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Abstract. We prove that a nicely fibered link (by which we mean the binding of an
open book) in a tight contact manifold (M, ξ) with zero Giroux torsion has a transverse
representative realizing the Bennequin bound if and only if the contact structure it supports
(since it is also the binding of an open book) is ξ. This gives a geometric reason for the non-
sharpness of the Bennequin bound for fibered links. We also give the classification, up to
contactomorphism, of maximal self-linking number links in these knot types. Moreover, in
the standard tight contact structure on S3 we classify, up to transverse isotopy, transverse
knots with maximal self-linking number in the knots types given as closures of positive
braids and given as fibered strongly quasi-positive knots. We derive several braid theoretic
corollaries from this. In particular, we give conditions under which quasi-positive braids are
related by positive Markov stabilizations and when a minimal braid index representative
of a knot is quasi-positive. Finally, we observe that our main result can be used to show,
and make rigorous the statement, that contact structures on a given manifold are in a
strong sense classified by the transverse knot theory they support.

1. Introduction

In [1], Bennequin established the following inequality for knots K transverse to the stan-
dard tight contact structure on S3

sl(K) ≤ −χ(Σ),

where Σ is any Seifert surface for K and sl(K) denotes the self-linking number of K.
Eliashberg proved this inequality for transverse knots and links in any tight contact structure
[5]. Since that time there has been much work finding other bounds for transverse knots
in S3 [9, 14, 12] and some work finding other bounds in general manifolds [16, 22]. For
some links, other bounds are more restrictive and the Bennequin inequality is not sharp. In
general there is little geometric understanding of the knot types for which the Bennequin
inequality is sharp. Building on an interesting result of Hedden [16] discussed below, our first
goal in this paper is to rectify this situation for fibered links by giving a specific necessary and
sufficient condition for sharpness. Once we have done this we will discuss several corollaries
concerning the classification of transversal knots, braids representing quasi-positive links
and the determination of a contact structure via its transverse knot theory.

1.1. Sharpness in the Bennequin inequality. We say an oriented link L in a 3-manifold
M is fibered if there is a fibration π : (M \ L) → S1 such that the closure of any fiber is
an embedded surface whose boundary, as an oriented manifold, is equal to L. This is a
slightly more restrictive definition of a fibration in a general 3-manifolds than is usually
given and, of course, is equivalent to (L, π) being an open book decomposition for M .
As there might be many different fibrations with binding L, we use the notation (L,Σ) to
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emphasize a particular fiber surface Σ. Given an open book decomposition (L,Σ), Thurston
and Winkelnkemper constructed in [31] a contact structure ξ(L,Σ) that is supported by the
fibration. Examining the construction, one easily sees that L is naturally a transverse link in
ξ(L,Σ) and the self-linking number of (L,Σ) is −χ(Σ). Thus we see that fibered links in a tight
contact manifold that support the given contact structure have transverse representatives
realizing equality in the Bennequin inequality. More generally, we say that the fibered link
(L,Σ) in a contact manifold (M, ξ) realizes the Bennequin bound if there is a transverse
realization of L such that slξ(L,Σ) = −χ(Σ), noting that if H2(M ; Z) is non-trivial, then
the self-linking number may depend on the surface Σ. In [17], Hedden showed that in the
standard tight contact structure on S3 the Bennequin bound is sharp for a fibered knot if
and only if the contact structure defined by the knot is tight. Hedden used a Heegaard-Floer
invariant of knots to establish this result and proves a similar result for contact manifolds
with non-vanishing contact invariant (thought, unlike in the case of S3, the exact contact
structure supported by the knot cannot necessarily be determined). In general, one would
not expect the simple algebraic condition of equality in the Bennequin inequality for a
transverse representative of a link could have the strong geometric consequence that the
link is the binding of an open book decomposition supporting the ambient contact structure,
however we show that this is essentially the case.

Theorem 1.1. Let M be a closed 3-manifold and ξ a tight contact structure on M. A fibered
link (L,Σ) realizes the Bennequin bound in (M, ξ) if and only if ξ is supported by the open
book (L,Σ) or is obtained from ξ(L,Σ) by adding Giroux torsion. �

Since one implication in Theorem 1.1 is obvious from the discussion above, the theorem
is a consequence of the following. (Results proved in subsequent sections are numbered
according to the section and place in the paper where they are proved.)

Theorem 3.1. Let (L,Σ) be a fibered transverse link in a contact 3-manifold (M, ξ) and
assume that ξ is tight when restricted to M \ L. If slξ(L,Σ) = −χ(Σ), then either

(1) ξ is supported by (L,Σ) or
(2) ξ is obtained from ξ(L,Σ) by adding Giroux torsion along tori which are incompressible

in the complement of L.

We have the following immediate corollaries.

Corollary 1.2. If ξ is a tight contact structure on M with zero Giroux torsion (for example
if M is atoroidal), then a fibered link (L,Σ) realizes the Bennequin bound in (M, ξ) if and
only if ξ is supported by (L,Σ). �

Corollary 1.3. If ξ is a tight contact structure on M , then a fibered knot with pseudo-
Anosov monodromy (L,Σ) realizes the Bennequin bound in (M, ξ) if and only if ξ is sup-
ported by (L,Σ). �

Given an oriented nicely fibered link L in a rational homology sphere, there is a natural
homotopy class of plane field associated to L. Namely, take the homotopy class of the contact
structure associated to the open book with binding L. Another immediate corollary of our
main theorem is the following which also follows using Heegaard-Floer theory as shown in
[17].
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Corollary 1.4. Let M be a rational homology sphere and L an oriented fibered link in M.
If the homotopy class of plane field associated to L is not the same as the homotopy class
of a given tight contact structure ξ, the Bennequin inequality is a strict inequality. �

It would be interesting to better understand if the difference between −χ(Σ) and the
maximal self-linking number of a fibered knot K in a tight contact structure ξ was somehow
related to the difference between the Euler class and Hopf invariant of ξ and the plane field
associated to K.

The main new technical idea used in the proofs of our theorems is the idea of a contact
structure being quasi-compatible with an open book. That is, a contact structure ξ is quasi-
compatible with an open book (L,Σ) if there is a contact vector field positively transverse
to the pages and positively tangent to the boundary of the open book. If the contact vector
field is a Reeb vector field for ξ then the open book is actually compatible. We expect
further study of this generalization of compatibility to be useful in understanding questions
about Giroux torsion, and hope to return to this in a future paper. Several of the arguments
in the proofs our theorems can be thought of as extending standard convex surface theory
to convex surfaces with transverse boundary. As is well known to the experts, many of the
most useful theorems do not carry over to this situation; however, we show that some of
the theorems do carry over, though sometimes in a somewhat restricted form.

1.2. The classification of transverse knots with maximal possible self-linking

number. Not only do we understand when a fibered link realizes the Bennequin inequal-
ity, we can also classify maximal self-linking number transverse links when this bound is
achieved. We say a transverse link L has a maximal self-linking number if there is some
Seifert surface Σ for L such that slΣ(L) = −χ(Σ).

Theorem 4.1. Suppose that L is a fibered link in S3 that supports the standard tight contact
structure. There is a unique transverse link, up to transverse isotopy, in the topological
knot type of L with self-linking number −χ(L), where χ(L) denotes the maximal Euler
characteristic of surfaces with boundary L.

Moreover, suppose L is a fibered link in a 3-manifold M and the fibration (L, π,Σ) sup-
ports a tight contact structure with Giroux torsion equal to zero. Any two transverse repre-
sentatives of L with sl = −χ(Σ) are contactomorphic.

Remark 1.5. It may be of interest to note that the contactomorphism in Theorem 4.1
is topologically trivial and induced by an isotopy. For a pair of maximal fibered links,
(L0,Σ) and (L1,Σ), there is an isotopy of pairs (ξt, Lt), for 0 ≤ t ≤ 1, where ξt is a contact
structure, Lt is a transverse link in ξt, and ξ0 = ξ = ξ1. In other words, once we allow
the contact structure to deform, the two links are transversely isotopic. In particular, such
pairs would be all almost indistinguishable by a transverse link invariant.

Remark 1.6. Notice that if L is a fibered link in a homology sphere M and (L,Σ) supports
a tight contact structure with Giroux torsion equal to zero, then the self-linking numbers
of the components of a transverse representative of L with maximal self-linking number
are fixed. For a general link, one can have several different transverse realizations of the
link with maximal total self-linking number, but with different self-linking numbers on the
components. The last theorem says this cannot happen in the situation we are considering.
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Remark 1.7. For overtwisted manifolds, there is no bound on the Giroux torsion. In this
case, there is a statement completely contrary to the uniqueness of the Theorem 4.1. In
forthcoming work it will be shown that if (L,Σ) supports an overtwisted contact structure,
ξ, then there are infinitely many non-isotopic transverse knots with self-linking number
−χ(Σ) in ξ, each having a distinct contact structure on the complement.

One might hope that knot types of fibered knots in S3 that support the standard tight
contact structure (or perhaps any a contact manifold with zero Giroux torsion) might be
transversely simple (that is transverse knots in this knot type are determined by their self-
linking number). This is not the case. For example, the (2, 3)-cable of the (2, 3)-torus
knot is a fibered knot that supports the tight contact structure on S3, but in [11] it was
shown not to be transversely simple. Nonetheless, Theorem 4.1 gives a starting point for
the classification of such knots. According to the strategy laid out in [7], to classify knots in
the knot types under consideration one would only need to show that any transverse knot in
the topological knot type with non-maximal self-linking number can be destabilized. While
this is the case for some such knots (e.g., positive torus knots), it is not true for others (e.g.,
the (2, 3)-cable of the (2, 3)-torus knot). Thus, to give a classification for a given knot type
one needs to understand the destabilization issue: determine those transverse knots that
destabilize and classify those that do not. In any event, Theorem 4.1 gives a rather good
start to the classification of transverse knots in several cases.

1.3. Braid theory and quasi-positivity. We note the following simple corollary of The-
orem 4.1 which we state as a separate results as it is the main conduit through which we
import contact geometric information into braid theory.

Corollary 5.3. Let LB be the closure of a positive braid B in S3. Then there is a unique,
up to transverse isotopy, transverse link in the standard tight contact structure on S3 with
the knot type of LB and self-linking number equal to −χ(L) = −n + a, where n is the braid
index of B and a is the length of the word expressing B in terms of the standard generators
of the braid group.

More generally, if L is a fibered strongly quasi-positive link in S3 bounding the quasi-
positive Seifert surface Σ then there is a unique, up to transverse isotopy, transverse link in
the standard tight contact structure on S3 with the knot type of L and self-linking number
equal to −χ(Σ).

Recall a link is called strongly quasi-positive if it can be represented in some braid group
Bn as a word of the form Πm

k=1σik,jk
where σ1, . . . , σn−1 are the standard generators of the

braid group and

σi,j = (σi . . . σj−2)σj−1(σi . . . σj−2)
−1.

For a thorough discussion of strongly quasi-positive links we refer to [29], but we note that
positive knots — that is knots with projections having only positive crossings — are strongly
quasi-positive. So this corollary applies to fibered positive knots. While the appearance
of strongly quasi-positive links may appear mysterious in this corollary, it is really quite
natural given Corollary 1.2 above and Hedden’s observation [16] that that a fibered link
in S3 supports the standard tight contact structure on S3 if and only if it is strongly
quasi-positive.
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We now explore some consequence of our theorems above to problems in braid theory.
Specifically to problems concerning positive braids and more generally quasi-positive braids.
Recall a braid is quasi-positive if is a product of conjugates of the standard generators of
the braid group and a link is quasi-positive if it can be represented by a quasi-positive
braid. Clearly strongly quasi-positive links are quasi-positive. By way of motivation for
this definition we note that quasi-positive links are precisely those that are formed by
transversely intersecting the unit 3-sphere in C

2 with a complex analytic plane curve [2, 27].
Moreover Orevkov has an approach to Hilbert’s sixteenth problem concerning real algebraic
curves using quasi-positivity [24]. In [26] two fundamental questions concerning quasi-
positive links were asked. They were

Given two quasi-positive braids representing a fixed link, are they related by positive
Markov moves (and braid conjugation)?

and
Given a quasi-positive link, is any minimal braid index braid representative of the
link quasi-positive?

We have some partial answers below, but first we need an observation. It is well know,
see [1], that the closure of a braid B gives a transverse link in the standard tight contact
structure on S3 and moreover its self-linking number is a(B) − n(b) where a(B) is the
algebraic length of B and n(B) is the braid index of B. Thus the Bennequin inequality can
be written

a(B) ≤ n(B) − χ(LB)

where LB is the link obtained as the closure of B and χ(LB) is maximal Euler characteristic
of a Seifert surface for L. With this in mind we have the following criterion for a braid to
be quasi-positive.

Theorem 5.4. Let L be a fibered strongly quasi-positive link and B any braid representing
L. Then a(B) = n(B) − χ(L) if and only if B is quasi-positive.

Using this theorem we can show the following.

Theorem 5.5. Let L be a fibered strongly quasi-positive link. Any two quasi-positive braids
representing L are related by positive Markov moves and braid conjugation.

We point out an interesting special case of this theorem in the following immediate
corollary.

Corollary 1.8. Any two positive braids representing a link L are related by positive Markov
moves and braid isotopy. �

To state our result for minimal braid index representatives of (strongly) quasi-positive
knots we recall a conjecture of K. Kawamuro, [21]. Given a link type L with braid index
b > 0 is there an integer w such that any braid B whose closure is in the link type L satisfies

b + |a(B) − w| ≤ n(B).

We call this the Kawamuro Braid Geography Conjecture. One easily sees that this gener-
alizes the Jones conjecture that there is a unique value for a(B) among braids with braid
index b realizing the link type L. Moreover, one may check that this conjecture is true for
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any knot type for which the Morton-Franks-Williams (MFW) inequality is sharp. Recall
the MFW-inequality says that for a link type L we have

a(B) − n(B) + 1 ≤ d−(L) ≤ d+(L) ≤ a(B) + n(B) − 1

where B is any braid whose closure is in the link type L and d+(L) (d−(L)) is the maximal
(minimal) degree in the a-variable of the two variable Jones polynomial. One says the
inequality is sharp if there is a fixed braid for which the first and last inequalities are
equalities. Sharpness is known for closures of positive braids that contain a full right handed
twist [13] and for alternating fibered links [23]. It is known that the MFW-inequality is
not always sharp, but it is still unknown if the Braid Geography Conjecture is true or
not; however, in [21] it was shown that the class of links for which the Braid Geography
Conjecture is true is closed under cabling and connected sums.

Theorem 5.6. If L is a fibered strongly quasi-positive knot type satisfying the Braid Geog-
raphy Conjecture then any braid with minimal braid index representing B is quasi-positive.

In particular, if L is the closure of a positive braid with a full twist (or a sufficiently
positive cable or connected sum of such knots), then any braid of minimal index representing
L is quasi-positive.

1.4. Transverse classification of contact structures. As a last application of our main
theorems we note that transverse knots classify contact structures. More specifically if K
denotes a topological knot type in a manifold M then we denote by T ξ(K) the set of knots
in M that are isotopic to K and transverse to ξ. Moreover we set

T ξ
n (K) = {T ∈ T ξ(K) : sl(T ) = n}

for any integer n. Here we could take T ξ(K) to be transverse knots up to contactomor-
phism or up to transverse isotopy, in this paper we take them up to contactomorphism.
(Notice that if K bounds non-homologous Seifert surfaces then we should consider pairs of
transverse knots and Seifert surfaces.) We say a collection of knots C = {Kα}α∈A in M,
indexed by some set A, transversely classifies contact structures on M up to contactomor-
phism, respectively isotopy, if two contact structures ξ1 and ξ2 on M are contactomorphic,

respectively isotopic, if and only if |T ξ1
n (Kα)| = |T ξ2

n (Kα)| for all α ∈ A and n ∈ Z.

Theorem 6.1. For a given manifold M the collection

Cfpa = {fibered knots in M with pseudo-Anosov monodromy}

transversely classifies contact structures on M up to isotopy.

This theorem makes precise the notion that the knot theory a contact structure supports
determines the contact structure. One can make similar definitions for a collection of knots
to Legendrian classifying contact structures, but it is unclear if a similar theorem holds in
this case. It is also an interesting open question to find smaller collections of knots that
classify contact structures on certain manifolds. Once can also consider collections of knots
that only classify tight contact structures. For example one may easily verify that if C
consists of three linear knots in T 3 that span the first homology of T 3 then C Legendrian
classifies tight contact structures up to isotopy.
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2. Preliminary notions and notations.

Throughout the paper, we will use standard results concerning transverse and Legendrian
links, characteristic foliations and convex surfaces. Instead of recalling all the relevant,
and by now well-known, theorems and definitions here, we refer the reader to the paper
Sections 2 and 3 of [10] where all the necessary background can be found. (For a more
thorough discussion also see the papers [9, 15, 18].) We now recall the less standard facts
and sketch some of the proofs which are mostly minor modifications of the ones given in
the above references.

Lemma 2.1. Let Σ be an oriented surface whose boundary is positively transverse to ξ. If
the characteristic foliation on Σ is Morse-Smale, then there is a contact vector field v that
is transverse to Σ and induces dividing curves on Σ that are disjoint from ∂Σ.

Many results concerning closed convex surfaces and convex surfaces with Legendrian
boundary do not hold for convex surfaces with transverse boundary. Nonetheless, it still
makes sense to define a convex surface with transverse boundary, as we do here, and several
well known results have weaker analogs in this situation. The proof of this lemma is a
simple modification of the corresponding proof for closed surfaces found in [15]. We sketch
a few key points that we will need below.

Proof. We define the surface Σ′
+ to be a small neighborhood of the positive elliptic singu-

larities and positive periodic orbits, together with a small neighborhood about the stable
manifolds of the positive hyperbolic points. Similarly, we can define Σ′

− using a small neigh-
borhood of the negative elliptic singularities, periodic orbits, and boundary, together with
neighborhoods of the unstable manifolds of the negative hyperbolic points. It is easy to
make these surfaces disjoint and have their boundaries transverse to the characteristic foli-
ation. The surface Σ \ (Σ′

+ ∪Σ′
−) is a disjoint union of annuli. If we choose a simple closed

curve in the center of each annulus, the resulting multicurve will divide the characteristic
foliation in the sense of [15]. Thus we may construct a contact vector field transverse to Σ
with the given dividing set which is clearly disjoint from the boundary. �

We also mention that Giroux’s theorem allowing for the realization of characteristic foli-
ations respecting dividing curves holds in a weaker form for convex surfaces with transverse
boundary. In particular we have the following result.

Theorem 2.2. Let Σ be an oriented convex surface with boundary positively transverse to
ξ whose dividing set Γ is disjoint from the boundary. Let F be a singular foliation that
agrees with the characteristic foliation of Σ on the components of Σ \ Γ containing ∂Σ and
is divided by Γ. There is a smooth isotopy Σt, fixed near the boundary of Σ, through convex
surfaces with transverse boundary, such that the characteristic foliation on Σ1 is F . �

Here again, the proof of this theorem is an obvious generalization of the one given in [15]
for closed surfaces.
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Lemma 2.3. Suppose Σ is an oriented convex surface with boundary positively transverse
to ξ whose dividing curves Γ are disjoint from the boundary. Then

sl(∂Σ) = −
(

χ(Σ+) − χ(Σ−)
)

,

where Σ± is the union of components of Σ \ Γ with ±-divergence.

Proof. We can assume that the characteristic foliation on Σ is Morse-Smale. Recall from
[1] that

(1) sl(∂Σ) = −
(

(e+ − h+) − (e− − h−)
)

,

where e± is the number of positive/negative elliptic points in the characteristic foliation
of Σ, and h± is the number of positive/negative hyperbolic points. Further recall that
Σ+ is homotopic to the surface obtained by taking the union of a small neighborhood
of the positive elliptic points and repelling periodic orbits, and a small neighborhood of
the unstable manifolds of the positive hyperbolic points. One may now easily check that
χ(Σ+) = e+ − h+ and, similarly, χ(Σ−) = e− − h−. �

Lemma 2.4 (Torisu 2000, [32]). The contact structure ξ on M is supported by the open
book decomposition (B,π) if and only if for every two pages of the open book that form a
smooth surface Σ′, the contact structure can be isotoped so that Σ′ is convex with dividing
set B ⊂ Σ′ and ξ is tight when restricted to the components of M \ Σ′.

Proof. It is well known that Σ′ is a Heegaard surface for M. This can be seen by noticing
that if P = Σ × [−ǫ, ǫ] is one of the components of M \ Σ′, and c1, . . . , ck is a collection
of curves that cut Σ into a disk, then D1, . . . ,Dk is a collection of disks in P that cut P
into a ball, where Di = ci × [−ǫ, ǫ]. In addition, Si = (∂Di \ ci × {−ǫ}) ∪ (φ(ci) × {−ǫ})
bounds a disk D′

i in M \ P, where φ is the monodromy of the fibration of M \ B. All the
disks D′

i are disjoint and they cut M \ P into a ball. The two components of M \ Σ′ are
thus handlebodies.

One easily checks that under the hypothesis of the lemma, the simple closed curves ∂Di

and ∂D′
i each intersect the dividing set of Σ′ twice. Thus, we may Legendrian realize these

curves and make the disks convex. Moreover, as each disk has a single dividing curve
there is a unique configuration for the dividing set on these disks. Since contact structure is
determined in a neighborhood of Σ′∪(∪Di)∪(∪D′

i) by the dividing set, the handlebodies cut
along these disks are 3-balls, and we are assuming the contact structure on the handlebodies
is tight, the contact structure on the handlebodies is unique. There can thus be only one
tight contact structure satisfying the hypothesis of the theorem. One easily checks that the
contact structure supported by the open book decomposition satisfies the hypothesis. �

Lemma 2.5 (Honda, Kazez and Matic 2005, [20]). Suppose Σ is a convex surface containing
a disk D such that D ∩ ΓΣ is as shown in Figure 1. Also suppose δ and δ′ are as shown in
the figure. If there is a bypass for Σ attached along δ from the front, then there is a bypass
for Σ attached along δ′ from the front. �

We briefly recall that for a torus T , embedded in a contact manifold (M, ξ), the Giroux
torsion of T is the largest integer n such that there is a contact embedding of T 2 × [0, 1]
with the contact structure

ξn = ker(sin(2πnz) dx + cos(2πnz) dy)



FIBERED TRANSVERSE KNOTS 9

δδ′

Figure 1. If there is a bypass for δ then there is one for δ′ too.

with T 2×{pt} isotopic to T. The Giroux torsion of ξ is the maximum of the Giroux torsion
over all embedded tori in M. (It need not be finite.)

We end this preliminary section with a simple lemma concerning curves on a surface.

Lemma 2.6. Let Γ and Γ′ be two properly embedded multi-curves without homotopically
trivial components on a surface Σ 6= S2. If γ · Γ ≤ γ · Γ′ for all simple closed curves
and properly embedded arcs γ in Σ then, after isotopy, Γ ⊂ Γ′. (Here · refers to geometric
intersection number.)

Proof. This proof, in the case where ∂Σ = ∅, originally appeared in [19, Lemma 4.3] where
it was attributed to W. Kazez. We begin by representing Γ as a set of non-isotopic simple
closed curves γi with multiplicities mi, so Γ is the union of mi disjoint copies of the γi. We
can similarly represent Γ′ as curves γ′

i with multiplicities m′
i. If (∪γi) · (∪γ′

j) 6= ∅ then there

is some i and j such that γi · γ
′
j 6= ∅. In this case take γ = γ′

j to contradict the hypothesis

of the lemma. Thus we are left to consider the case when the γi and the γ′
j are disjoint.

In this case, one can extend (∪γi) ∪ (∪γ′
j), where parallel curves are identified, to a set of

curves that cut Σ into a collection of pairs-of-pants (that is unless Σ is a torus or annulus,
in which case the lemma is clear). It is now easy to verify that intersections with various
curves and properly embedded arcs determine the multiplicities on the curves associated to
a pair-of-pants decomposition. �

Remark 2.7. A careful analysis of how to determine the multiplicities on the curves in a
pair-of-pants decomposition of a surface shows that if one only uses simple closed curves
then the multi-curve would be determined except for its multiplicities on the curves parallel
to a boundary component of Σ.

3. Fibered links and contact structures.

The goal of this section is to prove our main technical theorem.

Theorem 3.1. Let (L,Σ) be a fibered transverse link in a contact 3-manifold (M, ξ) and
assume that ξ is tight when restricted to M \ L. If slξ(L,Σ) = −χ(Σ), then either

(1) ξ is supported by (L,Σ) or
(2) ξ is obtained from ξ(L,Σ) by adding Giroux torsion along tori which are incompressible

in the complement of L.

In essence, we determine all possible tight complements of a maximal self-linking number
fibered transverse link L. Indeed, we show they all arise from the contact structure ξ(L,Σ)

supported by L by adding Giroux torsion. We begin with some conventions.



10 JOHN B. ETNYRE AND JEREMY VAN HORN-MORRIS

Let L be a transverse, fibered link and Σ be a convex fiber surface for L with dividing
set Γ disjoint from ∂Σ. We assume that the characteristic foliation F of Σ is Morse-Smale
and has no leaf connecting a negative singularity to the boundary of Σ. Since Σ is convex,
there is an I-invariant neighborhood Σ× [0, 1] of Σ. After rounding corners, we can further
assume this neighborhood to have a convex boundary DΣ, the double of Σ, whose dividing
set is given by Γ ∪ Γ̄ ∪ C. Here, Γ is the dividing set of Σ as it sits on Σ × {1}, Γ̄ is the
dividing set of Σ sitting on Σ× {0}, and C a multi-curve isotopic to L sitting in the region
(∂Σ) × [0, 1] as the curves (∂Σ) × {1

2}. One may easily see this by considering the proof of
Lemma 2.1. (In particular, the convexity and dividing curves on DΣ are deduced from the
characteristic foliation.) We may think of L as being any transverse curve in (∂Σ) × [0, 1]
(as they are all transversely isotopic). In particular, we may assume L is C, the boundary
of Σ × {1}, or Σ × {0} and will use whichever realization of L is most convenient for our
arguments without further comment.

Since DΣ is a Heegaard surface for M it divides M into two handlebodies H1 and H2.
Each handlebody is diffeomorphic to Σ× I, and we may choose the handlebodies such that
the contact structure is I-invariant on H2. On the boundary of H2, the dividing set on DΣ
is as above. Thought of as on the boundary of H1, the dividing set is given by Γ∪C∪φ−1(Γ̄),
where φ is the monodromy of the fibered link.

We point out that if there is a bypass for DΣ with one endpoint on C and contained
entirely in one of DΣ − Σ × {1} or DΣ − Σ × {0}, then we can push Σ across this bypass
while keeping L fixed.

Definition. Let ξ be an oriented contact structure on a closed, oriented manifold M and
(L,Σ) an open book for M . We say ξ and (L,Σ) are quasi-compatible if there exists a
contact vector field for ξ which is everywhere positively transverse to the fibers of the
fibration (M \ L) → S1 and positively tangent to L.

This definition is very close to that of compatibility, save that we have eliminated the
requirement that the vector field be Reeb. It is this loosening that allows for twisting along
Σ and gives the following lemma. We first need some conventions for adding half-twists.
Let T be an embedded, pre-Lagrangian torus in a contact manifold (M, ξ). Identify T with
R

2/Z
2 so that the the foliation on T has slope 0. To add n half-twists along T , we first cut

M along T, then glue in the contact manifold (T 2 × [0, n], ker(sin πt dx + cos πt dy)). Note
that if T is a non-separating torus and n is odd, then this will result in a non-orientable
plane field. Adding two half-twists is equivalent to adding a full-twist, that is, adding
Giroux torsion.

Lemma 3.2. Suppose (M, ξ) is a contact manifold and (L,Σ) is a fibered link, positively
transverse to ξ. Assume that Σ can be made convex with dividing set Γ disjoint from ∂Σ and
having no component bounding a disk. Moreover, assume that the characteristic foliation F
of Σ is Morse-Smale and has no leaf connecting a negative singularity to the boundary of Σ.
Let H1 and H2 be the two handlebody components of M \DΣ, each of which is diffeomorphic
to Σ × [0, 1]. The following are equivalent:

• (L,Σ) is quasi-compatible with ξ.
• ξ restricted to Hi is an I-invariant contact structure i = 1, 2.
• (M, ξ) cut along Σ is an I-invariant contact structure.
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• There is a set of arcs α1, . . . , αn in Σ, cutting Σ into a disk, such that the corre-
sponding convex product disks in both H1 and H2 have dividing curves consisting of
parallel arcs running from Σ × {0} to Σ × {1}.

If (L,Σ) is quasi-compatible with ξ, then the monodromy φ of Σ satisfies φ(Γ) = Γ. Let
γ1, . . . , γk be disjoint non-homotopic curves on Σ and n1, . . . , nk be positive integers such
that Γ is the union of ni copies of γi, i = 1, . . . , k. The k curves γi will fall into some
number of orbit classes, Oj = {γ1j

, . . . , γkj
}, under φ. Writing M \ L as Σ × [0, 1]/ ∼φ,

where (x, 1) ∼φ (φ(x), 0), the γi × [0, 1] in an orbit class Oj give an incompressible torus
Tj in M \ L. Then ξ is obtained from ξ(L,Σ) by adding ni half-twists along the torus Ti

corresponding to Oi.

Proof. Once one observes the dividing set on DΣ is as described above, the only non-obvious
statement in the first paragraph is a slight generalization of the proof by Torisu. Since ξ
is given by gluing together two I-invariant neighborhoods, it must be tight on M \ L and
uniquely determined by Γ ∪ C. By building a model quasi-compatible contact structure,
just as in the Thurston-Winkelnkemper construction but using a fiber with dividing set
Γ, the proof is complete. We construct a model contact structure, quasi-compatible with
(L,Σ) and having the desired dividing set on Σ as follows. Begin with a contact structure ξ
compatible with (L,Σ). For suitable choices in the Thurston-Winkelnkemper construction,
the tori Ti are pre-Lagrangian. The proof is finished by observing that the Reeb vector field
on ξ(L,Σ) that exhibits compatibility remains a contact vector field after adding half-twists
along tori that are transverse to the open book (L,Σ). Thus, after adding half-torsion of
order ni along tori Ti, the surface Σ is convex and has dividing set Γ∪C. This construction
also clearly proves the second part of the lemma. �

Proof of Theorem 3.1. In set-up, we assume that (L,Σ) is a fibered link in (M, ξ), that L
is transverse to ξ with slξ(L,Σ) = −χ(Σ), and that ξ|M\L is tight. We begin by isotoping
Σ so that its characteristic foliation is Morse-Smale. As mentioned above, working with
convex surfaces with transverse boundary can be tricky, so before we construct the contact
vector field transverse to Σ, we first adjust the characteristic foliation on Σ so that ∂Σ is
“protected” from dividing curves. Specifically, we prove the following.

Lemma 3.3. All negative hyperbolic singularities in the characteristic foliation of Σ can be
cancelled by a C0-small isotopy supported away from ∂Σ.

Proof. We begin by introducing positive elliptic/hyperbolic pairs of singularities along pos-
itive periodic orbits in the characteristic foliation of Σ so we can assume there are no such
periodic orbits. Notice that since sl(K) = −χ(Σ) we can use Formula 1 to conclude that
the number of negative elliptic points in the characteristic foliation of Σ is equal to the
number of negative hyperbolic points: e− = h−. If p is a negative elliptic point, then let Bp

be the closure of all points in Σ that lie on a leaf that limits to p. This is called the basin
of p. The interior of the basin is clearly an embedded open disk in Σ. Moreover, Bp is an
immersed disk in Σ possibly with double points along its boundary, see [5, 8]. If this basin
is an embedded disk, then it is easy to see its boundary is made up of positive elliptic points
and the stable manifolds of hyperbolic points. If all the hyperbolic points are positive then
we can cancel them with the elliptic points to create an overtwisted disk. Thus there must
be a negative elliptic point on the boundary of the basin with which we can cancel p. If Bp
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is not embedded then there must still be a negative hyperbolic point on ∂Bp. See [5, 8].
Thus we can always eliminate p. In particular, we can eliminate all the negative elliptic
points without moving ∂Σ. Thus, since we must have e− = h−, we have also eliminated all
the negative hyperbolic points as well. �

Assuming there are no negative hyperbolic singularities, we construct a contact vector
field transverse to Σ as in the proof of Lemma 2.1 sketched above. We see that there will
be a dividing curve parallel to each boundary component and that the annulus it cobounds
with the boundary has characteristic foliation consisting of arcs running from one boundary
component to the other. Denote these dividing curves by C, and let Γ denote the remainder
of the dividing set on Σ. Thus by Theorem 2.2, we can realize any characteristic foliation
on Σ that is divided by our given dividing curves and is the given foliation on the annuli
cobounded by C and ∂Σ. Since ξ is assumed to be tight this implies that no dividing curve
on Σ bounds a disk. Thus the components of Σ± have non-positive Euler characteristic.
From Lemma 2.3 we conclude that χ(Σ−) = 0 and that Σ− is a union of annuli. (Notice
that if we did not have the dividing curves parallel to the boundary, we could not use the
Legendrian realization principle and conclude that the components of Σ± had non-positive
Euler characteristic. Thus we say these dividing curves “protect” the boundary.) Now we
can transversely isotop L past C to create a new convex surface, with boundary L, having
dividing set Γ and characteristic foliation as considered in the first part of this section.

From the proof of Lemma 3.2 and the set-up above, it is clear that Theorem 3.1 is
equivalent to showing that L has maximal self-linking number if and only if L is quasi-
compatible with ξ. In order to prove L is quasi-compatible with ξ, we need two lemmas
which are proved below.

Lemma 3.4. If φ is the monodromy map of the fibration of M \L and φ(Γ) is not isotopic
to Γ, then we may find a new convex fiber surface Σ′ for L, isotopic to Σ, with one of the
following being true:

• Σ′ has fewer dividing curves than Σ, or
• Σ′ has the same number of dividing curves but fewer null-homologous components.

Lemma 3.5. If φ(Γ) is isotopic to Γ, then either ξ is quasi-compatible with (L,Σ) or we
may find a bypass for Σ that either reduces the number of dividing curves or reduces the
number of null-homologous components of Γ.

We apply Lemmas 3.4 and 3.5 to simplify the dividing set on Σ, noting that at every
stage we either reduce the number of dividing curves or the number of null-homologous
components, until we are left with either an (L,Σ) which is quasi-compatible with ξ or a
convex surface Σ with Γ = ∅ which, by Torisu’s Lemma 2.4, implies that (L,Σ) is compatible
with ξ. The theorem now clearly follows from Lemma 3.2. �

Proof of Lemma 3.4. Since φ(Γ) is not isotopic to Γ, we apply Lemma 2.6 and Remark 2.7
to find a simple closed curve α on Σ that hits Γ a different number of times than φ(Γ).
Legendrian realize α on Σ × {±1} and look at a convex annulus traced out by α. (Note, if
α doesn’t intersect one of Γ or φ(Γ) we may need to use the super Legendrian realization
trick where one first realizes a Legendrian curve elsewhere on the surface, then creates two
dividing curves parallel to it by folding the surface. See [19]. If that is the case, the bypass
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we find will be on the other copy of Σ and so folding will not affect the number or pattern
of dividing curves on our fiber surface.) By the Imbalance Principle [18, Proposition 3.17],
there exists a bypass for DΣ along (Σ × {i}), for either i = 0, or i = 1. We will show
that we can now either reduce the number of dividing curves or reduce the number of
null-homologous components of Γ. Call the bypass arc B.

The case we would like to reduce to is when the bypass B involves three different curves.
In this case, pushing Σ across this bypass will reduce the number of dividing curves, thus
finishing the proof.

When B involves only two different curves (note by choosing the original curve α to
intersect Γ minimally, B must involve either two or three dividing curves), we use Lemma 2.5
to find a bypass that either reduces |Γ|, or preserves |Γ| but decreases the number of null-
homologous components of Γ. Since the two curves involved must be parallel (recall that
Σ− consists entirely of annuli), they cobound an annulus A. Label the isotopy class of the
curves by b1. Then A together with a small neighborhood of B is either a punctured torus
or a pair of pants.

Case 1: A ∪ νB is a torus. Applying Lemma 2.5, we may find a bypass along any arc
that intersects A as B does and then has one of its end points on some other dividing curve.
Thus we may find a different bypass involving a third component of Γ ∪ C elsewhere in Σ.
Pushing Σ across this bypass reduces the number of dividing curves.

For the remaining cases, A∪νB is a pair of pants. As long as b1 is homologically essential
in Σ, we can find a bypass involving a third component of the dividing set. If not, we can
only ensure that there is a bypass so that after isotoping Σ across it, the two dividing curves
are non-separating.

Case 2: b1 is homologically essential. The pair of pants P has three boundary compo-
nents: labelled b1, b2 and b3 as follows: the dividing curves on A are parallel to b1, and
become parallel to b2 after pushing Σ across the bypass. The remaining boundary compo-
nent is b3. By Lemma 2.5, for any arc B′ beginning on b1, exiting b3 and ending on another
dividing curve, there is also a bypass for Σ along B′. There are three possibilities: (a) b3 is
adjacent to the boundary of Σ, (b) b3 and b1 cobound a subsurface C13 or (c) b3 bounds a
surface C3. In the first case, we may find a bypass exiting b3 and involving a third curve,
thus reducing |Γ|.

In case (b), Lemma 2.5 gives us a new bypass starting on b1, exiting b3 and possibly
returning to b1. This bypass either involves three dividing curves or A∪ νB′ is a punctured
torus and we are in Case 1. If b3 bounds a surface C3, we are in case (c) and we see that
C3 cannot be a disk by our choice of α above. Thus we can find a new bypass along an arc
B′ that starts on b1, intersects C3 in a non-separating curve and then returns to b1. With
respect to this bypass, b′3 is now adjacent to b′2 and hence some component of the boundary
of Σ, as in case (a) above.

Case 3: b1 bounds a subsurface of Σ. If b2 is homologically essential, then pushing Σ
across B will reduce the number of null-homologous components of Γ. If not, then b3 is
either adjacent to ∂Σ or it also separates a subsurface C3 off of Σ. The first case can be
handle as in Case 2(a) above. The second case gives a configuration similar to Case 2(c)
above and allows us to either reduce |Γ| or reduce to the case when b2 is homologically
essential. �
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Proof of Lemma 3.5. First observe that ξ is quasi-compatible with ξ(L,Σ) if and only if there
is a convex disk decomposition of M \ DΣ where the dividing set of each disk is a set of
parallel arcs that run from Σ×{0} to Σ×{1}. Assume then, that ξ is not quasi-compatible
with (L,Σ) and hence there is some bypass for Σ. Just as in Lemma 3.4, given a bypass,
we can reduce the number of dividing curves except possibly when it involves only a pair of
null-homologous curves. Again, in this case, we can find a bypass that reduces the number
of null-homologous components. �

4. Classification of Bennequin bound realizing fibered links

The goal of this section is to classify the maximum self-lining number fibered links in S3

that support the tight contact structure.

Theorem 4.1. Suppose that L is a fibered link in S3 that supports the standard tight contact
structure. There is a unique transverse link, up to transverse isotopy, in the topological
knot type of L with self-linking number −χ(L), where χ(L) denotes the maximal Euler
characteristic of surfaces with boundary L.

Moreover, suppose L is a fibered link in a 3-manifold M and the fibration (L, π,Σ) sup-
ports a tight contact structure with Giroux torsion equal to zero. Any two transverse repre-
sentatives of L with sl = −χ(Σ) are contactomorphic.

Proof. We begin by proving the second statement in the theorem. To this end let L1 and
L2 be two transverse links in (M, ξ) realizing the link type L and satisfying slξ(L1,Σ) =
slξ(L2,Σ) = −χ(Σ). By Theorem 3.1, ξ is quasi-compatible with both L1 and L2. Since
Li has maximal self-linking number, the dividing set on Σ must consist of a single copy
of the boundary in addition to some number of pairs of parallel curves. By assumption,
however, ξ has trivial Giroux torsion and so the dividing set on any quasi-compatible convex
fiber surface must be a single copy of the boundary. Equivalently, ξ is compatible (in the
strict sense) with both open books (Li,Σ) i = 1, 2. Since the open book decompositions
are isotopic, there exists an isotopy of contact structures taking L1 to L2, which, by Gray’s
theorem, induces a contactomorphism of ξ that takes L1 to L2.

If (M, ξ) was the tight contact structure on the sphere then any such isotopy can be made
into a isotopy that preserves the contact structure, directly implying that L1 and L2 are
transversely isotopic. See [9]. �

5. Braid representatives of links

The goal of this section is to prove the results 5.3 through 5.6. To this end we begin by
recalling that the closure of any braid represents a transverse knot in the standard tight
contact structure on S3. In addition we know the following.

The goal of this section is to prove the results 5.4 through 5.6.

Theorem 5.1 (Orevkov Shevchishin 2003, [25]; Wrinkle 2002, [33]). Two braids represent-
ing the same transverse link are related by positive Markov moves and conjugation in the
braid group. �

We also need the following result.
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Theorem 5.2 (Orevkov 2000, [26]). A braid B is quasi-positive if and only if any positive
stabilization is quasi-positive. �

The following corollary is a reformulation of Theorem 4.1 in terms of braids and is the
main new technical tool that is used in proving the braid theory results below.

Corollary 5.3. Let LB be the closure of a positive braid B in S3. Then there is a unique,
up to transverse isotopy, transverse link in the standard tight contact structure on S3 with
the knot type of LB and self-linking number equal to −χ(L) = −n + a, where n is the braid
index of B and a is the length of the word expressing B in terms of the standard generators
of the braid group.

More generally, if L is a fibered strongly quasi-positive link in S3 bounding the quasi-
positive Seifert surface Σ then there is a unique, up to transverse isotopy, transverse link in
the standard tight contact structure on S3 with the knot type of L and self-linking number
equal to −χ(Σ).

Proof. It is well-known that the closure of a positive braid is fibered [30]. In addition
Bennequin [1] showed that any closed braid naturally gives a transverse knot with self-
linking equal to minus the braid index plus the algebraic length of the word representing
the braid. The result now follows from Theorem 4.1. Bennequin’s formula for the self-
linking number of a closed braid shows that a strongly quasi-positive knot has a transverse
representative with self-linking number equal to minus the Euler characteristic of its quasi-
positive surface. �

We can now give our characterization of quasi-positivity of a braid representing a fibered
strongly quasi-positive link type.

Theorem 5.4. Let L be a fibered strongly quasi-positive link and B any braid representing
L. Then a(B) = n(B) − χ(L) if and only if B is quasi-positive.

Proof. Let B represent a fibered strongly quasi-positive link L. If a(B) = n(B)−χ(L) then
the transverse link TB given as the closure of B has self-linking number equal to −χ(L), so
by Corollary 5.3, TB is transversely isotopic to the closure of a strongly quasi-positive braid.
Therefore B becomes strongly quasi-positive by a sequence of positive Markov moves (and
braid conjugations) and hence B is quasi-positive by Theorem 5.2.

For the other implication assume that B is a quasi-positive braid and let TB be its closure.
We know that sl(TB) = n(B)−a(B) and the algebraic length a(B) of B is just the number
of generators σi,j used to represent B. Suppose that

a(B) < n(B) − χ(LB).

Recall that the link LB that B represents is also the closure of a strongly quasi-positive braid
B′. We know that we can construct a Seifert surface for L of genus g′ = 1

2(1−n(B′)+a(B′))
and that this surface is of minimal possible genus. It is also the minimal slice genus surface
(see[28]). Since L supports the standard tight contact structure on S3 we know that

a(B′) = n(B′) − χ(LB).

By positively (braid) stabilizing either B or B′ as necessary we can assume that n(B) =
n(B′) so that we see a(B) < a(B′).
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By writing B as the product of a(B) conjugates of positive generators in the braid group
it is easy to construct a ribbon immersed surface in S3 with boundary LB (see, for example,
[29]) and hence a slice surface in B4, of genus g = 1

2(1 − n(B) + a(B)). Notice that g < g′

contradicting the minimality of the slice surface for the closure of B′. Thus we must have
a(B) = n(B) − χ(LB). �

We are ready to prove the relation between quasi-positive representatives of strongly
quasi-positive fibered links. Using this theorem we can show the following.

Theorem 5.5. Let L be a fibered strongly quasi-positive link. Any two quasi-positive braids
representing L are related by positive Markov moves and braid conjugation.

Proof. Let B1 and B2 be two quasi-positive braids whose closure is L, a fibered link that is
also the closure of a strongly quasi-positive braid B. From Theorem 5.4 we know that the
transverse links TB1

, TB2
and TB obtained as the closures of these braids all have maximal

self-linking number and hence by Corollary 5.3 are transversely isotopic. Thus Theorem 5.1
finishes our proof. �

Lastly we prove our result concerning minimal braid representatives.

Theorem 5.6. If L is a fibered strongly quasi-positive knot type satisfying the Braid Geog-
raphy Conjecture then any braid with minimal braid index representing B is quasi-positive.

In particular, if L is the closure of a positive braid with a full twist (or a sufficiently
positive cable or connected sum of such knots), then any braid of minimal index representing
L is quasi-positive.

Proof. Let B be a strongly quasi-positive braid and let KB be its closure. If the knot
type KB satisfies the Braid Geography Conjecture then let B′ be a minimal braid index
braid representing KB . Set n = n(B′) and w = a(B′). We know from the conjecture that
n(B) = n + x + y and a(B) = w + x− y for some non-negative integers x and y. Moreover,

sl(KB′) = −n(B) + a(B) = −n + w − 2y = sl(KB) − 2y

and since sl(KB′) is the maximal possible self-linking number for transverse knots in the
knot type KB we see that sl(KB) = sl(KB′). Hence KB and KB′ are transversally isotopic
by Corollary 5.3 and related by positive Markov moves by Theorem 5.1. We can finally
conclude, using Theorem 5.2, that B′ is quasi-positive. �

6. Knots classifying contact structures

In this section we prove the following theorem that “classifies contact structures in terms
of transverse knots”. (We refer back to the introduction for terminology.)

Theorem 6.1. For a given manifold M the collection

Cfpa = {fibered knots in M with pseudo-Anosov monodromy}

transversely classifies contact structures on M up to isotopy.

We begin by recalling the following theorem.
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Theorem 6.2 (Colin and Honda 2008, [3]). On a closed oriented 3-manifold M, every
oriented, positive contact structure is supported by an open book whose binding is connected,
and whose monodromy is freely homotopic to a pseudo-Anosov homeomorphism. �

Proof of Theorem 6.1. It is clear that if two contact structures ξ1 and ξ2 are isotopic then

|T ξ1
n (K)| = |T ξ2

n (K)| for all K ∈ Cfpa and n ∈ Z. Thus we are left to prove the other
implication.

We first note that from the theorem just stated, every contact structure on M is supported
by an open book with binding in Cfpa. We also notice that given any knot type K in M, a

contact structure ξ on M is overtwisted if and only if |T ξ
n (K)| > 0 for all n ∈ Z. Thus we

can distinguish tight from overtwisted contact structures on M using Cfpa.

For the next two possibilities, let ξ1 and ξ2 be two contact structures which |T ξ1
n (K)| =

|T ξ2
n (K)| for all K ∈ Cfpa and n ∈ Z. We will show that ξ1 and ξ2 must be isotopic.
For the first case, assume that ξ1 and ξ2 are both tight contact structures on M. Let

B ∈ Cfpa be the binding of an open book supporting ξ1. Then

|T ξ1
−χ(B)(B)| = 1

from Corollary 1.3 and the fact that transverse knots are classified up to contactomorphism
by the contact structures on their complements. Hence we have

|T ξ2
−χ(B)(B)| = 1.

But, again using Corollary 1.3, we see that B supports ξ2 and hence ξ1 and ξ2 are isotopic.
Finally assume that ξ1 and ξ2 are both overtwisted contact structures on M. Let B ∈ Cfpa

be the binding of an open book supporting ξ1. Thus

|T ξ1
−χ(B)(B)| ≥ 2

since there is at least one transverse knot in T ξ1
−χ(B)(B) with tight complement and another

one with overtwisted complement. Hence

|T ξ2
−χ(B)(B)| ≥ 2.

If all the transverse knots in T ξ2
−χ(B)(B) have overtwisted complement then the next lemma

implies |T ξ2
−χ(B)(B)| = 1. Thus there is a T ∈ T ξ2

−χ(B)(B) with tight complement. Since the

monodromy of B is pseudo-Anosov the only incompressible tori in M −N(B), where N(B)
is a neighborhood of B, are parallel to ∂(M − N(B)). Thus Theorem 3.1 says that either
B supports the contact structure ξ2 or ξ2 is obtained from the contact structure supported
by B, which of course is ξ1, by some number of full Lutz twists along B (this is, of course,
equivalent to adding Giroux torsion along a torus parallel to the boundary of M − N(B)).
However, since full Lutz twists do not change the homotopy type of a plane field Eliashberg’s
classification of overtwisted contact structures [4] implies ξ1 and ξ2 are isotopic. �

Lemma 6.3. Let T and T ′ be topologically isotopic, null-homologous transverse knots in a
contact manifold (M, ξ). If sl(T ) = sl(T ′) then there are neighborhoods N and N ′ of T and
T ′, respectively, such that ξ restricted to N is contactomorphic to ξ restricted to N ′ and
ξ|M−N is homotopic rel boundary as a plane field to ξ|M−N ′ .
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Moreover, if ξ|M−N and ξ|M−N ′ are both overtwisted then they are isotopic rel boundary

as contact structures and there is a contactomorphism of (M, ξ) taking T to T ′.

Proof. The first part of the lemma follows from a relative version of the Pontryagin - Thom
construction and the fact that in the given situation the relative Euler class of ξ restricted
to M − N (or M − N ′) is determined by the Euler class of ξ on M and sl(T ) (or sl(T ′)).
(One needs to be careful about the framed cobordism classification of framed links coming
form the Pontryagin - Thom construction in the relative setting.) For details see [6].

The second part of the lemma follows from Eliashberg’s classification of overtwisted
contact structures [4] which holds in the relative setting. �
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