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Abstract

In this note, we apply classic and recent results on the classification of tight contact
structures to the problem of existence of Anosov flows on three-manifolds. The ingredi-
ents we use are the results of Mitsumatsu on Anosov flows, the homotopy invariant of
plane fields as described by Gompf and others, and certain recent classification results
of Honda. This yields a novel proof of the nonexistence of Anosov flows on S3 using only
contact topology (and in particular without use of Novikov’s Theorem on foliations).

The theory of contact structures, though magnificently old, has of late become central
to several key questions in the study of three-manifolds [Eli92a], Seiberg-Witten invariants
[LM97, KM97], symplectic geometry [Etn98], knot theory [Rud95], and hydrodynamics
[EG98, EG99]. In this note, we reinterpret a result of Mitsumatsu [Mit95] to present
an application to a fundamental problem in dynamical systems theory: which manifolds
support an Anosov flow.

1 An introduction to contact structures

For the sake of concreteness and applicability, we will restrict all definitions and discussions
to the case of contact structures on three-manifolds, noting that several features hold on ar-
bitrary odd-dimensional manifolds. For introductory treatments, see [MS95, Aeb94, Eli92a].

A contact form on an oriented three-manifold M is a one-form α on M such that
α ∧ dα defines an oriented volume form on M . A contact structure is a plane field
which is the kernel of a (locally defined) contact form:

ξ := ker(α) = {v ∈ TpM : α(v) = 0, p ∈M}. (1)

The orientation induced by α ∧ dα is independent of the defining one-form; hence, ξ has
a natural orientation which can agree (a positive structure) or disagree (a negative

strucutre) with that of M . According to the Frobenius integrability condition, a contact
structure is thus a maximally nonintegrable plane field. In particular, a contact structure
is locally twisted at every point and may be thought of as an “anti-foliation.” It is usually
sufficient to consider contact structures which are the kernel of a globally defined contact
one-form: these are cooriented contact structures.

Unlike foliations, contact structures are structurally stable, in the sense that not only
is a perturbation of a contact form α still a contact form, but also such a perturbation has
kernel isotopic to that of α. In fact, a standard application of the Moser method in this
context implies that every contact structure is locally contactomorphic to (or, diffeomorphic
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via a map which carries the contact structure to the kernel of dz + xdy on R3 (see, e.g.,
[MS95]). Note the similarity with codimension-one foliations, which are locally equivalent
to the kernel of dz on R3.

Example 1.1 The standard positive contact structure on the unit S3 ⊂ R4 is given by the
kernel of the one-form

α0 :=
1

2
(x1dx2 − x2dx1 + x3dx4 − x4dx3) . (2)

The contact structure ξ+
0 := ker(α0) is the plane field orthogonal to the fibres of the Hopf

fibration (orthogonal with respect to the metric on the unit three-sphere induced by the
standard metric on R4). This contact structure induces the positive orientation on S3

(i.e., α0 ∧ dα0 > 0). A negative contact structure on S3 may be obtained by applying an
orientation-reversing diffeomorphism.

As in foliation theory, the global features of a contact structure are closely related to those
of the manifold in which it sits. The classification of contact structures follows along lines
similar to the Reeb-component versus taut perspective in (codimension-one) foliation theory
[ET98].

Definition 1.2 Given a three-manifold M with contact structure ξ, let F ⊂ M be an
embedded surface. Then the characteristic foliation on F , Fξ, is the foliation on F

generated by the (singular) line field

F = {TpF ∩ ξp : p ∈ F} .

A contact structure ξ is overtwisted if there exists an embedded disc D ⊂ M such that
the characteristic foliation Dξ has a limit cycle. A contact structure which is not overtwisted
is called tight.

A priori, Definition 1.2 appears arbitrary. However, if one builds an analogy with foliation
theory, this definition becomes more natural [ET98]. Consider a Reeb component in a
codimension-one foliation of a three-manifold, as illustrated in Figure 1 (see, e.g., [God91]
for definitions). The characteristic foliation induced by the Reeb component on a meridional
disc is a foliation by circles with one singularity. The intersection of any single R2-leaf with
the meridional disc is a sequence of concentric circles which “limit” onto the boundary torus,
which forms a sort of limit cycle. An overtwisted contact structure is the nonintegrable
analogue of this object.

The classification of overtwisted structures up to contact isotopy coincides with the
classification of plane fields up to homotopy [Eli89] and hence reduces to a problem in
algebraic topology. The classification of tight structures, on the other hand, is far from
complete: for example, it is unknown whether every three-manifold admits a tight contact
structure. Like taut foliations, tight contact structures exhibit several “rigid” features
which make them relatively rare. The following theorems of Bennequin and Eliashberg are
foundational:

Theorem 1.3 The contact structure ξ+
0 of Example 1.1 is tight [Ben83] and is the unique

tight contact structure on S3 up to orientation and contact isotopy [Eli92a].
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Figure 1: A Reeb component in a foliation on a three-manifold (left) can be perturbed
into an overtwisted contact structure (right).

2 Anosov flows

Recall that an invariant set Λ of a flow φt on a Riemannian manifold M is hyperbolic if
the tangent bundle TM |Λ has a continuous φt-invariant splitting into Ec⊕Es⊕Eu, where
Ec is tangent to the flow direction, and Dφt uniformly contracts and expands along Es and
Eu respectively: i.e.,

‖Dφt(vs)‖ ≤ Ce−λt‖vs‖ for vs ∈ Es

‖Dφ−t(vu)‖ ≤ Ce−λt‖vu‖ for vu ∈ Eu
, t > 0, (3)

for some C ≥ 1 and λ > 0. A flow φt which is hyperbolic on all of M is called an Anosov

flow. Anosov flows are some of the most important types of flows, from dynamical,
topological, and geometric perspectives. Fundamental examples of Anosov flows include
geodesic flows on surfaces of constant negative curvature, as well as suspensions of hyperbolic
toral automorphisms. It is an open question which three-manifolds support an Anosov flow:
obstructions have in the past come primarily from foliation theory, since the plane fields
Ec ⊕ Es and Ec ⊕ Eu are integrable and tangent to taut (and often minimal) foliations
[Pla72]. Group-theoretic obstructions exist [PT72], but even these rely to some extent on
the geometry of the stable and unstable foliations. We will restrict attention to volume-
preserving Anosov flows: in dimension three, certain “anomalous” Anosov flows exist which
do not preserve volume (and have other unusual properties) [FW80].

The following beautiful construction was discovered by Mitsumatsu [Mit95] (see also
[ET98]).

Theorem 2.1 (Mitsumatsu [Mit95]) Let X be a vector field generating an Anosov flow
on M3. Then X lies in the transverse intersection of a pair of oppositely oriented tight
contact structures.

There is a pair of transverse integrable plane fields containing X given by Ec ⊕ Es and
Ec ⊕ Eu respectively: these form the (weak-) stable and unstable foliations. For each
p ∈ M , define ξsp to be the subspace of TMp obtained by rotating Ecp ⊕ E

s
p about the Ecp
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subspace by a fixed angle, say π/4. One may define ξu likewise by rotating Ec ⊕Eu about
the Ec direction by π/4. Under the action of the flow of X, the transverse directions are
always rotated away from the stable section Es and towards the unstable section Eu; hence,
LXξs > 0 and LXξu < 0. Since a plane field η is integrable if and only if LXη = 0 for every
X tangent to η, it follows that ξs and ξu define contact structures which are furthermore of
opposite orientation (follow the directions of twisting). Mitsumatsu then shows that these
structures are tight by appealing to a theorem of Eliashberg and Gromov [Eli92b, Gro85]
that symplectically semi-fillable structures are tight.

This result is of interest in that it allows one to construct very explicit examples of
tight contact structures on those three-manifolds which admit Anosov flows. We consider
the converse problem of using existence and uniqueness theorems for tight contact structures
as an obstruction to the existence of an Anosov flow. To proceed, we require a bit of
knowledge about the homotopy classification of plane fields on three-manifolds.

3 The three-dimensional invariant

We describe an invariant of plane fields on integral homology three-spheres. This invariant
was originally defined by Gompf [Gom98] for any closed three-manifold (cf. [Kup96]), but
is simplest to define in the restricted case we consider. Given a coorientable plane field ξ

on an oriented homology three-sphere M one can always find an oriented almost-complex
4-manifold X which M bounds (respecting orientations) so that ξ is the field of complex
tangencies [Gom98]. Since H2(∂X;Z) = 0 we have c1(X) ∈ H2(X;Z) ∼= H2(X,∂X;Z).
Thus we can think of c21(X) as the integer obtained by pairing c1(X) ^ c1(X) with the
fundamental class [X,∂X] ∈ H4(X,∂X;Z). Now define

θ(ξ) := c21(X)− 2χ(X) − 3σ(X), (4)

where σ(X) is the signature of X and χ(X) is the Euler characteristic of X. The invari-
ant θ(ξ) depends only on the homotopy type of ξ and the orientation on M (not on the
coorientation of ξ). To see this, fix Y an almost-complex manifold which bounds (−M, ξ)
(i.e., M with reversed orientation). Then, consider X0 and X1 two almost-complex four-
manifolds which bound (M, ξ) with the proper orientation. We can glue X0 or X1 to Y

along their boundaries to obtain a closed almost-complex manifold W . For such a manifold
the Hirzebruch signature theorem (see, e.g., [Kir89]) says that

c21(W ) = 2χ(W ) + 3σ(W ). (5)

This proves, after noting the additivity of all three terms in Equation 4, that (1) the invariant
θ is well-defined; and (2) θ reverses sign upon changing the orientation on M . On homology
three-spheres, θ is a complete invariant of plane fields.

Theorem 3.1 Let ξ1 and ξ2 be coorientable plane fields on an oriented homology three-
sphere M . Then ξ1 is homotopic to ξ2 if and only if θ(ξ1) = θ(ξ2).

4



For a proof of this theorem the reader is referred to [LM97]. This is a special case of a
much more general theorem in [Gom98]. This invariant (and the more general version)
yields an invariant of homotopy classes of nonsingular vector fields on three-manifolds by
associating to any such vector field a transverse plane field. The relationships between the
dynamics of a nonsingular vector field X and the information encoded in θ(X) have been
almost completely unexplored1.

Example 3.2 Let ξ+
0 denote the standard tight contact structure on S3 of Example 1.1.

One can realize ξ+
0 as the set of complex tangencies of the unit S3 ⊂ C2 with the standard

complex structure, bounding the trivial 4-ball. Hence,

θ(ξ+
0 ) = c21 − 2χ− 3σ = 0− 2(1) − 3(0) = −2.

If, however, we consider ξ−0 , the unique tight contact structure on S3 which induces the
negative orientation, we can realize this as the image of ξ+

0 under an orientation-reversing
diffeomorphism of S3. Since applying an orientation-reversing diffeomorphism changes the
sign of the three-dimensional invariant (with respect to a fixed orientation as per point (2)
above), we have θ(ξ−0 ) = +2.

4 A tight obstruction to Anosov flows

Lemma 4.1 Let X be a vector field contained in the transversally orientable plane field η
on an oriented three-manifold M . Then the three-dimensional invariants of X and η agree.

Proof: Choose Z a vector field transverse to η, and let ζ denote the plane field spanned by
Z and X. Since Z and X are nowhere collinear, we may homotope Z to X within ζ. �

The classification of tight contact structures on S3 (Theorem 1.3) thus yields a simple
proof of the nonexistence of Anosov flows on S3:

Theorem 4.2 There are no Anosov flows on S3.

Proof: Assume X is an Anosov flow on S3. Then X lies in the transverse intersection of a
pair of oppositely oriented tight contact structures ξ+ and ξ− which are homotopic as they
contain a common vector field. Theorem 1.3 implies that ξ+ and ξ− are contact isotopic
to ξ+

0 and ξ−0 respectively. Therefore, with respect to the positive orientation on S3, the
calculation of Example 3.2 yields the contradiction −2 = θ(ξ+) = θ(ξ−) = 2. �

This result, though well-known and easily proved via Novikov’s theorem on foliations,
provides an alternate motivation for classifying tight contact structures on three-manifolds,
as well as extends the range of applications of contact topology to include the field of dynam-
ical systems. Note in addition, that smoothness issues concerning the foliations associated
to Anosov flows (which are quite delicate — the foliations are only Hölder continuous in
general) are not an issue when working with the associated (smooth) contact structures.

1The invariant θ is a dynamical invariant in the sense that topologically conjugate vector fields have equal
θ-values.
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5 Homotopy uniqueness

Every three-manifold possesses a countable infinity of homotopy classes of cooriented contact
structures (or, equivalently, nonsingular vector fields). It is an elusive conjecture that
the tight structures comprise at most finitely many homotopy classes on any fixed three-
manifold.2

One may consider a dynamically motivated analogue to this question: How many
homotopy classes of Anosov vector fields exist on a given manifold? It is unknown to us
whether this question has been considered before. We offer the following first step via a
recent classification of certain tight contact structures due to Honda [Hon99b].

Theorem 5.1 Given M a hyperbolic torus bundle over S1, there is exactly one homotopy
class of Anosov fields on M .

Proof: The recent classification of Honda [Hon99b] for tight contact structures on T 2-
bundles over S1 implies that there are many different tight contact structures on a hy-
perbolic torus bundle over S1. However, Honda shows that there is a unique homotopy
class of universally tight structures — that is, those structures for which no cover yields an
overtwisted structure. Given an Anosov vector field, any cover also yields an Anosov vector
field, which has the corresponding pair of transverse tight structures by Mitsumatsu3. Thus,
the contact structures associated to an Anosov field are universally tight, and the result
follows by Honda’s classification. �

The unique homotopy class for a hyperbolic torus bundle is, roughly speaking, the
class which is “parallel” to the S1 direction corresponding to the natural Anosov flow
obtained by the suspension of the hyperbolic monodromy.

6 Miscellany

There are several ways in which problems concerning the dynamics of flows on three-
manifolds can be assisted by understanding the classification of tight contact structures.
As this latter subject is in its infancy and growing rapidly [Etn97, Hon99a, Hon99b], we
are optimistic that the following problems may have contact-topological solutions:

Hyperbolic manifolds

It is an open problem whether one can find an Anosov flow on every closed
oriented hyperbolic three-manifold (with homology three-spheres being of par-
ticular interest). It is thus important to try and classify universally tight contact
structures on hyperbolic manifolds. Of course, as with taut foliations, this is
not a simple task.

2Kronheimer and Mrowka [KM97] proved that there are finitely many classes of fillable contact structures,
and it is an open problem to find a tight contact structure which is not fillable.

3For a noncompact cover one must appeal to stronger results of Gromov on pseudoholomorphic curves
to show that fillability induces tightness.
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Conformally Anosov flows

These flows, defined independently by Mitsumatsu [Mit95] and Eliashberg and
Thurston [ET98], are flows which have the same dynamics on the projectivized
normal bundle to the flow as an Anosov flow does. Such flows are more general
than Anosov flows (e.g., they can arise on T 3, whereas Anosov flows cannot);
however, they still appear as (and are indeed equivalent to) the intersection of a
pair of transverse oppositely oriented contact structures. It is an open problem
to classify which manifolds admit conformally Anosov flows.

Legendrian flows

Besides the Anosov fields considered thus far, several other important flows in
dynamical systems are Legendrian, or tangent to a contact structure. It is
an interesting question which nonsingular vector fields must be Legendrian, and
in particular how the tight/overtwisted dichotomy manifests itself. A simple
corollary of a recent theorem of Honda [Hon98] yields the first set of examples
of nonsingular vector fields on S3 which are not Legendrian. As these examples
are all Morse-Smale, it follows that they cannot preserve any volume form.
It remains an open problem to find an obstruction for nonsingular volume-
preserving vector fields on the three-sphere.4
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