
ON SYMPLECTIC COBORDISMS

JOHN B. ETNYRE AND KO HONDA

Abstract. In this note we make several observations concerning sym-
plectic cobordisms. Among other things we show that every contact
3-manifold has in�nitely many concave symplectic �llings and that all
overtwisted contact 3-manifolds are \symplectic cobordism equivalent".

1. Introduction

In this note we make several observations concerning (directed) symplectic
cobordisms, Stein cobordisms, and concave symplectic �llings for contact 3-
manifolds. Symplectic and Stein cobordisms have recently come to the fore-
ground of symplectic and contact geometry, largely due to the introduction
of a symplectic �eld theory (SFT) by Eliashberg, Hofer and Givental [12].
The goal of SFT is to associate an algebraic structure to a given symplectic
cobordism. Though clearly a central notion in symplectic and contact ge-
ometry, there is surprisingly little concerning symplectic cobordisms in the
literature.
We will assume our 3-manifolds are closed and oriented, and our contact

structures are oriented and positive. A contact 3-manifold (M1; �1) is sym-
plectically cobordant to another contact manifold (M2; �2), if there exists a
symplectic 4-manifold (X;!) with @X =M2�M1 and a vector �eld v de�ned
on a neighborhood of (M1 [M2) � X for which Lv! = !, v t (M1 [M2),
the normal orientation of M1 [M2 agrees with v and the 1-form � = �v! is
a contact from for �i when restricted to Mi; i = 1; 2: If there is, moreover,
an almost complex structure J on X and a strictly plurisubhamonic func-
tion � : X ! R such that ! = �dJ�d� and Mi; i = 1; 2; are non-critical
level sets of �; then we say (M1; �1) is strictly complex cobordant to (M2; �2):
Such cobordisms have been studied in [9, 13] and can be thought of as the
cobordism analog of a Stein manifold. Hence we shall abuse terminology
and refer to strictly complex cobordisms as \Stein cobordisms". We say
(M1; �1) is the concave end of the cobordism, while (M2; �2) is the convex
end. We denote the existence of such a cobordism by (M1; �1) � (M2; �2)
| in the paper we implicitly assume that � refers to a Stein cobordism,
unless speci�ed otherwise. Note that symplectic (and Stein) cobordism is
not an equivalence relation. For example, a Stein �llable contact structure
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(M; �) (= one satisfying ; � (M; �)) cannot be symplectically cobordant
to an overtwisted contact structure, but the opposite is possible. Our �rst
result is:

Theorem 1.1. Let (M1; �1) be a contact 3-manifold. Then there exists a
Stein �llable contact 3-manifold (M2; �2) and a Stein cobordism (M1; �1) �
(M2; �2).

Though this result indicates the overall structure of the \partial order" on
contact 3-manifolds induced by cobordisms, there is very little control over
the target contact manifold (M2; �2). On the other hand, when (M1; �1) is
overtwisted, there is complete freedom in choosing (M2; �2):

Theorem 1.2. Let (M1; �1) be an overtwisted contact 3-manifold and (M2;
�2) any contact 3-manifold, tight or overtwisted. Then there exists a Stein
cobordism (M1; �1) � (M2; �2).

In particular, all overtwisted contact structures are equivalent under sym-
plectic or Stein cobordism!
It is interesting to compare the previous two theorems with recent work of

Epstein-Henkin [13] and de Oliveira [5] which deal with cobordisms between
CR-structures. (Here \CR-structure" will mean \strictly pseudoconvex CR-
structure".) On any 3-manifold M , there is a 1-1 correspondence between
CR-structures and pairs (�; J) consisting of a contact structure � and an
almost complex structure J on �. We say a CR-structure (�; J) on M is
�llable, if there is a compact, connected, complex manifold X with @X =
M , so that the complex tangencies to M are � and the induced complex
structure on � is J: In [13] it was shown that if a CR-manifold (M1; �1; J1)
is Stein cobordant to a �llable CR-manifold (M2; �2; J2), then (M1; �1; J1)
is also �llable. Here we assume Stein cobordisms of CR-manifolds respect
complex structures. Thus, if (M1; �1; J1) � (M2; �2; J2) is a Stein cobordism
but (M1; �1) is not Stein �llable, then (M2; �2; J2) cannot be a �llable CR-
structure, even if (M2; �2) is a Stein �llable contact structure. De Oliveira
[5] gave some interesting examples of complex (but not Stein) cobordisms
from non-�llable CR-structures to �llable ones, thus showing the necessity
of having a Stein cobordism in the Epstein-Henkin result.
Our last result is:

Theorem 1.3. Any contact 3-manifold has in�nitely many concave sym-
plectic �llings which are mutually non-isomorphic and are not related to each
other by a sequence of blow-ups and blow-downs.

A convex (resp. concave) symplectic �lling of (M; �) is a symplectic cobor-
dism (X;!) from ; to (M; �) (resp. from (M; �) to ;). The phrase \sym-
plectic �lling", without modi�ers, is usually reserved for \convex symplectic
�lling". Having a (convex) �lling is quite restrictive for a contact 3-manifold
| for instance, it implies the contact structure is tight. (Note, however, that
there are many tight contact structures without such �llings due to Eliash-
berg [11], Ding-Geiges [6], and Etnyre-Honda [14].) We show that, on the
contrary, concave �llings are not restrictive at all. Though this was believed
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for a long time, and speci�c isolated contact manifolds with in�nitely many
such �llings are easy to come by, the degree to which concave �llings are not
restrictive is perhaps a little surprising.
We assume the reader is more or less familiar with contact geometry and

hence we do not include any background material here. We refer the reader
to [2] for the basics of contact geometry, [8] for Lutz twisting, and [1, 12, 9]
for the notions of Stein and symplectic cobordisms.

2. Legendrian surgeries

In this section we give a description of Legendrian surgery, both on the 3-
manifold level and as a source of Stein �lling on the 4-manifold level. There
is some related material in [21] for Legendrian surgeries.
Let (M; �) be a contact manifold and L �M a closed Legendrian curve.

LetN(L) be a standard tubular neighborhood of the Legendrian curve L, with
convex boundary and two parallel dividing curves. Choose a framing for L
(and a concomitant identi�cation @N(L) ' R

2=Z2) so that the meridian has
slope 0 and the dividing curves have slope 1. With respect to this choice
of framing, a Legendrian surgery is a �1 surgery, where a copy of N(L)
is glued to M n N(L) so that the new meridian has slope �1. Here, even
though the boundary characteristic foliations may not exactly match up a
priori, we use Giroux's Flexibility Theorem [15, 20] and the fact that they
have the same dividing set to make the characteristic foliations agree. This
gives us a new manifold (M 0; �0).
The following proposition describes Legendrian surgery on the 4-manifold

level.

Proposition 2.1. Let (M 0; �0) be a contact manifold obtained by Legendrian
surgery along L in (M; �), in a 3-dimensional manner. Then there exists
a Stein cobordism from (M; �) to (M 0; �0), obtained by attaching a 2-handle
along N(L).

Proof. We apply Lemma 2.2 below to obtain a Stein cobordism X = M �
[0; 1]: Then Legendrian surgery corresponds to attaching a 2-handle along
N(L) � M � f1g in a Stein (resp. symplectic) manner, which yields a
Stein (resp. symplectic) cobordism from (M; �) to (M 0; �0). (See Eliashberg
[9].) �

Lemma 2.2. Let (M; �) be a contact structure. Then there exists a thick-
ening of M to X =M � [0; 1] and a Stein cobordism from (M; �) to itself.

A proof of this fact appears in [7].

3. Open book decompositions

Recall an open book decomposition of a 3-manifold M consists of a link
K; called the binding, and a �bration f : (M n K) ! S1 such that each
�ber F in the �bration is a Seifert surface for K: The manifold M n K is
obtained by taking F � [0; 1] with coordinates (x; t) and identifying (x; 0) �
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(�(x); 1) via the monodromy map � : F
�

! F . Following Thurston and
Winkelnkemper [26], we construct a contact structure on M from an open
book decomposition: Let � be a primitive for an area form on F and let
�t = t ��+(1� t) ����, t 2 [0; 1]. The 1-form � = dt+�t is a contact 1-form
on F � [0; 1] which glues to give a contact structure on M nK. One easily
checks that � extends over K: If (M; �) is obtained in this manner, then we
say that the open book decomposition of M is adapted to �. We now have
the following recent result of Giroux [16]:

Theorem 3.1. Any contact structure � on a closed 3-manifold M admits
an open book decomposition of M which is adapted to �.

The following lemma (and more importantly its converse) is due to the
e�orts of many people, beginning with the work of Loi and Piergallini [23]
(also see [25] for an earlier e�ort), and recently culminating in the work of
Giroux [16] (see also [3, 24]).

Lemma 3.2. If the monodromy � : F ! F for an open book can be expressed
as a product of positive Dehn twists, then the adapted contact structure is
Stein �llable.

Proof. If a manifoldMn has an open book decomposition with �ber F; anm-
times punctured genus g surface, and monodromy � = id, then the manifold
is the connected sum of n = 2g + m � 1 copies of S1 � S2: (To see this,
note that Mn with the binding removed is F � S1 and the co-core of each
1-handle in F is an annulus. Now, when the binding is replaced, these annuli
become essential 2-spheres.) This open book decomposition can be seen as
the boundary of a (positive) Lefschetz �bration on a 4-manifold X that Mn

bounds. From this one may easily conclude that the contact structure �n;
adapted to the open book decomposition, is Stein �lled by X (cf. [3, 23]).
Assume � consists of a single positive Dehn twist along a closed curve

 � F . Then the manifoldM is obtained from Mn by a Dehn surgery along
 with surgery coeÆcient one less than the framing induced on  by the
�ber. But we can also make  a Legendrian curve in F so that the fram-
ings given by the contact structure and the �bers agree. (In other words,
the twisting number of  relative to F is zero.) This is made possible by
applying (a variant of) the Legendrian Realization Principle (for details see
[20]). Although @F is not Legendrian, for the purposes of the Legendrian
Realization Principle we may assume that @F is the dividing set of the con-
vex surface F and realize any closed curve  � int F as a Legendrian curve,
provided  is non-isolating, i.e., every component of F n nontrivially inter-
sects @F . Thus (M; �) is obtained from (Mn; �n) by a Legendrian surgery
and hence is Stein �llable, provided  is non-isolating. The only way our
 could be isolating is if it were separating but then we use the argument
in Lemma 1 of [23] and write a positive Dehn twist about the separating
curve  as a product of positive Dehn twists about non-separating curves.
Thus we are left with the case where � is the product of k > 1 positive
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Dehn twists about non-separating curves and we just perform k Legendrian
surgeries on di�erent leaves. �

We are now ready to prove Theorem 1.1. It should be pointed out that the
strategy of proof is similar to the proof strategy in [6], where it is proved
that \most" universally tight contact contact structures on torus bundles
over the circle are not (strongly) symplectically �llable.

Proof of Theorem 1.1. If (M1; �1) is Stein �llable, then we are done by Lemma
2.2. Therefore, let (M1; �1) be a contact structure which is not Stein �llable.
By Theorem 3.1, there exists an open book decomposition for M1 which is
adapted to �1. Let K be the binding, f : (M1 nK)! S1 the �bering of the
complement, F the �ber, and � the monodromy map. Since (M1; �1) is not
Stein �llable, any product decomposition of � into Dehn twists must contain
some negative Dehn twists. We view each Dehn twist as being done on a
separate �ber. On a �ber just after one on which a negative Dehn twist was
done along , we can take a parallel copy of  and perform a positive Dehn
twist, which is tantamount to a Legendrian surgery. If a compensatory pos-
itive Dehn twisted is added whenever there is a negative Dehn twist, then
we will have a new monodromy map �0 with only positive Dehn twists. Of
course �0 will de�ne a di�erent manifold M2 and a di�erent contact struc-
ture �2: However, since the di�erence in between the monodromy for M1

and for M2 is just several positive Dehn twists, we can get from (M1; �1)
to (M2; �2) by a sequence of Legendrian surgeries. Thus we have a Stein
cobordism from (M1; �1) to (M2; �2): �

4. Overtwisted Contact Structures

In this section we prove Theorem 1.2. The proof will be broken down into
two propositions.

Proposition 4.1. Any overtwisted contact manifold is Stein cobordant to
any overtwisted contact manifold.

Proof. Let (Mi; �i); i = 1; 2 be two overtwisted contact manifolds. It is a
well-known fact in 3-manifold topology that we can �nd a link L in M1

such that a certain integer Dehn surgery on L will yield M2: Thus we can
construct a topological cobordism X from M1 to M2 by attaching 2-handles
with the appropriate framing to M1 � [0; 1]: Moreover, one can adapt the
proof of Lemma 4.4 in [19] to show that we may assume that X has an
almost complex structure with complex tangencies �i on Mi: We now apply
the following theorem of Eliashberg (Theorem 1.3.4 in [9]):

Theorem 4.2 (Eliashberg). Let (X;J) be a compact, almost complex (real)
4-manifold with boundary @X = M2 � M1. Assume M1 is J-concave, J
is integrable near M1, and the corresponding contact structure (M1; �1) is
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overtwisted. If the cobordism (X;J) from M1 to M2 consists of only 2-
handle attachments, then there exists a deformation of J (rel M1) to an

integrable complex structure eJ on X for which M2 is eJ-convex.

Using this theorem, we obtain a Stein structure on X for which the com-
plex tangencies on M1 are �1 and on M2 are some contact structure �0

homotopic to �2 as a 2-plane �eld. Now, we are done if �0 is overtwisted,
since overtwisted contact structures are classi�ed by their 2-plane �eld ho-
motopy type [8]. But we can easily ensure that the contact structure on M2

is overtwisted by adding some extra Lutz twists to (M1; �1) that are disjoint
from the regions where the 2-handles are attached. �

Proposition 4.3. Given a tight contact manifold (M; �), there exists an
overtwisted contact structure �0 on M in the same homotopy class as � and
which satis�es (M; �0) � (M; �).

Proof. Given (M; �), take a Legendrian curve L � M and its standard
neighborhood N(L). Choose a framing as in Section 2 so that the slope of
the dividing set of @N(L) is 1. Now, identify slopes s 2 R [ f1g with
their respective \angles", [�s] 2 R=�Z. In order to distinguish the di�erent
amounts of \wrapping around", we will choose a lift �s 2 R instead. There
exists an exhaustion of N(L) by concentric T 2, where the angles of the
dividing curves on the tori monotonically increase over the interval [�

2
; �) as

the T 2 move towards the core.
Now, let (M; �0) be the overtwisted 3-manifold obtained by performing a

full Lutz twist along L. This replaces N(L) by the solid torus N , where the
angles of the dividing curves of an exhaustion by tori monotonically increase

over the interval [�
2
; 3�). We claim that a full Lutz twist (M; �)

L
 (M; �0) is

the inverse process of a sequence of Legendrian surgeries along the same core.
To see this, take a Legendrian curve K in (M; �0) in the same isotopy class
as L, whose standard neighborhood N(K) � N has an exhausting set of
tori which spans the interval [3�� 3�

4
; 3�). Note this implies that tb(K) = 1

(when measured with respect to the trivialization of N we are using). Thus
Legendrian surgery on K corresponds to 0-Dehn surgery. Moreover after
Legendrian surgery, the new N \rotates" in the interval [�

2
; 5�
2
). Repeated

application (total of 4 times) of Legendrian surgery will get us back to
(M; �). Note, however, that the intermediate manifolds are not necessarily
di�eomorphic toM . We leave it to the reader to check that the four surgeries
correspond to Dehn surgery on the link K0 [ K1 [ K2 [ K3; where K0 is
K; each Ki is a meridian to Ki�1 for i = 1; 2; 3; (and not linked with Kj if
jj � ij > 1) and the surgery coeÆcients are all 0. �

Combining Propositions 4.1 and 4.3, we immediately get Theorem 1.2.
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5. Concave Fillings

In this section we prove Theorem 1.3. Before we set out on the proof, we
give a straightforward proof of this theorem for overtwisted contact struc-
tures.

Lemma 5.1. Theorem 1.3 is true for any overtwisted contact structure.

Proof. Given any overtwisted contact structure (M; �), we know by Theorem
1.2 that there is a Stein cobordism (X;!) from (M; �) to (S3; �std): Let
(Y; !0) be any closed symplectic 4-manifold. Use Darboux's theorem to
excise a small standard ball around a point in Y and obtain a manifold Y 0

with concave boundary (S3; �std): We then obtain a concave �lling of (M; �)
by gluing (X;!) to (Y 0; !0jY 0). It is clear that there are in�nitely many
choices for (Y; !0) that will yield in�nitely many di�erent concave �llings for
(M; �). �

Lemma 5.2. Theorem 1.3 is true for any Stein �llable contact structure.

Proof. Let (M; �) be Stein �lled by (X;!): According to Corollary 3.3 in [22],
there is a symplectic embedding of (X;!) into a compact K�ahler minimal

surface S of general type. If we take Y = S nX, then (Y; !jY ) will be a
concave symplectic �lling of (M; �):
A slight modi�cation of the above argument will produce in�nitely many

concave �llings. Speci�cally, in a small standard 3-ball (B3; �std) � (M; �),
there exist a right-handed Legendrian trefoil knot with tb = 1 and a linking
Legendrian unknot with tb < 0. If we add 2-handles to X along these
Legendrian knots, we obtain a new Stein manifold (X 0; !0). Embed X 0 in
a compact K�ahler surface S and remove X to obtain a concave symplectic
�lling (Y 0; !0) of (M; �): In the layer X 0nX in Y 0 there exists a symplectically
embedded torus T: To see this note that the manifold N obtained from B3

by attaching a 2-handle along a right-handed trefoil knot with framing 0 is
a \cusp neighborhood", see [17], and thus it supports a symplectic structure
containing may symplectic tori. Now our manifold X 0 is symplectomorphic
to X [N with a 1-handle attached (this can be done in a symplectic fashion
[9]). Let E(n) be the elliptic surface obtained by taking the normal sum
[18] of n � 1 copies of the rational elliptic surface along regular �bers. Then
consider the symplectic manifold Yn = E(n)#TY

0, obtained by taking the
normal sum of Y 0 along T and E(n) along a regular �ber. These concave
�llings of (M; �) are not related by blowing up and down, since if they were,
then the compact manifolds Sn; obtained from S by normal summing with
En; would also be so related. However, this is not the case, as b+2 (Sn) =
b+2 (S) + 2n and b+2 is unchanged by blowing up and down. �

Theorem 1.3 now follows from Lemma 5.2 and Theorem 1.1.
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