives rise to HFK−(−Y,K).
The result of attaching a meridional contact 2-handle to the space (Y (K),ΓK) and

rounding edges is depicted in Figure 43. The new space has a single convex boundary
component which is a 2-sphere containing a dividing curve. This space is equal to Y (1)
as a sutured manifold (see [34]).

Figure 43. The contact 2-handle attachment. The manifold Y (K) is
outside the torus in the figure. The 2-handle attached along a meridian is
the D2× [0, 1] shown inside the torus. On the right hand side the dividing
curves are shown after corners have been rounded.

Let Tfill be T0 with a 2-handle attached to along a meridian (that is along the grey
annulus in Figure 28). This is a bordered sutured solid torus and is shown on the left hand
side of Figure 44. We obtain the space Y (1) form the bordered sutured (Y (K),Γ′,FT ) by
attaching Tfill. The Heegaard diagram for Tfill is shown in Figure 44 and it is equivalent to
that depicted in Figure 18, but with second basepoint w removed and the first basepoint
z incorporated into the boundary.

To the diagram in Figure 44, we associate the type D module Kfill := A(WT )B̂SD(Tfill),
defined over the strand algebra A(WT ). The module Kfill is generated by the single
element x, whose idempotent compatibility is given by

I1 · x = x.

The corresponding boundary map is given by

δ(x) = ρ′23 ⊗ x.

To prove Theorem 1.4, we must understand the bordered sutured analogues of both
the contact 2-handle, and the corresponding gluing map induced on (bordered) sutured
Floer homology. The left hand side of Figure 45 depicts the bordered analogue D2h =
(D2,Γ2h,−WA) of a contact 2-handle. In the bordered world, the act of “attaching” a
2-handle is, locally, given by exchanging the annular bordered sutured manifold A0 for
D2h.
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1
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1

ρ

x

Figure 44. The bordered sutured manifold Tfill, left, and its Heegaard
diagram, right. (As usual the black circles are identified.)

2

1

2

1

q

ρ

Figure 45. A 2-handle written as a bordered sutured manifold, left, and
its Heegaard diagram, right. (As usual the black circles are identified.)

To the diagram in Figure 45, we associate the type D module K2h := A(WA)B̂SD(D2h).
The module K2h is generated by the single intersection q, with idempotent compatibility
given by

I1 · q = q.

The corresponding boundary map is given by the equation

δ(q) = ρ′12 ⊗ q

As in the case of bypass attachment above, we can apply the third author’s equivalence
of gluing maps result from [70] to compute the map induced by 2-handle attachment on
bordered sutured Floer homology. In this instance, the bordered analogue of attaching
such a handle is locally given by exchanging the space A0 for D2h. The third author’s
result, coupled with known non-vanishing results for invariants of contact structures,
implies that the HKM gluing map must be given by some nonzero map φ2h, connecting
the Type-D modules associated to A0 and D2h respectively. As there is a unique such
non-trivial map, we have established the following lemma.
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Lemma 10.1. The map on bordered sutured Floer homology induced by meridianal 2-
handle attachment to the thickened annulus A0 is given by the following equation:

φ2h : M0 → K2h

a 7→ ρ′2 ⊗ q
�

Recall that the map Φ2h is induced by the collection of gluing maps {φ2h} which
come from attaching a contact 2-handle to a meridional curve on the convex boundary of
(Y (K), ξKn), as depicted in Figure 45. The collection of constituent gluing maps defining
Φ2h are computed in precisely the same manor as those defining ΦSV in Section 9.

Observe that, topologically, attaching a contact 2-handle to any of the spaces An
results in a copy of D2h. Similarly, as described above, attaching a meridional contact
2-handle to any of the spaces Tn results in the space Tfill. Lemmas 10.2 and 10.3 below
compute the corresponding gluing maps and are the analogues of Lemmas 9.2 and 9.3
from Section 9 respectively. Because the computations are so similar, we leave them as
exercises to the interested reader.

Lemma 10.2. The map on bordered sutured Floer homology induced by attaching a
contact 2-handle to the thickened annulus An of slope n is given by the following equation:

φ2h : Mn → K2h

bk 7→ I1 ⊗ q
a 7→ ρ′2 ⊗ q

�

Lemma 10.3. The map on bordered sutured Floer homology induced by attaching a
contact 2-handle to the thickened punctured torus Tn of slope n is given by the following
equation:

φ2h : Kn → Kfill

bk 7→ I1 ⊗ x
a 7→ ρ′3 ⊗ x

�

Proof of Theorem 1.3. From Lemma 10.3, it follows that the map induced by contact
2-handle attachment on the limit type D module K−→ is given by

Φ2h : K−→→ Kfill

δi 7→ I1 ⊗ x
It follows immediately that, under the identification

K−→→ K−

δi 7→ U i · x

between K−→ and K, the Type-D module computing HFK−, the map Φ2h agrees with that

induced by setting the formal variable U equal to the identity at the chain level. �
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11. Inverse Limit Invariants and Knot Floer Homology

In this section, we briefly discuss methods for establishing the results detailed in
Section 3.6 concerning the sutured inverse limit invariants. Generally speaking, proofs
of these theorems are simple translates of the corresponding results in the direct limit
setting, and we therefore leave them as straightforward exercise for the interested reader.

11.1. Identifying Invariants. Here we present an outline of the proof of Theorem 1.6.
Recall that this theorem states that there exists an isomorphism of F[U ]-modules.

I+ : SFH←−−(−Y,K)→ HFK+(−Y,K).

To obtain this result, we adopt the same general strategy used to prove Theorem 1.1
in Section 7.

Let {(Y (K),Γ+
i )} be the collection of sutured manifolds which are obtained subsets

of the longitudinal completion (Y (K),Γλ) = (Y (K),Γ0), as described in Section 3.6.
Recall that for j > i, we have an inclusion (Y (K),Γ+

j ) ⊂ (Y (K),Γ+
i ), and that each of

the differences (Y (K),Γ+
i )\(Y (K),Γ+

i+1) can naturally be given the structure of a basic
slice.

Consistently choosing the “negative” sign for each of the above basic slices gives rise
to the cofinal sequence

SFH(−Y (K),−Γ+
0 ) SFH(−Y (K),−Γ+

1 ) SFH(−Y (K),−Γ+
2 ) . . . ,

φ′− φ′− φ′−

the inverse limit of which is define to the the sutured inverse limit homology SFH←−−(−Y,K).

As was the case for sutured limit homology, one obtains a natural U -action on SFH←−−(−Y,K)

via positive basic slice attachment.
We begin by decomposing the spaces (−Y (K),−Γ+

n ) as in Section 7.1, to obtain

(−Y (K),−Γ+
n ) = (−Y (K),Γ′,FT ) ∪ T +

n ,

where (−Y (K),Γ′,FT ) is the knot complement and T +
i is the bordered sutured manifold

obtained from T0 (see Section 7.1) by applying i positive Dehn twists along the core curve
of a meridional annulus A.

Using the same techniques employed in Section 7.2, we compute Type-D modules

K+
n := A(WT )B̂SD(T +

n ). The K+
n are generated by {a, b1, . . . , bn}, with idempotent

comatibilities

I2 · a = a, I1 · bi = bi,

and differential described graphically as

bn bn−1 . . . b1 a.
ρ23 ρ23 ρ23 ρ3

Analogues of Lemmas 7.2, 7.3 and 7.4, adapted to this context, again give rise to the
key diagram depicted in Figure 46.

Figure 46 depicts the bordered sutured analogues of the HKM gluing maps induced
by positive and negative basic slice attachment. Specifically, the eastern pointing (red)
arrows depict the Type-D maps induced by negative basic slice attachment, while the
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ab1b2. . .bn−1. . .

ab1. . .bn−2. . .

a. . .bn−3. . .

. . .. . .. . .

a. . .

. . .

ρ2

ρ2

ρ2

ρ2

ρ3ρ23ρ23

ρ3ρ23

ρ23

ρ3

Figure 46. Indirect limit diagram.

northeastern pointing (blue) arrows depict the Type-D maps induced by positive basic
slice attachment.

Taking the inverse limit over the horizontal maps which correspond to negative basic
attachments, we obtain the Type-D module K←− := lim←−nK

+
n , described graphically as

δ0 δ1 δ2 δ3
. . . .

ρ23 ρ23 ρ23 ρ23

We further see that the U -action on the Type-D module K←− is given by left-translation,

sending δi to δi−1 for i > 0 and δ0 to 0.
It immediately follows that the Type-D module K←− is isomorphic under the below

identification to the Type-D module K+ from Section 4.8 which gives rise to the plus
variant of knot Floer homology.

K←− :=

K+ =

δ0 δ1 δ2 δ3
. . .

x U−1 · x U−2 · x U−3 · x . . .

ρ23 ρ23 ρ23

ρ23 ρ23 ρ23

U · U · U · U ·
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Finally, on the level of sutured Floer homology, we have

SFH←−−(−Y,K) := lim←− SFH(−Y (K),−Γ+
i )

∼= lim←−H∗(B̂SA(−Y (K),Γ′,FT )� B̂SD(T+
n ))

∼= H∗(B̂SA(−Y (K),Γ′,FT )� lim←− B̂SD(T+
n ))

∼= H∗(B̂SA(−Y (K),Γ′,FT )�K+)

∼= HFK+(−Y,K),

as in the proof of Theorem 1.1 in Section 7.3.
This finishes our sketch of the proof of Theorem 1.6.

11.2. Identifying the Natural Map. Here we provide a sketch of the proof of The-
orem 1.7, which, under the isomorphism I+ from Theorem 1.6, identifies the induced
map

ΦdSV : ĤFK(−Y,K)→ SFH←−−(−Y,K)

with the natural map on knot Floer homology

ι∗ : ĤFK(−Y,K)→ HFK+(−Y,K)

induced by the inclusion of complexes.
Recall that the map ΦdSV is induced by the HKM gluing maps associated to the

collection basic slice attachments {Â−i }, performed along the boundary of the meridional
completion (Y (K),Γµ).

The proof of Theorem 1.7 is similar to that of to Theorem 1.3. The basic idea is to
decompose the relevant spaces in the usual way as unions of bordered sutured manifolds,
thus localizing the associated computation to a neighborhood of the original boundary.
Specifically, we have

(−Y (K),−Γµ) = (−Y (K),Γ′,FT ) ∪ Tµ,

and

(−Y (K),−Γ+
i ) = (−Y (K)Γ′,FT ) ∪ T+

i

Having decomposed the sutured manifolds as above, the goal shifts to computing the
maps of Type-D structures

φdSV : K∞ → K+
i

induced by negative basic slice or, equivalently, negative bypass attachment. The key
lemma in proving Theorem 1.7 is the following.

Lemma 11.1. The map on bordered sutured Floer homology induced by the above de-

scribed negative basic slice attachment Â−i , performed along the boundary of the merid-
ional completion, is given by the following equation:

φdSV : K∞ → K+
n

x 7→ I1 ⊗ bn
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We leave it as an exercise for the interested reader to verify Lemma 11.1, with the
following hint. First, focus on the (non-trivial) map φdSV : K∞ → K+

0 , whose target is
the Type-D module associated to the longitudinal completion. This map is unique, and
given by φdSV (x) = ρ2 ⊗ a. From here, the Lemma follows by iteratively tensoring with
the bi-module from [38] corresponding to a negative Dehn twist along the meridian to
obtain the maps φdSV : K∞ → K+

n above.
It follows from Lemma 11.1 that, upon taking the inverse limit, the induced map ΦdSV

is given by.

ΦdSV : K∞ → K←−
x 7→ I1 ⊗ δ0.

Under the identification of SFH←−−(−Y,K) and HFK+(−Y,K) given by Theorem 1.6, we

see that ΦdSV is precisely the analogue at the level of Type-D modules of the natural

map ι∗ : ĤFK(−Y,K)→ HFK+(−Y,K) induced by inclusion of complexes.
This finishes our sketch of the proof of Theorem 1.7.

12. Gradings

In this section, we show how to extend the proof of Theorem 1.1, presented in Section 7
to include an identification of gradings. To avoid unnecessary complications, we will
assume in what follows that our ambient 3-manifold Y is an integral homology sphere,
though the results generalize to any three manifold and null-homologous knot.

12.1. Alexander Grading. Let K be a null-homologous knot in the 3-manifold Y , and
let H = (Σ,α,β, z, w) be a doubly-pointed Heegaard diagram for the pair (Y,K). Recall
from the discussion in Section 2.5.2 that if [F, ∂F ] is a homology class of Seifert surface
for the knot K, then one defines the Alexander grading of a generator x ∈ G(H) of
CFK−(H) via the formula

A[F,∂F ](x) =
1

2
〈c1(s(x), tµ), [F, ∂F ]〉,

which is then extended to all of CFK−(Y,K) via linearity and the relation

A[F,∂F ](U · x) = A[F,∂F ](x)− 1.

In Section 3.3, we extend the above Alexander grading to the sutured setting. Namely,
if Hi is a sutured Heegaard diagram for the sutured manifold (−Y (K),−Γi), obtained
from the complement Y (K) by and placing a pair of oppositely oriented sutures which
run once longitudinally and i-times meridionally on the resulting boundary. Then, to a
generator x ∈ G(Hi) one assigns the Alexander grading

A[F,∂F ](x) =
1

2
〈c1(s(x), tµ), [F, ∂F ]〉,

and extends linearly to all of SFC(Hi).
It was further observed in Section 3.3 that, based on the relative first Chern class

computations in Section 2.5.3, the gluing maps φ− and ψ+ are homogeneous of Alexander
degree plus and minus 1/2 respectively. In particular, the collections of maps

φ− : SFH(−Y (K),−Γi)[(i− 1)/2]→ SFH(−Y (K),−Γi+1)[((i+ 1)− 1)/2],
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and

ψ+ : SFH(−Y (K),−Γi)[(i− 1)/2]→ SFH(−Y (K),−Γi+1)[((i+ 1)− 1)/2],

were all seen to be Alexander-homogeneous of degree 0 and −1 respectively. Taking
the direct limit over the collection {φ−}, the sutured limit homology inherited a natural
Alexander grading from the above formulae.

Our identification of these two Alexander gradings proceeds in two steps. In the first,
we show that the two gradings must agree up to an overall shift independent of Y and
K. This is the content of Proposition 12.1. From here, it suffices to identify a single class
[x] ∈ SFH−−→(−Y,K) whose Alexander grading is preserved under the isomorphism given

in Theorem 1.1. This is accomplished in Proposition 12.2 using Legendrian/transverse
invariants.

Proposition 12.1. Let K be a null-homologous knot in a rational homology 3-sphere
Y . Under the isomorphism given in Theorem 1.1, the Alexander gradings defined on
SFH−−→(−Y,K) and HFK−(−Y,K) agree up to an overall shift.

Proof. Let (−Y (K),−Γi) be as above, and consider the bordered sutured decomposition

(−Y (K),−Γi) = (−Y (K),Γ′,FT ) ∪ Ti
from Section 7.1, where the parametrization on the common boundary FT is given by
the pair of α-arcs consisting of a meridian and a 0-framed longitude.

To the bordered sutured manifold (−Y (K),Γ′,FT ), we associate the A∞-module

ĈFA(−Y,K). The complexes CFK−(−Y,K) and SFC(−Y (K),−Γi) can are obtained

(up to homotopy) from ĈFA(−Y,K) by forming the box tensor products with the mod-

ules ĈFD
−

(Hc) (from Section 4.8) and Ki (from Section 7.2.1), respectively. In this
setting, generators of CFK−(−Y,K) are all of the form y ⊗ x, while generators of
SFC(−Y (K),−Γi) are either of the form y ⊗ bj or y′ ⊗ a, where y and y′ live in idem-
potents I1 and I2 respectively.

The Alexander grading computation can similarly be decomposed in either setting.
Namely,

A[F,∂F ](m⊗ n) =
1

2
〈c1(s(m⊗ n)), [F, ∂F ]〉

=
1

2
〈c1(s(m))⊕ c1(s(n)), [F, ∂F ]〉

=
1

2
〈c1(s(m)), [F, ∂F ]〉+

1

2
〈c1(s(n)), [A, ∂A]〉,

where A = ∂F × I is an annular extension of the Seifert surface F through T 2 × I.
We recall that the Alexander grading on CFK−(−Y,K) is characterized by the above

formula, together with the fact that multiplication by U drops the grading by 1. Thus,
the task of identifying the Alexander gradings, up to an overall shift is equivalent to
showing that for generators bj and b` of Ki,

〈c1(s(bj)), [A, ∂A]〉 − 〈c1(s(b`)), [A, ∂A]〉 = 2 · (j − `),

since these elements represent the elements U j · x and U ` · x in the limit.



90 JOHN B. ETNYRE, DAVID SHEA VELA-VICK, AND RUMEN ZAREV

b1 b2 bn

b1 b2 bn

a a

3

2 1

Figure 47. An alternative view of the bordered sutured Heegaard dia-
gram depicted in Figure 30.

To see this, consider Figure 47. Here, we see an alternate view of the bordered Sutured
Heegaard diagram originally depicted in Figure 30. From this diagram, it immediately
follows that for generators bj , b` ∈ Ki intersecting the longitudinal α arc, ε(bj , b`) =

(j − `)[µ] and, in turn, that their associated SpinC-structures differ by (j − `)PD([µ]).
Therefore,

〈c1(s(bj)), [A, ∂A]〉 − 〈c1(s(b`)), [A, ∂A]〉 =〈c1(s(bj)− s(b`)), [A, ∂A]〉
=〈2 · PD([µ]), [A, ∂A]〉
=2 · (j − `).

�

We now turn to the task of showing that the Alexander gradings defined on SFH−−→(−Y,K)

and on HFK−(−Y,K) agree on-the-nose, not just up to an overall shift. As observed
above, and in light of Proposition 12.1, it suffices to demonstrate this equality for a single
nontrivial element. In fact, it suffices to prove this equality for some knot K in some
3-manifold Y . This is because, as shown in the proof of Proposition 12.1, any shift in
Alexander grading can be computed strictly within the context of the Type-D modules

Ki and ĈFD
−

(Hc).

Proposition 12.2. There exists a knot K contained in the 3-sphere S3 and non-trivial
elements g ∈ SFH−−→(−Y,K) and h ∈ HFK−(−Y,K) which are identified under the iso-

morphism Φ : SFH−−→(−Y,K)→ HFK−(−Y,K) such that A(g) = A(h).

Proof. Let K be a given knot type in S3. Consider the standard tight contact structure
ξstd on S3, and let L be a Legendrian representative of the knot type K. It was shown
in Section 2.7 that the Alexander grading of EH(L) ∈ SFH(−Y (K),−Γtb(L)) is precisely
equal to the negative rotation number

A(EH(L)) = −r(L)

2
.
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Recall that the Thurston-Bennequin number is, by definition, the difference between the
contact framing on L and the Seifert framing. This, in turn, is precisely equal to the
slope of the sutures on the Legendrian knot complement. Thus, in the sequence

SFH(−Y (K),−Γ−tb)[(−tb− 1)/2] SFH(−Y (K),−Γ−tb−1)[((−tb− 1)− 1)/2] . . . ,

we see immediately that A(EH−→(L)) = (tb(L) − r(L) + 1)/2, agreeing the corresponding

value for the Alexander grading of the LOSS invariant L(L).
To finish the proof, it suffices to check that either EH−→(L) or L(L) is non-zero. This

follows immediately from the fact that the invariants EH−→(L) is identified with contact

invariant c(S3, ξstd) under the map Φ2h : SFH−−→(−Y,K)→ ĤF(−Y ), and the latter contact

invariant is nontrivial. �

12.2. Maslov Grading. We now turn our attention to understanding the homological
or “Maslov” grading in sutured limit homology. Specifically, we aim to show that the
F[U ]-module SFH−−→(−Y,K) inherits an absolute Z/2-grading which can be canonically

identified with the usual absolute Z/2-grading in knot Floer homology.
With this goal in mind, we begin by recalling the following useful fact, which charac-

terizes the behavior of the absolute Z/2-grading on sutured Floer homology under the
gluing maps defined by Honda, Kazez and Matić.

Theorem 12.3 (Honda-Kazez-Matić [31], Gripp-Huang [26]). Let (Y1,Γ1) and (Y2,Γ2)
be balanced sutured 3-manifolds such that Y1 ⊂ Y2, and let ξ be a contact structure on
Y2\int(Y1) with sutured contact invariant EH(ξ). Then the Honda-Kazez-Matić gluing
map, on the chain level, is homogeneous of degree gr(EH(ξ))

φξ : SFC(−Y1,−Γ1)→ SFC(−Y2,−Γ2)[gr(EH(ξ))],

and descends to a degree gr(EH(ξ)) map on the homology level.

Although the above result is not explicitly stated in [31], the result is implicit in the
proof of the main result of that paper (stated here as Theorem 2.12) — that well-defined,
natural contact gluing maps exist in the sutured category. It’s truth can be derived from
results of Gripp and Huang [26] characterizing the absolute gradings in Heegaard Floer
theory in terms of homotopy classes of vector fields.

To better understand the context of the above result, consider the following variant
of Honda, Kazez and Matić’s construction. Start with two balanced sutured manifolds
(Y1,Γ1) and (Y2,Γ2), each of which can be equipped with contact structures inducing the
specified suture sets on their boundary. Now suppose that Σi are sutured subsurfaces
(with dividing sets) of the boundaries ∂Yi, which are compatible in the sense that Σ ∼=
Σ1
∼= −Σ2. Then, it is possible to glue together the two sutured manifolds along the Σi

to form a new balanced suture manifold

(Y,Γ) = (Y1,Γ1) ∪Σ (Y2,Γ2).

In this setting, Honda, Kazez, and Matić’s gluing theorem states that there exists a map

φΣ : SFC(−Y1,−Γ1)⊗ SFC(−Y2,−Γ2)→ SFC(−Y,−Γ)
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which is obtained as an inclusion of complexes, and which is homogeneous of degree zero.
Furthermore, if the sutured manifold (Y2,−Γ2) is equipped with the compatible contact
structure ξ2, then the usual gluing map is given by

φξ2( · ) = φΣ( · ⊗ EH(ξ2)),

viewed as a map from SFC(−Y1,−Γ1) to SFC(−Y,−Γ).
With the above result in mind, we turn to the problem at hand — determining an

absolute Z/2-grading on the sutured limit homology groups. We begin with the following
useful observation.

Proposition 12.4. The absolute Z/2-grading of the contact invariant associated to ei-
ther a positive or negative basic slice is zero.

Proof. Recall from Section 2.1.3 that if B± = (T 2× I, ξ±) is either a positive or negative
basic slice, then it contains a convex torus T which decomposes B± into two basic slices
of the same (original) sign.

This decomposition allows us to compute the absolute grading of EH(T 2 × I, ξ) by
applying Theorem 12.3. Specifically, we have

gr(EH(B±)) = gr(EH(B± ∪T B±))

= gr(EH(B±)) + gr(EH(B±))

= 0 (mod 2).

�

It follows from Proposition 12.4, together with the above result of Honda, Kazez and
Matić, that the maps φi which give rise to sutured limit homology are necessarily all
Maslov-homogeneous of degree 0. In turn, we see that the sutured limit homology group
SFH−−→(−Y,K) inherits an absolute Z/2-grading, which we refer to as the Maslov grading.

Theorem 12.5. Under the isomorphism Φ : SFH−−→(−Y,K) → HFK−(−Y,K), given by

Theorem 1.1, the absolute Z/2-gradings on SFH−−→(−Y,K) is identified with the absolute

Z/2-grading on HFK−(−Y,K).

Proof. Recall that Theorem 1.3 states that, under the isomorphism I− : SFH−−→(−Y,K)→
HFK−(−Y,K), the Stipsicz-Vértesi map ΦSV is identified with the canonical map on
knot Floer homology which is induced by setting the formal variable U equal to zero at
the chain level. That is to say, the following diagram commutes:

SFH−−→(−Y,K) HFK−(−Y,K)

ĤFK(−Y,K).

I−

ΦSV (p∗)

Moreover, the maps I−, ΦSV and p∗ are all defined on the chain level and on the chain
level fit into the analogous commutative diagram. Recall that CFK−(−Y,K) is generated
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by elements that map non-trivially to ĈFK(−Y,K) and their images under U . Since we
know the effect of U on grading is well understood we need to see that for elements that

map non-trivially to ĈFK(−Y,K) their grading in CFK−(−Y,K) and in the chain group
computing SFH−−→(−Y,K) are the same.

Focusing first on the knot Floer homology side of this story, recall that the “U = 0

map” CFK−(−Y,K)→ ĈFK(−Y,K) preserves the absolute Z/2-grading.
In a similar spirit, recall that the Stipsicz-Vértesi map is induced on SFH−−→(−Y,K)

by via a collection of basic slice attachments to the set of sutured knot complements
{(−Y (K),−Γi)}. Topologically, each Stipsicz-Vértesi attachment yields the sutured
manifold (−Y (K),−Γµ). The sutured Floer homology of this space is isomorphic to

ĤFK(−Y,K), via an isomorphism that preserves absolute grading. These facts, in con-
junction with Proposition 12.4, shows that the map ΦSV is necessarily homogeneous of
degree zero, finishing the proof of Theorem 12.5. �

13. Examples

In this section, we present some examples which highlight distinctions between the
various Legendrian and transverse invariants defined and discussed in this paper.

Recall that there are essentially three flavors of Legendrian or transverse invariants
under consideration in this paper: HKM, LOSS, and LIMIT. Both the HKM and LIMIT
invariants are defined geometrically and correspond to contact invariants naturally as-
sociated to a given Legendrian or transverse knot. The LOSS invariants, on the other
hand, are defined via compatible open book decompositions, thus obscuring obvious
connections between the invariants and the ambient geometry.

Before delving into the examples, recall that we have correspondences identifying some
of the Legendrian and transverse invariants discussed above. Specifically, Theorem 1.5
asserts that the LOSS minus invariant is identified with the “direct” LIMIT invariant
under the isomorphism given by Theorem 1.1. Stipsicz and Vértesi also provided a
geometric interpretation of the LOSS hat invariant as the contact invariant of a contact
manifold (with convex boundary) canonically associated to a Legendrian or transverse
knot (see Section 2.7).

There is a fourth set of invariants of Legendrian and transverse knots in the standard
contact 3–sphere (S3, ξstd), which is defined combinatorially by Ozsváth, Szabó and
Thurston via grid diagrams, and which are referred to as the GRID invariants [56]. It
was shown by the second author, in joint work with Baldwin and Vértesi [4], that these
invariants agree with the LOSS invariants where the two are simultaneously defined.

13.1. Comparing the HKM and LOSS invariants. Here, we compare the HKM and
LOSS invariants by providing an example of a Legendrian knot whose HKM invariant is
non-zero, but whose LOSS invariants vanish.

The example is a non-loose Legendrian unknot UOT in an overtwisted contact structure
ξ on S3. The Legendrian knot UOT is shown in Figure 48 as an essential embedded
curve on the open book decomposition (A,D−γ ) for S3. The pages of the open book

decomposition (A,D−γ ) are annuli, and the monodromy map is given by a single negative
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Dehn twist along a core curve γ. Figure 48 depicts the associated multi-pointed Heegaard
diagram associated to the Legendrian knot U , used to compute the LOSS invariants.

S1/2 −S0

x
a

b

U

w

z

Figure 48. A non-loose Legendrian unknot UOT with non-vanishing
HKM invariant and vanishing LOSS invariant in an overtwisted contact
3–sphere.

We see immediately that the Legendrian UOT is indeed an unknot. To see that its cor-
responding LOSS invariants vanish, observe that they are represented in HFK−(−S3, U)

and ĤFK(−S3, U) by the intersection point x in Figure 48. We immediately see that
∂b = x in either case. Thus, the class [x] vanishes in homology.

On the other hand, we can see that the HKM invariant of UOT is non-vanishing as
follows. Stipsicz and Vértesi showed that the HKM invariant can be computed form
the open book decomposition (A,D−γ ) by removing an open tubular neighborhood of
the curve UOT , and deleting the α and β-curves it intersects. The result is a sutured
Heegaard diagram consisting of a topological disk and empty sets of α and β-curves. The
contact invariant is represented by the empty set of intersections, which is non-zero in
homology. If the reader prefers, this same non-vanishing result can be shown by positively
stabilizing the open book decomposition (A,D−γ ) along a boundary-parallel arc to ensure
the existence of a non-trivial set of intersections after removing a neighborhood of UOT .
(Yet another way to see this invariant is non-zero is to note the knot is a non-loose knot
and so its complement is tight. Any tight contact structure on a solid torus has non-zero
contact invariant.)

To show Golla’s characterization of EH(K) in the tight contact structure on S3 dis-
cussed in Section 1.6 does not hold in general we note that there is a loose unknot U ′

in the same contact structure as UUT that has the same classical invariants as UOT . We
just argued that EH(UOT ) is non-zero but it is clear that EH(U ′) is zero. Moreover from
the above arguments one may easily conclude that L(UOT ) = L(−UOT ) = 0 = L(U ′) =
L(−U ′).

13.2. Comparing the LOSS invariants. Relationships and differences between the
LOSS minus and hat invariants are well-documented, and we refer the interested reader
to the original paper [41] by Lisca, Ozsváth, Stipsicz and Szabo for more information.

Here, we simply remark that examples of Legendrian or transverse knots for which the
minus version of the LOSS invariant is non-vanishing, while the hat invariant vanishes
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are easy to generate. Indeed, recall that the minus version of the LOSS invariant is
identified with the contact invariant of the ambient manifold under the natural map

π∗ : HFK−(−Y,K)→ ĤF(−Y ),

induced by setting the variable U equal to the identity at the chain level. Thus, if (Y, ξ)
is any contact 3–manifold with non-vanishing contact invariant c(Y, ξ) 6= 0, then for any
null-homologous Legendrian (resp. transverse) knot K ⊂ (Y, ξ), we have that L(K) 6= 0
(resp. T(K) 6= 0).

On the other hand, if K ′ ⊂ (Y, ξ) is any positively stabilized Legendrian (resp. trans-

verse) knot, then L̂(K ′) = 0 (resp. T̂(K ′) = 0).
Since the standard contact 3–sphere (S3, ξstd) satisfies the condition that c(S3, ξstd)

does not vanish, we see that the desired examples exist in abundance. In fact, using
the isomorphism given in [4] relating the LOSS and GRID invariants, one can produce
a multitude of non-destabilizable examples satisfying the same vanishing properties —
the Etnyre-Honda (2, 3)-cable of the (2, 3)-torus knot TEH [16] is such an example by a
result of Ng, Ozsváth and Thurston [46].

13.3. Comparing the LOSS and LIMIT invariants. We now turn to the task of
comparing the LOSS and LIMIT invariants. In light of Theorem 1.5, and the discussion
in Section 13.2 above, we focus on understanding differences in information content
between the hat version of the LOSS invariant and the “inverse” version of the LIMIT
invariant.

Recall from Section 3.6.2 that if K is a null-homologous Legendrian or transverse
knot in a contact 3–manifold (Y, ξ), then there exists a Legendrian (resp. transverse)
invariant EH←−(K) taking values in the sutured inverse limit homology group SFH←−−(−Y,K).

According to Theorem 1.6, the latter group is isomorphic to the plus version of knot Floer
homology

I+ : SFH←−−(−Y,K)→ HFK+(−Y,K).

By Theorem 1.8, the inverse limit invariant EH←−(K) can be identified with the image of

the hat version of the LOSS invariant under the natural map

ι∗ : ĤFK(−Y,K)→ HFK+(−Y,K),

induced by inclusion.
With the above in mind, consider the following example from [41] of a non-loose

Legendrian (2, 3)-torus knot T(2,3) in the overtwisted contact structure ξ on S3 with
Hopf invariant d3(ξ) = −1. The knot is depicted in Figure 49.

In [41], Lisca, Ozsváth, Stipsicz and Szabó show that L̂(T(2,3)) 6= 0, and identify

the specific class in ĤFK(−S3, T(2,3)) ∼= ĤFK(S3, T(2,−3)) representing L̂(T(2,3)) — the
unique non-zero class in Alexander grading zero.

Figure 50 depicts the knot Floer chain complex (CFK∞(T(2,−3)), ∂
∞) associated to

the left-handed trefoil knot T(2,−3). In the drawing, the vertical j-axis records Alexander
grading, while the horizontal i-axis keeps track of the (negative) U -power. In this context,

we view CFK−(T(2,−3)), CFK+(T(2,−3)), and ĈFK(T(2,−3)) as the sub, quotient and sub-
quotient complexes C(i ≤ 0), C(i ≥ 0), and C(i = 0) respectively.
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T(2,3)

+1
+1
−1

−1

Figure 49. A non-loose Legendrian right-handed trefoil T(2,3) in the

overtwisted contact structure ξ on S3 with Hopf-invariant d3(ξ) = −1.

j

i

. .
.

. .
.

CFK∞(T(2,−3))

Figure 50. The knot Floer complex associated to the left-handed trefoil T(2,−3).

After forming the associated graded objects with respect to the Alexander filtration,

we see immediately from Figure 50, that the image of L̂(T(2,−3)) under the the map

ι∗ : ĤFK(T(2,−3))→ HFK+(T(2,−3)), induced by inclusion, vanishes. It follows, therefore,
form Theorem 1.8 that EH←−(T(2,3)) = 0.

To see that the invariant EH←− is not always zero, consider the maximum Thurston-

Bennequin invariant unknot in the standard contact 3–sphere U ⊂ (S3, ξstd). To com-
pute the inverse limit invariant, we begin by performing a Stipsicz-Vértesi basic slice
attachment to the boundary the complement of an standard (open) tubular neighbor-
hood of U . The result is a tight contact structure on a solid torus (S1×D2, ξ), inducing
two longitudinal dividing curves along the boundary. It follows from the classification of
tight contact structures on solid tori [28] that any negative basic slice attachment that
does not achieve the meridional slope on S1 ×D2 induces a tight contact structure on
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the solid torus which embeds into a Stein-fillable contact structure on a lens-space. In
particular, the contact invariants of these spaces are all non-zero, which implies that the
inverse limit invariant EH←−(U) is non-vanishing.

13.4. Vanishing slope computations. We note that one may easily compute the van-
ishing slopes, discussed in Section 1.4, for the knots considered in this section to be:

Van−(UOT ) = (0, 0), Van−(TEH) = (0,−∞),

Van−(T(2,3)) = (0,−∞), Van−(U) = (−1, 0).
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[40] Robert Lipshitz, Peter S. Ozsváth, and Dylan P. Thurston. Heegaard Floer homology as morphism

spaces. Quantum Topol., 2(4):381–449, 2011.
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[44] Ciprian Manolescu, Peter Ozsváth, and Sucharit Sarkar. A combinatorial description of knot Floer

homology. Ann. of Math. (2), 169(2):633–660, 2009.
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