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ABSTRACT. We study Legendrian knots in a cabled knot type. Specifically, given a topological
knot typeK, we analyze the Legendrian knots in knot types obtained fromK by cabling, in terms of
Legendrian knots in the knot typeK. As a corollary of this analysis, we show that the(2, 3)-cable of
the(2, 3)-torus knot isnot transversely simpleand moreover classify the transverse knots in this knot
type. This is the first classification of transverse knots in a non-transversely-simple knot type. We
also classify Legendrian knots in this knot type and exhibit the first example of a Legendrian knot
that does not destabilize, yet its Thurston-Bennequin invariant is not maximal among Legendrian
representatives in its knot type.

1. INTRODUCTION

In this paper we continue the investigation of Legendrian knots in tight contact 3-manifolds using
3-dimensional contact-topological methods. In [EH1], the authors introduced a general framework
for analyzing Legendrian knots in tight contact 3-manifolds. There we streamlined the proof of the
classification of Legendrian unknots, originally proved by Eliashberg-Fraser in [EF], and gave a
complete classification of Legendrian torus knots and figure eight knots. In [EH2], we gave the first
structure theorem for Legendrian knots, namely the reduction of the analysis of connected sums of
Legendrian knots to that of the prime summands. This yielded a plethora of non-Legendrian-simple
knot types. (A topological knot type isLegendrian simpleif Legendrian knots in this knot type are
determined by their Thurston–Bennequin invariant and rotation number.) Moreover, we exhibited
pairs of Legendrian knots in the same topological knot type with the same Thurston-Bennequin and
rotation numbers, which required arbitrarily many stabilizations before they became Legendrian
isotopic (see [EH2]).

The goal of the current paper is to extend the results obtained for Legendrian torus knots to
Legendrian representatives of cables of knot types we already understand. On the way to this goal,
we encounter thecontact width, a new knot invariant which is related to the maximal Thurston–
Bennequin invariant. It turns out that the structure theorems for cabled knots types are not as
simple as one might expect, and rely on properties associated to the contact width of a knot.
When these properties are not satisfied, a rather unexpected and surprising phenomenon occurs
for Legendrian cables. This phenomenon allows us to show, for example, that the(2, 3)-cable of
the (2, 3)-torus knot is not transversely simple! (A topological knot type istransversely simple
if transverse knots in that knot type are determined by their self-linking number.) Knots which
are not transversely simple were also recently found in the work of Birman and Menasco [BM].
Using braid-theoretic techniques they showed that many three-braids are not transversely simple.
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Our technique should also provide infinite families of non-transversely-simple knots (essentially
certain cables of positive torus knots), but for simplicity we content ourselves with the above-
mentioned example. Moreover, we give a complete classification of transverse (and Legendrian)
knots for the(2, 3)-cable of the(2, 3)-torus knot. This is the first classification of transverse knots
in a non-transversely-simple knot type.

We assume that the reader has familiarity with [EH1]. In this paper, the ambient 3-manifold
is the standard tight contact(S3, ξstd), and all knots and knot types areoriented. Let K be a
topological knot type andL(K) be the set of Legendrian isotopy classes ofK. For each[L] ∈
L(K) (we often writeL to mean[L]), there are two so-calledclassical invariants, theThurston-
Bennequin invarianttb(L) and therotation numberr(L). To eachK we may associate an oriented
knot invariant

tb(K) = max
L∈L(K)

tb(L),

called themaximal Thurston-Bennequin number.
A close cousin oftb(K) is another oriented knot invariant called thecontact widthw(K) (or

simply thewidth) defined as follows: First, an embeddingφ : S1 × D2 ↪→ S3 is said torepresent
K if the core curve ofφ(S1 × D2) is isotopic toK. (For notational convenience, we will suppress
the distinction betweenS1 × D2 and its image underφ.) Next, in order to measure theslope
of homotopically nontrivial curves on∂(S1 × D2), we make a (somewhat nonstandard) oriented
identification∂(S1×D2) ' R

2/Z
2, where the meridian has slope0 and the longitude (well-defined

sinceK is insideS3) has slope∞. We will call this coordinate systemCK. Finally we define

w(K) = sup
1

slope(Γ∂(S1×D2))
,

where the supremum is taken overS1 × D2 ↪→ S3 representingK with ∂(S1 × D2) convex.
Note that there are several notions similar tow(K) — see [Co, Ga]. The contact width clearly

satisfies the following inequality:

tb(K) ≤ w(K) ≤ tb(K) + 1.

In general, it requires significantly more effort to determinew(K) than it does to determinetb(K).
Observe thattb(K) = −1 andw(K) = 0 whenK is the unknot.

1.1. Cablings and the uniform thickness property. Recall that a(p, q)-cableK(p,q) of a topo-
logical knot typeK is the isotopy class of a knot of slopeq

p
on the boundary of a solid torusS1×D2

which representsK, where the slope is measured with respect toCK, defined above. In other words,
a representative ofK(p,q) windsp times around the meridian ofK andq times around the longitude
of K. A (p, q)-torus knotis the(p, q)-cable of the unknot.

One would like to classify Legendrian knots in a cabled knot type. This turns out to be somewhat
subtle and relies on the following key notion:

Uniform thickness property (UTP). Let K be a topological knot type. ThenK satisfies the
uniform thickness conditionor is uniformly thickif the following hold:

(1) tb(K) = w(K).
(2) Every embedded solid torusS1 ×D2 ↪→ S3 representingK can be thickened to astandard

neighborhoodof a maximaltb Legendrian knot.
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Here, astandard neighborhoodN(L) of a Legendrian knotL is an embedded solid torus with core
curveL and convex boundary∂N(L) so that#Γ∂N(L) = 2 and tb(L) = 1

slope(Γ∂N(L))
. Such a

standard neighborhoodN(L) is contact isotopic to any sufficiently small tubular neighborhoodN
of L with ∂N convex and#Γ∂N = 2. (See [H1].) Note that, strictly speaking, Condition 2 implies
Condition 1; it is useful to keep in mind, however, that the verification of the UTP usually proceeds
by outlawing solid tori representingK with 1

slope(Γ)
> tb(K) and then showing that solid tori with

1

slope(Γ)
< tb(K) can be thickened properly. We will often say that a solid torusN (with convex

boundary) representingK does not admit a thickening, if there is no thickeningN ′ ⊃ N whose
slope(Γ∂N ′) 6= slope(Γ∂N).

The reason for introducing the UTP is due (in part) to:

Theorem 1.1. LetK be a knot type which is Legendrian simple and satisfies the UTP. ThenK(p,q)

is Legendrian simple and admits a classification in terms of the classification ofK.

Of course this theorem is of no use if we cannot find knots satisfying the UTP. The search for such
knot types has an inauspicious start as we first observe that the unknotK does notsatisfy the UTP,
sincetb(K) = −1 andw(K) = 0. In spite of this we have the following theorems:

Theorem 1.2.Negative torus knots satisfy the UTP.

Theorem 1.3.If a knot typeK satisfies the UTP, then(p, q)-cablesK(p,q) satisfies the UTP, provided
p
q

< w(K).

We sometimes refer to a slopep
q

as “sufficiently negative” ifp
q

< w(K). Moreover, if p
q

> w(K)
then we call the slope “sufficiently positive”.

Theorem 1.4. If two knot typesK1 and K2 satisfy the UTP, then their connected sumK1#K2

satisfies the UTP.

In Section 3 we give a more precise description and a proof of Theorem 1.1 and in Section 4 we
prove Theorems 1.2 through 1.4 (the positive results on the UTP).

1.2. New phenomena.While negative torus knots are well-behaved, positive torus knots are more
unruly:

Theorem 1.5.There are positive torus knots that do not satisfy the UTP.

It is not too surprising that positive torus knots and negative torus knots have very different
behavior — recall that we also had to treat the positive and negative cases separately in the proof
of the classification of Legendrian torus knots in [EH1]. A slight extension of Theorem 1.5 yields
the following:

Theorem 1.6. There exist a knot typeK and a Legendrian knotL ∈ L(K) which does not admit
any destabilization, yet satisfiestb(L) < tb(K).

Although the phenomenon that appears in Theorem 1.6 is rather common, we will specifically
treat the case whenK is a (2, 3)-cable of a(2, 3)-torus knot. The same knot typeK is also the
example in the following theorem:
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Theorem 1.7.LetK be the(2, 3)-cable of the(2, 3)-torus knot. There is a unique transverse knot
in T (K) for each self-linking numbern, wheren ≤ 7 is an odd integer6= 3, and exactly two
transverse knots inT (K) with self-linking number3. In particular,K is not transversely simple.

HereT (K) is the set of transverse isotopy classes ofK.
Previously, Birman and Menasco [BM] produced non-transversely-simple knot types by exploit-

ing an interesting connection between transverse knots and closed braids. It should be noted that
our theorem contradicts results of Menasco in [M1]. However, this discrepancy has led Menasco
to find subtle and interesting properties of cabled braids (see [M2]). The earlier work of Birman-
Menasco [BM] and our Theorem 1.7 both give negative answers to a long-standing question of
whether the self-linking number and the topological type of a transverse knot determine the knot
up to contact isotopy. The corresponding question for Legendrian knots, namely whether every
topological knot typeK is Legendrian simple, has been answered in the negative in the works of
Chekanov [Ch] and Eliashberg-Givental-Hofer [EGH]. Many other non-Legendrian-simple knot
types have been found since then (see for example [Ng, EH2]).

The theorem which bridges the Legendrian classification and the transverse classification is the
following theorem from [EH1]:

Theorem 1.8.Transverse simplicity is equivalent tostable simplicity, i.e., any twoL1, L2 ∈ L(K)
with the sametb andr become contact isotopic after some number of positive stabilizations.

The problem of finding a knot type which is not stably simple is much more difficult than the
finding a knot type which is not Legendrian simple, especially since the Chekanov-Eliashberg
contact homology invariants vanish on stabilized knots. Our technique for distinguishing stabiliza-
tions of Legendrian knots is to use the standard cut-and-paste contact topology techniques, and, in
particular, the method ofstate traversal.

Theorems 1.5 through 1.6 will be proven in Section 5 while Theorem 1.7 is be proven in Sec-
tion 6. More specifically, the discussion in Section 6 provides a complete classification of(2, 3)-
cables of(2, 3)-torus knots.

Theorem 1.9. If K′ is the(2, 3)-cable of the(2, 3)-torus knot, thenL(K′) is classified as in Fig-
ure 1. This entails the following:

(1) There exist exactly two maximal Thurston-Bennequin representativesK± ∈ L(K′). They
satisfytb(K±) = 6, r(K±) = ±1.

(2) There exist exactly two non-destabilizable representativesL± ∈ L(K′) which have non-
maximal Thurston-Bennequin invariant. They satisfytb(L±) = 5 andr(L±) = ±2.

(3) EveryL ∈ L(K′) is a stabilization of one ofK+, K−, L+, or L−.
(4) S+(K−) = S−(K+), S−(L−) = S2

−(K−), andS+(L+) = S2
+(K+).

(5) Sk
+(L−) is not (Legendrian) isotopic toSk

+S−(K−) andSk
−(L+) is not isotopic toSk

−S+(K+),
for all positive integersk. Also,S2

−(L−) is not isotopic toS2
+(L+).

2. PRELIMINARIES

Throughout this paper, a convex surfaceΣ is either closed or compact with Legendrian boundary,
ΓΣ is the dividing set ofΣ, and#ΓΣ is the number of connected components ofΓΣ.
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FIGURE 1. Classification of Legendrian(2, 3)-cables of(2, 3)-torus knots. Con-
centric circles indicate multiplicities,i.e., the number of distinct isotopy classes
with a givenr andtb.

2.1. Framings. For convenience we relate the framing conventions that are used throughout the
paper. In what follows,X \ Y will denote the metric closure of the complement ofY in X.

Let K be a topological knot type andK(p,q) be its(p, q)-cable. LetN(K) be a solid torus which
representsK. SupposeK(p,q) ∈ K(p,q) sits on∂N(K). Take an oriented annulusA with boundary
on∂N(K(p,q)) so that(∂N(K(p,q))) \A consists of two disjoint annuliΣ1, Σ2 andA∪Σi, i = 1, 2,
is isotopic to∂N(K). We define the following coordinate systems,i.e., identifications of tori with
R

2/Z
2.

(1) CK, the coordinate system on∂N(K) where the (well-defined) longitude has slope∞ and
the meridian has slope0.

(2) C′
K, the coordinate system on∂N(K(p,q)) where the meridian has slope0 and slope∞ is

given byA ∩ ∂N(K(p,q)).

We now explain how to relate the framingsC′
K andCK(p,q)

for ∂N(K(p,q)). SupposeK(p,q) ∈ K(p,q)

is contained in∂N(K). Then the Seifert surfaceΣ(K(p,q)) is obtained by takingp parallel copies of
the meridional disk ofN(K) (whose boundary we assume arep parallel closed curves on∂N(K)
of slope 0) andq parallel copies of the Seifert surface forK (whose boundary we assume areq
parallel closed curves on∂N(K) of slope∞), and attaching a band at each intersection between
the slope 0 and slope∞ closed curves for a total of|pq| bands. Therefore, the framing coming
from C′

K and the framing coming fromCK(p,q)
differ by pq; more precisely, ifL(p,q) ∈ L(K(p,q))

andt(L(p,q),F) is thetwisting numberwith respect to the framingF (or theThurston-Bennequin
invariantwith respect toF), then:

(1) t(L(p,q), C′
K) + pq = t(L(p,q), CK(p,q)

) = tb(L(p,q)).

Let us also define themaximal twisting numberof K with respect toF to be:

t(K,F) = max
L∈L(K)

t(L,F).

2.2. Computations of tb and r. SupposeL(p,q) ∈ L(K(p,q)) is contained in∂N(K), which we
assume to be convex. We computetb(L(p,q)) for two typical situations; the proof is an immediate
consequence of Equation 1.
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Lemma 2.1.
(1) SupposeL(p,q) is a Legendrian divide and slope(Γ∂N(K)) = q

p
. Thentb(L(p,q)) = pq.

(2) SupposeL(p,q) is a Legendrian ruling curve and slope(Γ∂N(K)) = q′
p′ . Thentb(L(p,q)) =

pq − |pq′ − qp′|.
Next we explain how to compute the rotation numberr(L(p,q)).

Lemma 2.2. LetD be a convex meridional disk ofN(K) with Legendrian boundary on a contact-
isotopic copy of the convex surface∂N(K), and letΣ(L) be a convex Seifert surface with Leg-
endrian boundaryL ∈ L(K) which is contained in a contact-isotopic copy of∂N(K). (Here the
isotopic copies of∂N(K) are copies inside anI-invariant neighborhood of∂N(K), obtained by
applying the Flexibility Theorem to∂N(K).) Then

r(L(p,q)) = p · r(∂D) + q · r(∂Σ(K)).

Proof. Takep parallel copiesD1, . . . , Dp of D andq parallel copiesΣ(K)1, . . . , Σ(K)q of Σ(K).
The key point is to use the Legendrian realization principle [H1] simultaneously on∂Di, i =
1, . . . , p, and∂Σ(K)j, j = 1, . . . , q. Provided slope(Γ∂N(K)) 6= ∞, the Legendrian realization
principle allows us to perturb∂N(K) so that (i)(

⋃
i=1,...,p ∂Di) ∪ (

⋃
j=1,...,q ∂Σ(K)j) is a Legen-

drian graph in∂N(K) and (ii) each∂Di and∂Σ(K)j intersectsΓ∂N(K) efficiently, i.e., in a manner
which minimizes the geometric intersection number. (The version of Legendrian realization de-
scribed in [H1] is stated only for multicurves, but the proof for nonisolating graphs is identical.)
Now, supposeL′

(p,q) ∈ L(K(p,q)) and its Seifert surfaceΣ(L′
(p,q)) are constructed by resolving

the intersections of(
⋃

i=1,...,p ∂Di) ∪ (
⋃

j=1,...,q ∂Σ(K)j). Recalling that the rotation number is a
homological quantity (a relative half-Euler class) [H1], we readily compute that

r(L′
(p,q)) = p · r(∂D) + q · r(∂Σ(K)).

(For more details on a similar computation, see [EH1].) Finally,L(p,q) is obtained fromL′
(p,q)

by resolving the inefficient intersections betweenL′
(p,q) andΓ∂N(K). Since∂N(K) is a torus and

Γ∂N(K) consists of two parallel essential curves, the inefficient intersections come in pairs, and
have no net effect on the rotation number computation. This proves the lemma. ¤

3. FROM THE UTP TO CLASSIFICATION

In this section we use Theorem 1.3 to give a complete classification ofL(K(p,q)), providedL(K)
is classified,K satisfies the UTP, andK is Legendrian simple. In summary, we show:

Theorem 3.1. If K is Legendrian simple and satisfies the UTP, then all its cables are Legendrian
simple.

The form of classification for Legendrian knots in the cabled knot types depends on whether or not
the cabling slopep

q
is greater or less thanw(K). The precise classification for sufficiently positive

slopes is given in Theorem 3.2, while the classification for sufficiently negative slopes is given in
Theorem 3.6.

In particular, these results yield a complete classification of Legendrian iterated torus knots,
provided each iteration is sufficiently negative (so that the UTP is preserved). We follow the
strategy for classifying Legendrian knots as outlined in [EH1].
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SupposeK satisfies the UTP and is Legendrian simple. By the UTP, every Legendrian knotL ∈
L(K) with tb(L) < tb(K) can be destabilized to one realizingtb(K). The Bennequin inequality
[Be] gives bounds on the rotation number; hence there are only finitely many distinctL ∈ L(K),
sayL0, . . . , Ln, which havetb(Li) = tb(K), i = 0, . . . , n. Write ri = r(Li), and assumer0 <
r1 < · · · < rn. By symmetry,ri = −rn−i. (This is easiest to see in the front projection by
rotating about thex-axis, if the contact form isdz − ydx.) Now, every time a Legendrian knot
L is stabilized by adding a zigzag, itstb decreases by1 and itsr either increases by1 (positive
stabilizationS+(L)) or decreases by1 (negative stabilizationS−(L)). Hence the image ofL(K)
under the map(r, tb) looks like a mountain range, where the peaks are all of the same heighttb(K),
situated atr0, . . . , rn. The slope to the left of the peak is+1 and the slope to the right is−1, and the
slope either continues indefinitely or hits a slope of the opposite sign descending from an adjacent
peak to create a valley. See Figure 2.

r=
tb = -36

-37
-38
-39
-40
-41

-8-9-10 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

FIGURE 2. The(r, tb)-mountain range for the(−9, 4)-torus knot.

The following notation will be useful in the next few results. Given two slopess = r
t

ands′ = r′
t′

on a torusT with r, t relatively prime andr′, t′ relatively prime, we denote:

s • s′ = rt′ − tr′.

This quantity is the minimal number of intersections between two curves of slopes ands′ onT.

Theorem 3.2. SupposeK is Legendrian simple and satisfies the UTP. Ifp, q are relatively prime
integers withp

q
> w(K), thenK(p,q) is also Legendrian simple. Moreover,

tb(K(p,q)) = pq −
∣∣∣∣w(K) • p

q

∣∣∣∣ ,

and the set of rotation numbers realized by{L ∈ L(K(p,q))|tb(L) = tb(K(p,q))} is

{q · r(L)|L ∈ L(K), tb(L) = w(K)}.
This theorem is established through the following three lemmas.

Lemma 3.3. Under the hypotheses of Theorem 3.2,tb(K(p,q)) = pq − |w(K) • p
q
| and any Legen-

drian knotL ∈ L(K(p,q)) with tb(L) < tb(K(p,q)) destabilizes.

Proof. We first claim thatt(L, C′
K) < 0 for anyL ∈ L(K(p,q)). If not, there exists a Legendrian

knotL′ ∈ L(K(p,q)) with t(L′, C′
K) = 0. LetS be a solid torus representingK such thatL′ ⊂ ∂S (as

a Legendrian divide) and the boundary torus∂S is convex. Then slope(Γ∂S) = q
p

when measured
with respect toCK . However, sincep

q
> w(K), this contradicts the UTP.
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Sincet(L, C′
K) < 0, there exists anS so thatL ⊂ ∂S and∂S is convex. Lets be the slope of

Γ∂S. Then we have the following inequality:∣∣∣∣1s • p

q

∣∣∣∣ ≥
∣∣∣∣w(K) • p

q

∣∣∣∣ ,

with equality if and only if1
s

= w(K). To see this, use an oriented diffeomorphism of the torus∂S

that sends slope0 to 0 and slope 1
w(K)

= 1
tb(K)

to ∞ (this forces−∞ ≤ s < 0 and q
p

> 0), and
compute determinants. (Alternatively, this follows from observing that there is an edge from0 to

1
w(K)

in the Farey tessellation, and1
s
∈ (−∞, w(K)], whereasp

q
∈ (w(K),∞).) Thust(L, C′

K) ≤
−|w(K) • p

q
| for all L ∈ L(K(p,q)). But now, if S is a solid torus representingK of maximal

thickness, then a Legendrian ruling curve on∂S easily realizes the equality. Converting fromC ′
K

to CK, we obtaintb(K(p,q)) = pq − |w(K) • p
q
|.

Now consider a Legendrian knotL ∈ L(K(p,q)) with tb(L) < tb(K(p,q)). PlacingL on a convex
surface∂S, if the intersection betweenL andΓ∂S is not efficient (i.e., does not realize the geometric
intersection number), then there exists a bypass which allows us to destabilizeL. OtherwiseL
is a Legendrian ruling curve on∂S with 1

s
6= w(K). Now, sinceK satisfies the UTP, there is

a solid torusS ′ with S ⊂ S ′, where∂S ′ is convex and slope(Γ∂S′) = 1
w(K)

. By comparing
with a Legendrian ruling curve of slopeq

p
, i.e., taking a convex annulusA = L × [0, 1] in ∂S ×

[0, 1] = S ′ \ S and using the Imbalance Principle, we may easily find a bypass forL. Therefore, if
t(L, C′

K) < −|w(K) • p
q
|, then we may destabilizeL. ¤

Lemma 3.4. Under the hypotheses of Theorem 3.2, Legendrian knots with maximaltb in L(K(p,q))
are determined by their rotation number. Moreover, the rotation numbers associated to maximaltb
Legendrian knots inL(K(p,q)) are

{q · r(L)|L ∈ L(K), tb(L) = w(K)}
Proof. Given a Legendrian knotL ∈ L(K(p,q)) with maximaltb, there exists a solid torusS with
convex boundary, where slope(Γ∂S) = 1

w(K)
andL is a Legendrian ruling curve on∂S. The torus

S is a standard neighborhood of a Legendrian knotK in L(K). From Lemma 2.2 one sees that

r(L) = q · r(K).

Thus the rotation number ofL determines the rotation number ofK.
If L andL′ are two Legendrian knots inL(K(p,q)) with maximaltb, then we have the associated

solid tori S andS ′ and Legendrian knotsK andK ′ as above. IfL andL′ have the same rotation
numbers then so doK andK ′. SinceK is Legendrian simple,K andK ′ are Legendrian isotopic.
Thus we may assume thatK andK ′ are the same Legendrian knot and thatS andS ′ are two
standard neighborhoods ofK = K ′. InsideS ∩ S ′ we can find another standard neighborhoodS ′′

of K = K ′ with convex boundary having dividing slope1
w(K)

and ruling slopeq
p
. The setsS \ S ′′

andS ′ \ S ′′ are both diffeomorphic toT 2 × [0, 1] and have[0, 1]-invariant contact structures. Thus
we can assume thatL andL′ are both ruling curves on∂S ′′. One may now use the other ruling
curves on∂S ′′ to Legendrian isotopL to L′. ¤
Lemma 3.5. Under the hypotheses of Theorem 3.2, Legendrian knots inL(K(p,q)) are determined
by their Thurston-Bennequin invariant and rotation number.
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Proof. Here one simply needs to see that there is a unique Legendrian knot in the valleys of the
(r, tb)-mountain range; that is, ifL and L′ are maximaltb Legendrian knots inL(K(p,q)) and
r(L) = r(L′) + 2qn (note the difference in their rotation numbers must be even and a multiple of
q) thenSqn

+ (L′) = Sqn
− (L). To this end, letK andK ′ be the Legendrian knots inL(K) associated

to L andL′ as in the proof of the previous lemma. The knotsK andK ′ have maximaltb and
r(K) = r(K ′) + 2n. SinceK is Legendrian simple we knowSn

+(K ′) = Sn
−(K). Using the fact

thatSq
−(L) sits on a standard neighborhood ofS−(K) (and the corresponding fact forK ′ andL′)

it easily follows thatSqn
+ (L′) = Sqn

− (L). ¤
We now focus our attention on sufficiently negative cablings of a knot typeK.

Theorem 3.6. SupposeK is Legendrian simple and satisfies the UTP. Ifp, q are relatively prime
integers withq > 0 and p

q
< w(K), thenK(p,q) is also Legendrian simple. Moreovertb(K(p,q)) = pq

and the set of rotation numbers realized by{L ∈ L(K(p,q))|tb(L) = tb(K(p,q))} is

{±(p + q(n + r(L))) | L ∈ L(K), tb(L) = −n},
wheren is the integer that satisfies

−n − 1 <
p

q
< −n.

We begin with two lemmas.

Lemma 3.7. Under the hypotheses of Theorem 3.6, everyL(p,q) ∈ L(K(p,q)) with tb(L(p,q)) <

tb(K(p,q)) can be destabilized and
tb(K(p,q)) = pq.

Proof. By Theorem 1.3,K(p,q) also satisfies the UTP. Therefore everyL(p,q) ∈ L(K(p,q)) with
tb(L(p,q)) < tb(K(p,q)) can be destabilized to a Legendrian knot realizingtb(K(p,q)). Moreover,
sincep

q
is sufficiently negative, there existL(p,q) ∈ L(K(p,q)) with tb(L(p,q)) = pq, which appear as

Legendrian divides on a convex torus∂N(K). By Lemma 2.1 we havetb(K(p,q)) ≥ pq. Equality
(the hard part) follows from Claim 4.2 below. ¤
Lemma 3.8. Under the hypotheses of Theorem 3.2, Legendrian knots with maximaltb in L(K(p,q))
are determined by their rotation number. Moreover, the set of rotation numbers attained by
{L(p,q) ∈ L(K(p,q)) | tb(L(p,q)) = pq} is

{±(p + q(n + r(L))) | L ∈ L(K), tb(L) = −n}.
Another way of stating the range of rotation numbers (and seeing where they come from) in

Lemma 3.8 is as follows: To eachL ∈ L(K), there correspond two elementsL± ∈ L(K(p,q)) with
tb(L±) = pq andr(L±) = q · r(L)± s, wheres is the remainders = −p− qn > 0. L± is obtained
by removing a standard neighborhood ofN(S±(L)) from N(L), and considering a Legendrian
divide on a torus with slope(Γ) = q

p
insideT 2 × [1, 2] = N(L) \ N(S±(L)).

Proof. The proof that Legendrian knots with maximaltb in L(K(p,q)) are determined by their rota-
tion numbers is similar to the proof of Lemma 3.4 (also see [EH1]).

The range of rotation numbers follows from Lemma 2.2 as well as some considerations of tight
contact structures on thickened tori. First letT1.5 = ∂N(K) which containsL(p,q) with tb(L(p,q)) =
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pq. We will use the coordinate systemCK. Then there exists a thickened torusT 2 × [1, 2] with
convex boundary, whereT 2 × [1, 1.5] ⊂ N(K), slope(ΓT1) = − 1

n+1
, slope(ΓT1.5) = q

p
, and

slope(ΓT2) = − 1
n
. Here we writeTi = T 2 × {i}. Observe thatT 2 × [1, 2] is abasic slicein the

sense of [H1], since the shortest integral vectors(−n, 1) and(−(n + 1), 1) form an integral basis
for Z

2. This means that the tight contact structure must be one of two possibilities, distinguished by
therelative half-Euler classe(ξ). (It is called the “relative Euler class” in [H1], but “relative half-
Euler class” is more appropriate.) Their Poincaré duals are given byPD(e(ξ)) = ±((−n, 1) −
(−(n + 1), 1)) = ±(1, 0). Now, by the universal tightness ofT 2 × [1, 2], it follows from the
classification of [Gi2, H1] that:

(1) eitherPD(e(ξ), T 2 × [1, 1.5]) = (p, q) − (−n − 1, 1) and PD(e(ξ), T 2 × [1.5, 2]) =
(−n, 1) − (p, q),

(2) or PD(e(ξ), T 2 × [1, 1.5]) = −(p, q) + (−n − 1, 1) and PD(e(ξ), T 2 × [1.5, 2]) =
−(−n, 1) + (p, q).

In view of Lemma 2.2, we want to compute (i)r(∂D), whereD is a convex meridional disk for
N(K) with Legendrian boundary onT1.5 = ∂N(K), and (ii) r(∂Σ), whereΣ is a convex Seifert
surface for a Legendrian ruling curve∞ onT1.5. WriteD = D′∪A, whereD′ is a meridional disk
with efficientLegendrian boundary forN(K) \ (T 2 × [1, 1.5]), andA ⊂ T 2 × [1, 1.5]. (An efficient
closed curve on a convex surface intersects the dividing setΓ minimally.) Also writeΣ = Σ′ ∪ B,
whereB ⊂ T 2 × [1.5, 2] andΣ′ ⊂ S3 \ (T 2 × [1, 2]) has efficient Legendrian boundaryL onT2.

By additivity,
r(∂Σ) = r(L) + χ(B+) − χ(B−) = r(L) + 〈e(ξ), B〉.

HereS+ (resp.S−) denotes the positive (resp. negative) region of a convex surfaceS, divided by
ΓS. Similarly,

r(∂D) = r(∂D′) + 〈e(ξ), A〉 = 〈e(ξ), A〉.
Therefore, eitherr(∂Σ) = r(L) + p + n andr(∂D) = −q + 1, or r(∂Σ) = r(L) − p − n and
r(∂D) = q − 1. In the former case,

r(L(p,q)) = p(−q + 1) + q(r(L) + p + n) = p + q(r(L) + n).

In the latter case, we haver(L(p,q)) = −p + q(r(L) − n) and we use the fact that{r(L) | L ∈
L(K), tb(L) = −n} is invariant under the mapr 7→ −r. ¤

Proof of Theorem 3.6.By Lemma 3.7, everyL′
(p,q) ∈ L(K(p,q)) can be written asSk1

+ Sk2− (L(p,q))

for someL(p,q) with maximaltb. To complete the classification, we need to show that everyL′
(p,q)

which is a “valley” of the image of(r, tb) (i.e.,L′
(p,q) for which(r(L′

(p,q))±1, tb(L′
(p,q))+1) is in the

image of(r, tb) but (r(L′
(p,q)), tb(L

′
(p,q)) + 2) is not) destabilizes to two maximaltb representatives

L+
(p,q) andL−

(p,q) (the “peaks”). Observe that there are two types of valleys: type (i) has a depth of
s = −p − qn and type (ii) has a depth ofkq − s, k ∈ Z

+.
We start with valleys of type (i). Such valleys occur whenr(L−) = q · r(L) − s, r(L+) =

q·r(L)+s, andtb(L−) = tb(L+) = pq. It is clear that the valley betweenL− andL+ corresponds to
a Legendrian ruling curve of slopeq

p
on the boundary of the standard neighborhoodN(L) of L with

tb(L) = −n. By stabilizingL in two ways, we see that any elementL′
(p,q) with r(L′

(p,q)) = q · r(L)

andtb(L′
(p,q)) = pq − s satisfiesL′

(p,q) = Ss
−(L+) = Ss

+(L−).
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Next we explain the valleys of type (ii) which have depthkq − s, k ∈ Z
+. The peaksL− and

L+ correspond to “adjacent”L,L′ ∈ L(K) which havetb(L) = tb(L′) = −n andr(L) < r(L′),
and such that there is no LegendrianL′′ ∈ L(K) with tb(L′′) = −n andr(L) < r(L′′) < r(L′).
Hencer(L−) = q · r(L) + s andr(L+) = q · r(L′) − s. Thek in the expressionkq − s above
satisfiesr(L′) − r(L) = 2k. The valleyL′

(p,q) with tb(L′
(p,q)) = pq − (kq − s) andr(L′

(p,q)) =

q ·r(L)+kq = q ·r(L′)−kq occurs as a Legendrian ruling curve of slopeq
p

on the standard tubular

neighborhood ofSk
+(L) = Sk

−(L′). Therefore,L′
(p,q) = Skq−s

+ (L−) = Skq−s
− (L+). This proves the

Legendrian simplicity ofL(K(p,q)). ¤

4. VERIFICATION OF UNIFORM THICKNESS

In this section we prove that many knot types satisfy the UTP. Let us begin with negative torus
knots.

Theorem 1.2.Negative torus knots satisfy the UTP.

Proof. Let K be the unknot andK(p,q) be its(p, q)-cable,i.e., the(p, q)-torus knot, withpq < 0.
It was shown in [EH1] thattb(K(p,q)) = pq. Unless indicated otherwise, we measure the slopes of
tori isotopic to∂N(K(p,q)) with respect toC′

K. Thentb(K(p,q)) = pq is equivalent tot(K(p,q)) =
t(K(p,q), C′

K) = 0. In other words, the standard neighborhood ofL ∈ L(K(p,q)) satisfyingtb(L) =
pq has boundary slope∞ with respect toC′

K.
We will first verify Condition 1 of the UTP, arguing by contradiction. (In fact, the argument that

follows can be used to prove thatt(K(p,q)) = 0.) Suppose there exists a solid torusN = N(K(p,q))
which has convex boundary withs = slope(Γ∂N) > 0 and#Γ∂N = 2. After shrinkingN if
necessary, we may assume thats is a large positive integer. Next, using the Giroux Flexibility
Theorem,∂N can be isotoped intostandard form, with Legendrian rulings of slope∞. Now letA
be a convex annulus with Legendrian boundary on∂N andA× [−ε, ε] its invariant neighborhood.
HereA is chosen so thatR = N ∪(A× [−ε, ε]) is a thickened torus whose boundary∂R = T1∪T2

is parallel to∂N(K). Here, the relative positions ofT1 andT2 are that ifT2 = ∂N(K), then
T1 ⊂ N(K).

Let us now analyze the possible dividing sets forA. First,∂-parallel dividing curves are easily
eliminated. Indeed, if there is a∂-parallel arc, then we may attach the corresponding bypass onto
∂N and increases to ∞,after isotopy. This would imply excessive twisting insideN , and the
contact structure would be overtwisted. Hence we may assume thatA is in standard form, with
two parallel nonseparating arcs. Now choose a suitable identification∂N(K) ' R

2/Z
2 so that the

ruling curves ofA have slope∞, slope(ΓT1) = −s and slope(ΓT2) = 1. (This is possible since
a holonomy computation shows thatΓT1 is obtained fromΓT2 by performings + 1 right-handed
Dehn twists.)

We briefly explain the classification of tight contact structures onR with the boundary condition
slope(ΓT1) = −s, slope(ΓT2) = 1, #ΓT1 = #ΓT2 = 2. For more details, see [H1]. Corresponding
to the slopes−s, 1, are the shortest integer vectors(−1, s) and(1, 1). Any tight contact structure on
R can naturally be layered intobasic slices(T 2×[1, 1.5])∪(T 2×[1.5, 2]), where slope(ΓT1.5) = ∞
(corresponding to the shortest integer vector(0, 1)) and#ΓT1.5 = 2. There are two possibilities
for each basic slice — the Poincaré duals of the relative half-Euler classes are given by± the
difference of the shortest integer vectors corresponding to the dividing sets on the boundary. For
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T 2 × [1, 1.5], the possiblePD(e(ξ)) are± of (0, 1) − (−1, s) = (1, 1 − s); for T 2 × [1.5, 2], the
possibilities are± of (1, 1) − (0, 1) = (1, 0). Sinces >> 1, the 4 possible tight contact structures
on R are given by±(1, 0) ± (1, 1 − s). Of the 4 possibilities, 2 of them are universally tight and
2 of them are virtually overtwisted. The contact structureξ is universally tight when there isno
mixing of sign, i.e., PD(e(ξ)) = +(1, 0) + (1, 1− s) or−(1, 0)− (1, 1− s); when there is mixing
of sign+(1, 0) − (1, 1 − s) or−(1, 0) + (1, 1 − s), the contact structure is virtually overtwisted.

To determine the half-Euler class, considerΣ = γ × [−ε, ε] ⊂ A × [−ε, ε], whereγ is a
Legendrian ruling curve of slope∞. SinceΣ is [−ε, ε]-invariant,〈e(ξ), Σ〉 = χ(Σ+)−χ(Σ−) = 0,
whereχ is the Euler characteristic andΣ+ (resp.Σ−) is the positive (resp. negative) part ofΣ\ΓΣ.
Therefore,PD(e(ξ)) must be±(0, s − 1), implying amixture of sign.

Let us now recast the slopes ofΓTi
in terms of coordinatesCK, whereK is the unknot. With

respect toCK, slope(ΓT1.5) = q
p
, where q

p
is neither a negative integer nor the reciprocal of one.

One of the consequences of the classification of tight contact structures on solid tori in [Gi2, H1] is
the following: if S is a convex torus in the standard tight contact(S3, ξstd) which bounds solid tori
on both sides, then the only slopes forΓS at which there can be a sign change are negative integers
or reciprocals of negative integers. Therefore, we have a contradiction, proving Condition 1.

Next we prove Condition 2, keeping the same notation as in the proof of Condition 1. Suppose
that N = N(K(p,q)) now has boundary slopes, where−∞ < s < 0 and slopes are measured
with respect toC′

K. If ΓA has a∂-parallel arc, thens approaches−∞ (in terms of the Farey
tessellation) when we attach a corresponding bypass ontoN . Therefore, as usual, we may takeA
to be in standard form andΓA to consist of parallel nonseparating dividing arcs. Now observe that
q
p

cannot lie between slope(ΓT1) and slope(ΓT2), where the slopes are measured with respect toCK.
This implies that there are no convex tori inR which are isotopic toTi and have slopeq

p
. In the

complementS3 \R, there is a convex torus isotopic toTi with slopeq
p
. Using this, we readily find

a thickening ofN to have slope∞, measured with respect toC ′
K.

Once we thickenN to have boundary slope∞, there is one last thing to ensure, namely that
#Γ∂N = 2; in other words, we wantN to be the standard neighborhood of a Legendrian curve
with twisting number0 with respect toC ′

K.

Claim 4.1. Any solid torusN with convex boundary, slope(Γ∂N) = ∞, and#Γ∂N = 2n, n > 1,
extends to a solid torusN with convex boundary, slope∞, and#Γ∂N = 2.

Proof. There exists a thickened torusR with ∂R = T2 −T1, whereN ⊂ R, theTi, i = 1, 2, bound
solid tori on both sides, and slope(ΓTi

) = q
p

with respect toCK. By shrinkingN somewhat, we may
takeR\N to be a pair-of-pantsΣ0 timesS1. Since there is twisting on both sides of the exterior of
R, we may also arrange that#ΓTi

= 2. Moreover, asΓ∂(R\N) is parallel to theS1-fibers, the tight
contact structure onR \N is necessarilyvertical, i.e., isotopic to anS1-invariant contact structure,
after appropriately modifying the boundary to be Legendrian-ruled. (See [H2] for a proof.)

The data for this tight contact structure are encoded inΓΣ0. (Here we are assuming without
loss of generality thatΣ0 is convex with Legendrian boundary.) Let∂Σ0 = γ t γ1 t γ2, where
γi = Σ0∩Ti andγ = ∂N ∩Σ0. There are2n endpoints ofΓΣ0 onγ, and2 for each ofγi. If there is
an arc betweenγ1 andγ2, then an imbalance occurs and there is necessarily a∂-parallel arc along
γ. This would allow a thickening ofN to one whose boundary has fewer dividing curves.
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The situation from which we have no immediate escape is when all the arcs fromγi go toγ, and
the extra endpoints alongγ connect up without creating∂-parallel arcs. We need to look externally
(i.e., outside ofR) to obtain the desired bypass. The key features we take advantage of are:

(1) There is twisting on both sides of the exterior ofR.
(2) There is no mixing of sign aboutR.

One of the (nontrivial) bypasses found alongT1 andT2 therefore can be extended intoR to give a
bypass to reduce#Γ∂N . ¤

This completes the proof of Theorem 1.2. ¤
Recall a fractionp

q
is sufficiently negativeif

p

q
< w(K).

(Observe thatp
q

is the reciprocal of the slope of a curve∂N corresponding to(p, q).)

Theorem 1.3. If a knot typeK satisfies the UTP, then(p, q)-cablesK(p,q) satisfies the UTP, pro-
vided p

q
is sufficiently negative.

Let K be a knot type that satisfies the UTP. We writeN = N(K) andN(p,q) = N(K(p,q)). The
coordinates for∂N and∂N(p,q) will be CK andC′

K, respectively. The proof of Theorem 1.3 is
virtually identical to that of Theorem 1.2.

Proof. We prove that the contact widthw(K(p,q), C′
K), measured with respect toC′

K, andt(K(p,q), C′
K)

both equal0, and that anyN(p,q) with convex boundary can be thickened to a standard neighbor-
hood of a Legendrian knot witht(L(p,q), C′

K) = 0.
It is easy to see thatt(L(p,q), C′

K) = 0 can be attained: Sincep
q

is sufficiently negative, inside any
N (with convex boundary) of maximal thickness there exists a Legendrian representativeL(p,q) ∈
L(K(p,q)) of twisting numbert(L(p,q)) = 0, which appears as a Legendrian divide on a convex torus
parallel to∂N .

SupposeN(p,q) has convex boundary and slope(Γ∂N(p,q)
) = s. As before, arrange the characteris-

tic foliation on∂N(p,q) to be in standard form with Legendrian rulings of slope∞, and consider the
convex annulusA with Legendrian boundary on∂N(p,q), where the thickeningR of N(p,q) ∪A is a
thickened torus whose boundary∂R = T1 ∪ T2 is isotopic to∂N . We assume thatΓA consists of
parallel nonseparating arcs, since otherwise we can further thickenN(p,q) by attaching the bypass
corresponding to a∂-parallel arc.

Now let N be a maximally thickened solid torus which containsR, where the thickness is
measured in terms of thecontact width.

Claim 4.2. w(K(p,q), C′
K) = t(K(p,q), C′

K) = 0.

Proof. If s > 0, then by shrinking the solid torusN(p,q), we may takes to be a large positive
integer and#Γ∂N(p,q)

= 2. Then, as in the proof of Theorem 1.2, (i) insideR there exists a convex
torus parallel toTi with slopeq

p
(with respect toCK), (ii) the tight contact structure onR must have

mixing of sign, and (iii) this mixing of sign cannot happen inside the maximally thickened torus
N . This contradicts slope(Γ∂N(p,q)

) = s > 0. ¤
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Claim 4.3. EveryN(p,q) can be thickened to a standard neighborhood of a Legendrian knotL(p,q)

with t(L(p,q)) = 0.

Proof. If −∞ < s < 0, then there cannot be any convex tori inR isotopic toTi and with slope
∞. Hence there is a convex torus parallel toTi with slope∞ and#Γ = 2 outside ofR. By
an application of the Imbalance Principle, we can thickenN to have slope∞. The proof of the
reduction to#Γ∂N = 2 is identical to the proof of Claim 4.1 — the key point is that there is
twisting on both sides ofN \ R. ¤

This completes the proof of Theorem 1.3. ¤
We now demonstrate that the UTP is well-behaved under connected sums.

Theorem 1.4. If two knot typesK1 andK2 satisfy the UTP, then their connected sumK1#K2

satisfies the UTP.

Proof. The following is the key claim:

Claim 4.4. Every solid torusN with convex boundary which representsK1#K2 can be thickened
to a standard neighborhoodN ′ of a Legendrian curve inL(K1#K2).

Proof. Applying the Giroux Flexibility Theorem,∂N can be put instandard form, with meridional
Legendrian rulings. LetS be the separating sphere forK1#K2 — we arrangeS so it (1) is convex,
(2) intersectsN along two disks, and (3) intersects∂N in a union of Legendrian rulings. Moreover,
on the annular portion ofS \ (K1#K2), we may assume that (4) there are no∂-parallel arcs, since
otherwiseN can be thickened further by attaching the corresponding bypasses. Now, cuttingS3

alongS and gluing in copies of the standard contact 3-ballB3 with convex boundary, we obtain
solid toriNi, i = 1, 2, (with convex boundary) which representKi.

SinceKi satisfies the UTP, there exists a thickening ofNi to N ′
i , whereN ′

i is the standard
neighborhood of a Legendrian knotLi ∈ L(Ki). Also arranging∂N ′

i so that it admits merid-
ional Legendrian rulings, we take an annulus from a Legendrian rulingγ′

i on∂N ′
i to a Legendrian

ruling γi on ∂Ni ∩ ∂N . If tb(γi) < −1, then the Imbalance Principle, together with the fact
that tb(γ′

i) = −1, yields enough bypasses which can be attached onto∂Ni to thickenNi into the
standard neighborhood of a Legendrian knot.

However, upon closer inspection, it is evident that the bypasses produced can be attached onto
N inside the originalS3. This produces a thickening ofN to N ′, which has boundary slope1

m
(i.e.,

is the standard neighborhood of a Legendrian knot inL(K)) measured with respect toCK1#K2. ¤
Condition 1 of the UTP follows immediately from the claim. To prove Condition 2, we need

to show that a standard neighborhoodN ′ of a Legendrian knot inL(K1#K2) can be thickened
to N ′′ which is the standard neighborhood of a maximaltb representative ofL(K1#K2). This
is equivalent to showing any Legendrian knotL′ in L(K1#K2) can be destabilized to a maximal
tb representative. GivenL′ ∈ L(K1#K2), thenL′ can be written asL′

1#L′
2, with L′

i ∈ L(Ki),
i = 1, 2. EachL′

i can be destabilized to a maximaltb representativeL′′
i by the UTP for eachKi.

Since
tb(K1#K2) = tb(K1) + tb(K2) + 1,

by [EH2], we simply takeL′′ = L′′
1#L′′

2. This proves Theorem 1.4. ¤
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5. NON-UNIFORMLY-THICK KNOTS AND NON-DESTABILIZABILITY

We prove the following more precise version of Theorem 1.5.

Theorem 1.5.The(2, 3)-torus knot does not satisfy the UTP.

Although our considerations will work for any(p, q)-torus knot withq > p > 0, we assume for
simplicity thatK is a(2, 3)-torus knot, in order to keep the arguments simpler in a few places.

Proof. The goal is to exhibit solid toriN representingK, which cannot be thickened to the maximal
thickness. The overall strategy is not much different from the strategy used in [EH3] and [EH4] to
classify and analyze tight contact structures on Seifert fibered spaces overS2 with three singular
fibers. The plan is as follows: we work backwards by starting with an arbitrary solid torusN which
representsK and attempting to thicken it. This gives us a listNk of potential non-thickenable
candidates, as well as tight contact structures on their complementsS3 \ Nk (Lemma 5.1). In
Lemma 5.2 we prove that the decomposition intoNk andS3\Nk actually exists inside the standard
tight (S3, ξstd) and in Lemma 5.3 we prove theNk indeed resist thickening.

Let T be an oriented standardly embedded torus inS3 which bounds solid toriV1 andV2 on
opposite sides and which contains a(2, 3)-torus knotK. SupposeT = ∂V1 andT = −∂V2. Also
let Fi, i = 1, 2, be the core curve forVi. In [EH1] it was shown thattb(K) = pq − p − q = 1.
Measured with respect to the coordinate systemC′

Fi
for eitheri, t(K, C′

Fi
) = −p − q = −5, which

corresponds to a slope of−1
5
.

Lemma 5.1. Suppose the solid torusN representingK resists thickening. Then slope(Γ∂N) =
− k+1

6k+5
, wherek is a nonpositive integer and the slope is measured with respect toC ′

Fi
.

Proof. Let Li, i = 1, 2, be a Legendrian representative ofFi with Thurston-Bennequin invariant
−mi, wheremi > 0. If N(Li) is the standard neighborhood ofLi, then slope(Γ∂N(Li)) = − 1

mi

with respect to the coordinate systemCFi
. We recast these slopes with respect to a new coordinate

systemC which identifiesT
∼→ R

2/Z
2, whereK (viewed as sitting onT ) corresponds to(0, 1).

First we change coordinates fromCF1 to C. Consider the oriented basis((2, 3), (1, 2)) with
respect toCF1 ; we map it to((0, 1), (−1, 0)) with respect toC. This corresponds to the map

A1 =

(
3 −2
2 −1

)
. (Here we are viewing the vectors as column vectors and multiplying byA1 on

the left.) ThenA1 maps(−m1, 1) 7→ (−3m1 − 2,−2m1 − 1). Since we are only interested in
slopes, let us write it instead as(3m1 + 2, 2m1 + 1).

Similarly, we change fromCF2 to C. The only thing we need to know here is that(−m2, 1) with
respect toCF2 maps to(2m2 + 3,m2 + 2) with respect toC.

Given a solid torusN which resists thickening, letLi, i = 1, 2, be a Legendrian representative
of Fi which maximizestb(Li) in the complement ofN (subject to the condition thatL1 t L2 is
isotopic toF1 tF2 in the complement ofN ). View S3 \ (N(L1)∪N(L2)∪N) as a Seifert fibered
space over the thrice-punctured sphere, where the annuli which connect amongN(L1), N(L2),
andN admit fibrations by the Seifert fibers. Now suppose3m1 + 2 6= 2m2 + 3. Then we apply
the Imbalance Principle to a convex annulusA′ betweenN(L1) andN(L2) to find a bypass along
N(Li). This bypass in turn gives rise to a thickening ofN(Li), allowing the increase oftb(Li) by
one. Eventually we arrive at3m1 + 2 = 2m2 + 3 and a convex annulusA′ which has no∂-parallel
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arcs (hence we may assumeA′ is in standard form). Moreover, the denominator of slope(Γ∂N)
must also equal3m1 + 2 = 2m2 + 3, since otherwiseN admits a thickening. Sincemi > 0, the
smallest solution to3m1 +2 = 2m2 +3 is m1 = 1, m2 = 1. All the other positive integer solutions
are therefore obtained by takingm1 = 2k + 1, m2 = 3k + 1, with k a nonnegative integer.

We now compute the slope of the dividing curves on∂(N(L1)∪N(L2)∪N(A′)), measured with
respect toC′

F1
= C′

F2
, after edge-rounding. HereN(A′) stands for theI-invariant neighborhood of

the convex annulusA′. We have:

−2m1 + 1

3m1 + 2
+

m2 + 2

2m2 + 3
− 1

6k + 5
= −4k + 3

6k + 5
+

3k + 3

6k + 5
− 1

6k + 5
= − k + 1

6k + 5
.

For smallk we get−1
5

< − 2
11

< − 3
17

< − 4
23

< · · · < −1
6
. ¤

Let Nk be a tight solid torus representingK so that the boundary slope is− k+1
6k+5

with respect
to C′

Fi
and#ΓNk

= 2. (There are exactly two tight contact structures onNk which satisfy the
given boundary conditions, and they are both universally tight.) LetMk = S3 \ Nk. From the
above discussion, ifNk is to resist thickening, then we know thatMk must be contactomorphic
to the manifold obtained fromN(L1) ∪ N(L2) by adding a standard neighborhood of a convex
annulusA′. Mk is a Seifert fibered space and has a degree 6 coverM̃k diffeomorphic toS1 times a
punctured torus (cf. [EH1]). One may easily check that the pullback of the tight contact structure to
M̃k admits an isotopy where theS1 fibers become Legendrian and have twisting number−(6k+5)
with respect to the product framing.

Lemma 5.2. The standard tight contact structure onS3 splits into a (universally) tight contact
structure onNk with boundary slope− k+1

6k+5
and the tight contact structure onMk described above.

Proof. Let Nk be a (universally) tight solid torus described above and letA be a convex annulus
in standard form fromNk to itself, such that the complement ofR = Nk ∪ N(A) in S3 consist
of standard neighborhoodsN(Li), i = 1, 2. HereN(A) is theI-invariant neighborhood ofA.
(Observe thatR is also contact isotopic toNk ∪ N(A′).)

For either choice of contact structure onNk, the contact structure onR can be isotoped to be
transverse to the fibers ofR (where the fibers are parallel toK), while preserving the dividing set
on ∂R. Such ahorizontalcontact structure is universally tight. (For more details of this standard
argument, see for example [H2].)

Once we know that the contact structure onR is tight, we just need to apply the classification
of tight contact structures on solid tori and thickened tori. In fact, any tight contact structure
on R = T 2 × [1, 2] with boundary conditions#ΓT1 = #ΓT2 = 2 and slope(ΓT1) = − 1

m1
,

slope(ΓT2) = −m2 (heremi are positive integers) glues together withN(L1) andN(L2) to give
the tight contact structure onS3. ¤
Lemma 5.3. The tight solid torusNk does not admit a thickening to a solid torusNk′ whose
boundary slope is− k′+1

6k′+5
, wherek′ < k. More generally,Nk does not admit any nontrivial

thickenings,i.e., no thickenings with a boundary slope different from− k+1
6k+5

.

Proof. If Nk can be thickened toNk′, then there exists a Legendrian curve isotopic to the regular
fiber of the Seifert fibered spaceMk = S3 \Nk with twisting number> −(6k +5), measured with
respect to the Seifert fibration. (Take a ruling curve on∂Nk′ ⊂ Mk.) Pulling back to the sixfold
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coverM̃k, we have a Legendrian knot which is topologially isotopic to a fiber but has twisting
number> −(6k + 5). However, we claim that the maximal twisting number for a fiber iñMk is
−(6k + 5). One way to see this is to add a solid torus tõMk to obtainT 3 and extend the contact
structure so that all theS1 fibers inT 3 are Legendrian with twisting−(6k + 5). We can now apply
the classification of tight contact structures onT 3 due to Giroux and Kanda (see [K]) to conclude
that the maximal twisting number for a fiber is−(6k + 5).

Next, supposeNk admits a nontrivial thickeningN ′ (not necessarily of typeNk′). Then we use
the argument in Lemma 5.1 to find Legendrian curvesLi ⊂ S3 \ N ′ which maximize the twisting
number amongst Legendrian curves isotopic toFi in S3 \ N ′, and a convex annulus fromN(L1)
to N(L2), so that∂(N(L1) ∪ N(L2) ∪ N(A′)) has some slope− k′+1

6k′+5
, k′ < k. This puts us in the

case treated in the previous paragraph. ¤
This completes the proof of Theorem 1.5. ¤
As a corollary of the above investigation we have:

Theorem 1.6.LetK′ be the(2, 3)-cable of the(2, 3)-torus knotK. Then there exists a Legendrian
knotL ∈ L(K′) which does not admit any destabilization, yet satisfiestb(L) < tb(K′).

Proof. Let Nk be a solid torus which resists thickening; sayk = 1. Then the boundary slope ofN1

is − 2
11

, measured with respect toC′
Fi

. We choose a slope−a
b

< − 2
11

whose corresponding simple
closed curve, denoted(−b, a), has fewer intersections with the simple closed curve(−11, 2) than
with any other simple closed curve whose corresponding slope− c

d
satisfies− 2

11
< − c

d
< 0.

To verify that−a
b

= − 3
16

works, consider the standard Farey tessellation of the hyperbolic unit
disk. Since there mutually are edges among−1

5
< − 3

16
< − 2

11
, −a

b
= − 3

16
is shielded from

any− c
d

> − 2
11

by the edge from−1
5

to − 2
11

. Therefore, to get from− 3
16

to − c
d

we need at least
two steps, implying that(−16, 3) and(−11, 2) have fewer intersections than(−16, 3) and(−d, c).
Now, by changing coordinates fromC′

Fi
to CK, we see that the slope−a

b
= − 3

16
corresponds to the

(2, 3)-cable of the(2, 3)-torus knot.
First observe that there is a Legendrian knotL′ ∈ L(K′) which sits inside the solid torusN0

with slope(Γ∂N0) = −1
5

(with respect toC′
Fi

), as a Legendrian divide on a convex torus which is
isotopic to (but not contact isotopic to)∂N0 and which has slope− 3

16
. By the classification of tight

contact structures on solid tori, such a convex torus exists because− 3
16

> −1
5
. This proves that

t(K′, C′
K) ≥ 0.

Next we exhibitL ∈ L(K′) which cannot be destabilized to twisting number0 with respect to
C′

Fi
. LetL be a Legendrian ruling curve on∂N1, where the ruling is of slope− 3

16
. By construction,

the twisting numbert(L, C′
K) = −1, computed by intersecting(−11, 2) and(−16, 3).

Lemma 5.4. L cannot be destabilized.

Proof. The proof is an application of the state transition technique [H3]. Suppose thatL admits
a destabilization. Then there exists a convex torusΣ isotopic to∂N1 which containsL as well as
a bypass toL. More conveniently, instead of isotoping bothL and the torus, we fixL and isotop
the torus from∂N1 to Σ. Then the annulusB0 = (∂N1) \ L is isotoped toB = Σ \ L relative
to the boundary. Observe thatΓB0 consists of two parallel nonseparating arcs. To get toB, we
perform isotopy discretization,i.e., a sequence of bypass moves (which may well be trivial bypass
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attachments). There can be no nontrivial bypasses attached ontoB0 from the exterior ofN1, since
N1 has maximal thickness.

We claim there are no nontrivial bypasses from the interior as well. First of all, since there are
no Legendrian knots isotopic toL with twisting number zero insideN1, no ∂-parallel dividing
curves (onB) can be created by attaching bypasses from the interior. On the other hand, the slope
(or holonomy) of the two separating arcs onB0 cannot be changed, since the only slope− c

d
with

− c
d
≥ − 2

11
with an edge (in the Farey tessellation) to− 3

16
is − 2

11
. This proves that all the state

transitions forB0 are trivial state transitions. We are unable to reachB. ¤
This completes the proof of Theorem 1.6. ¤

6. NON-TRANSVERSE-SIMPLICITY

Theorem 1.7. Let K′ be the(2, 3)-cable of the(2, 3)-torus knotK. ThenK′ is not transversely
simple.

We first gather some preliminary lemmas.

Lemma 6.1. tb(K′) = w(K′) = 6.

The proof of this lemma is identical to that of Theorem 1.2.

Lemma 6.2.There are precisely two maximal Thurston-Bennequin representatives inL(K′), which
we callK± and which havetb(K±) = 6, r(K±) = ±1.

Proof. Any K ∈ L(K′) with tb(K) = 6 can be realized as a Legendrian divide on the boundary
of a solid torusN representingK. By Lemma 5.1,N can be thickened to a solid torusN ′ with
slope(Γ∂N ′) = −1

5
, measured with respect toC′

Fi
. This means that there are two possible tight

contact structures onN , both universally tight, and the extension toN ′ is determined by the tight
contact structure onN . OnceN ′ is determined, the tight contact structure onS3 \ N ′ is unique up
to isotopy, sinceN ′ is the standard tubular neighborhood of the unique maximaltb representative
of K. This proves that there are at most two maximaltb representatives ofL(K).

We now show that there are indeed two representatives by computing their rotation numbers to
be r(K) = ±1 (and hence showing they are distinct). To use Lemma 2.2, we need to know the
rotation number of a ruling curveλ isotopic toK on ∂N and the rotation number of a meridional
ruling curveµ on∂N. A ruling curve isotopic toK on∂N ′ has rotation number 0 (by the Bennequin
inequality). The regionR between∂N and∂N ′ (in CK coordinates) has relative half-Euler class

PD(e(ξ), R) = ±((1, 1) − (2, 3)) = ±(−1,−2).

Sor(λ) = ∓1. One similarly sees thatr(µ) = ±2. Thus

r(K) = 2(±2) + 3(∓1) = ±1.

¤
Lemma 6.3. The only non-destabilizable representatives ofL(K′) besides those which attain
tb(K′) are L± which havetb(L±) = 5 and r(L±) = ±2. They are realized as Legendrian rul-
ing curves on a convex torus isotopic toT with dividing curves of slope− 2

11
(with respect toC′

Fi
),

and which does not admit a thickening.
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Proof. Let K be a non-destabilizable representative ofL(K′). Sincetb(K′) = 6, we can always
placeK on the (convex) boundaryΣ = ∂N of a solid torusN representingK. If K is a Legendrian
divide onΣ, then we are in the case of Lemma 6.2. IfK is not a Legendrian divide, thenK must
intersectΓΣ efficiently, and we may assume thatK is a Legendrian ruling curve onΣ. Slopes of
Σ will usually be measured with respect toC′

Fi
.

We now show that ifs = slope(ΓΣ) 6= − 2
11

, thenK can be destabilized (contradicting our as-
sumption). Note thats must be in[−1

5
, 0) ands = − 3

16
corresponds to the situation in Lemma 6.2.

In the following cases, we find a convex torusΣ′ isotopic to and disjoint fromΣ so that a simple
closed curve of slope− 3

16
has smaller geometric intersection withΓΣ′ than withΓΣ. The destabi-

lization is then a consequence of the Imbalance Principle. Ifs ∈ [−1
5
,− 3

16
), then there isΣ′ ⊂ N

with slope(ΓΣ′) = − 3
16

. If s ∈ (− 3
16

,− 2
11

), then there existsΣ′ of slope− 3
16

outsideN (sinceN

can be thickened to maximal width by Lemma 5.1). Similarly, ifs ∈ (−1
6
, 0), then there exists aΣ′

with slope(ΓΣ′) = −1
6
, by using Lemma 5.1. Next, ifs ∈ (− 2

11
,−1

6
), there exists aΣ′ of slope−1

6
insideN (it is not difficult to see that thisΣ′ works by referring to the Farey tessellation). There-
fore we are left withs = −1

6
. But then we use the classification ofL(K) to deduce thatN can be

thickened toN ′ with boundary slope−1
5
, corresponding to a representative ofL(K) of maximal

Thurston-Bennequin invariant. We can now compareΣ with Σ′ of slope− 3
16

to destabilize. This
proves that the only two places where we get stuck and cannot destabilize are− 2

11
and− 3

16
.

Now let L ∈ L(K′) be non-destabilizable representatives withtb(L) = 5. Then they are Leg-
endrian ruling curves on the boundary of a solid torusN1, where slope(Γ∂N1) = − 2

11
with respect

to C′
Fi

. There are two possible tight contact structures onN1, and they are both universally tight.
Since the tight contact structures on their complementsS2 \ N1 are always contact isotopic, there
are at most two non-destabilizable, non-maximal representatives. Using Lemma 2.2, we obtain:

r(L) = 2(±1) + 3(0) = ±2.

(Sinceµ intersectsΓ∂N1 in four points,r(µ) = ±1. It is also not hard to computer(λ) = 0 by
using the fact that there are no∂-parallel arcs on the Seifert surface forλ.) ThereforeL+ andL−
are distinguished by the contact structures on the solid torusN1. ¤
Lemma 6.4. S−(L−) = S2

−(K−) andS+(L+) = S2
+(K+).

Proof. SinceL− is a Legendrian ruling curve onN1 with slope(Γ∂N1) = − 2
11

, S−(L−) is a Legen-
drian ruling curve on∂N ′

1 ⊂ N1, whereN ′
1 is a solid torus representingK and slope(Γ∂N ′

1
) = −1

6
.

Similarly, sinceK− is a Legendrian divide onN with slope(Γ∂N) = − 3
16

, S2
−(K−) is a Legendrian

ruling curve on∂N ′ ⊂ N , whereN ′ is a solid torus representingK and slope(Γ∂N ′) = −1
6
. Now

N ′ andN ′
1 are neighborhoods of Legendrian knots inL(K) with tb = 0. If the associated rotation

numbers are the same, then they are contact isotopic (by the Legendrian simplicity of the(2, 3)-
torus knot). One may easily check that the rotation numbers are indeed the same. Therefore, there
is an ambient contact isotopy takingN ′ to N ′

1, and it simply remains to Legendrian isotopS−(L−)
to S2

−(K−) through ruling curves. ¤
We are now ready to proceed with the proof of Theorem 1.7.

Proof of Theorem 1.7.In view of Theorem 1.8, it suffices to show thatSk
+(L−) is never equal to

Sk
+S−(K−) for all positive integersk (and likewiseSk

−(L+) is never equal toSk
−S+(K+)).
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Throughout this proof we use coordinatesC ′
K, unless otherwise stated. As above, letN1 be a

solid torus which representsK, does not admit a thickening, and has boundaryΣ0 = ∂N1, where
#ΓΣ0 = 2 and slope(ΓΣ0) = − 2

11
. Assuming we have already chosen the correctN1 (there were

two choices), place the knotL = Sk
+(L−) on Σ0 as follows: if A0 = Σ0 \ L, then there arek

negative∂-parallel arcs on the left-hand edgeLl of A0 andk positive∂-parallel arcs on the right-
hand edgeLr of A0. HereA0 is oriented so that∂A0 = Lr − Ll, whereLr andLl are oriented
copies ofL. (The sign of a∂-parallel arc is the sign of the region it cuts off.) See Figure 3 for a
possibleΓA0. When we draw annuli, we will usually present rectangles, with the understanding
that the top and the bottom are identified.

+

+

-

-

-

- +

+

+

FIGURE 3. The “initial configuration”ΓA0. The left-hand boundary isLl and the
right-hand boundary isLr. They glue to giveΣ0.

The key claim is the following:

Claim 6.5. Every convex torus which containsL and is isotopic toΣ0 has slope− 2
11

.

This would immediately show thatSk
+(L−) is never equal toSk

+S−(K−). To prove this fact, we
use the state traversal technique. IfΣ also containsL and is isotopic toΣ0 (not necessarily relative
to L), then we can use the standard properties of incompressible surfaces in Seifert fibered spaces
to conclude thatΣ must be isotopic toΣ0 relative toL. Therefore, it suffices to show that the slope
of the dividing set does not change under any isotopy ofΣ0 relative toL. Although we would like
to say that the isotopy leaves the dividing set ofΣ0 invariant, this is not quite true. It is not difficult
to see (see Figure 4) that the number of dividing curves can increase, although the slope should
always remain the same according to Claim 6.5. Starting withΣ = Σ0, we inductively assume the
following:

Inductive Hypothesis
(1) Σ is a convex torus which containsL and satisfies2 ≤ #ΓΣ ≤ 2k + 2 and slope(ΓΣ) =

− 2
11

.
(2) Σ is “sandwiched” in a[0, 1]-invariantT 2 × [0, 1] with slope(ΓT0) = slope(ΓT1) = − 2

11

and#ΓT0 = #ΓT1 = 2. (More precisely,Σ ⊂ T 2 × (0, 1) and is parallel toT 2 × {i}.)
(3) There is a contact diffeomorphismφ : S3 ∼→ S3 which takesT 2 × [0, 1] to a standard

I-invariant neighborhood ofΣ0 and matches up their complements.
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+

+

-

-

-

-

+

+

+

-

+

FIGURE 4. A potentialΣ in the inductive step.

Suppose we isotopΣ relative toL into another convex torusΣ′. Then the standard state traversal
machinery [H3] implies that we may assume that the isotopy is performed in discrete steps, where
each step is given by the attachment of a bypass.Σ bounds a solid torusN on one side, and we say
that the bypass is attached “from the inside” or “from the back” if the bypass is in the interior ofN
and the bypass is attached “from the outside” or “from the front” if the bypass is in the exterior of
N . (Also for convenience assume thatT0 is insideN andT1 is outsideN .) We prove the inductive
hypothesis still holds after all existing bypass attachments.

Lemma 6.6. The Legendrian knotL cannot sit on a convex torusΣ in N1 that is isotopic to∂N1

and satisfies#ΓΣ = 2 and slope(ΓΣ) = −1
6
.

Proof. The convex torusΣ bounds the standard neighborhood of a Legendrian knot inL(K) with
tb = 0 and r = −1 (i.e., S− of the maximaltb representative ofL(K)). Computing as in
Lemma 6.3, we find that a Legendrian ruling curve of slope− 3

16
on Σ must beS−(L−). There-

fore, if L ⊂ Σ, thenL must be a stabilization ofS−(L−). However, this contradicts the fact that
L = Sk

+(L−) by a simple(r, tb)-count. ¤

Lemma 6.7.Given a torusΣ satisfying the inductive hypothesis, any bypass attached toA = Σ\L
will not change the slope of the dividing set.

Proof. If the bypass is attached from the outside, then the slope cannot change or this would give
a thickening of our non-thickenable solid torus. If the bypass is attached from the inside, then let
Σ′ be the torus obtained after the bypass is attached. By examining the Farey tessellation, we see
that s = slope(ΓΣ′) must lie in [− 2

11
,−1

6
]. Since Lemma 6.6 disallowss = −1

6
, suppose that

s ∈ (− 2
11

,−1
6
). Let Σ′′ be a convex torus of slope−1

6
and#Γ = 2 in the interior of the solid torus

bounded byΣ′. Take a Legendrian curveL′ on Σ′ which is parallel to and disjoint fromL, and
intersectsΓΣ′ minimally. Similarly, considerL′′ onΣ′′. Using the Farey tessellation, it is clear that
|ΓΣ′ ∩L′| > |ΓΣ′′ ∩L′′|. Thus the Imbalance Principle gives bypasses forΣ′ that are disjoint from
L. After successive attachments of such bypasses, we eventually obtainΣ′′′ of slope−1

6
containing

L, contradicting Lemma 6.6. ¤

Therefore we see that Condition (1) is preserved.
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Lemma 6.8. Given a torusΣ satisfying the inductive hypothesis, any bypass attached toA will
preserve Conditions (2) and (3).

Proof. SupposeΣ′, is obtained fromΣ by a single bypass move. We already know that slope(ΓΣ′) =
slope(ΓΣ), and, assuming the bypass move was not trivial,#Γ is either increased or decreased by
2. Suppose first thatΣ′ ⊂ N , whereN is the solid torus bounded byΣ. For convenience, suppose
Σ = T0.5 insideT 2 × [0, 1] satisfying Conditions (2) and (3) of the inductive hypothesis. Then we
form the newT 2× [0.5, 1] by taking the oldT 2× [0.5, 1] and adjoining the thickened torus between
Σ andΣ′. Now,Σ′ bounds a solid torusN ′, and, by the classification of tight contact structures on
solid tori, we can factor a nonrotative outer layer which is the newT 2 × [0, 0.5].

On the other hand, supposeΣ′ ⊂ (S3 \ N). We prove that there exists a nonrotative outer layer
T 2 × [0.5, 1] for S3 \ N ′, where#ΓT1 = 2. This follows from repeating the procedure in the
proof of Theorem 1.5, where Legendrian representatives ofF1 andF2 were thickened and then
connected by a vertical annulus — this time the same procedure is carried out with the provision
that the representatives ofF1 andF2 lie in S3 \N ′. Once the maximal thickness for representatives
of F1 andF2 is obtained, after rounding we get a convex torus inS3 \ N ′ parallel toΣ′ but with
#Γ = 2. Therefore we obtain a nonrotative outer layerT 2 × [0.5, 1]. ¤

This completes the proof of Theorem 1.7. ¤
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