ERRATUM TO: TIGHT CONTACT STRUCTURES ON LENS SPACES

JOHN B. ETNYRE

The Proof of Lemma 3.6 in [E] is incorrect but all the main theorems in the paper are still correct. Lemma 3.6 can still be proven for the lens spaces $L(p, q)$ when $q=1$ or $p-1$. (We include the proof for these cases at the end of the paper since [Ko] used Lemma 3.6 when $q=p-1$.) However, the lemma may by bypassed in the essential arguments in $[\mathrm{E}]$. Recall that the prime use of Lemma 3.6 was to show that we could assume that the generalized projective plane D in $L(p, q)$ (i.e. the two skeleton) had at most p elliptic points in its characteristic foliation. This is still true:
Lemma 0.1. We may (topologically) isotop D in $L(p, q)$ so that $e_{+}(D) \leq p$.
Note that with this lemma in hand Theorem 4.3, Corollary 4.5 and Theorem 4.10 from [E] are true and their proofs are essentially unchanged.

Proof. We assume that we have isotoped D so that $e_{+}(D)$ is minimal. Now if $e_{+}(D)>p$ then we derive a contradiction.

Recall that by choosing a point x on the one skeleton C of $L(p, q)$ we break ∂D into p intervals B_{1}, \ldots, B_{p} using the p points x_{1}, \ldots, x_{p} on ∂D that map to x when D is glued to C. We say that an interval I on ∂D is longer than k if for any choice of x the interior of the interval I contains at least k of the x_{i} 's.

Note by Remark 3.9 in [E] we know that if we look at an outermost hyperbolic singularity on D (i.e. one whose unstable manifolds separate off a disk Δ containing one elliptic point) then $\Delta \cap \partial D$ is longer than 1 . Now consider a hyperbolic point h whose unstable manifolds separate off a disk Δ from D that contains two elliptic points and one hyperbolic point h^{\prime}. We claim that $I=\Delta \cap \partial D$ is longer than 2 . To see this let $I=I_{c} \cup I_{m} \cup I_{a}$ where I_{m} and the unstable manifolds of h^{\prime} bound a disk on D. We know that I_{m} is longer than 1 so if I is not longer than 2 then both I_{c} and I_{a} are not longer than 1. Moreover, in this situation it is not hard to see that the intervals I_{c} and I_{a} are disjoint when mapped to C. Thus just as in Figure 9 in $[\mathrm{E}]$ we may construct an overtwisted disk by extending the unstable manifolds of h and h^{\prime} across C.

The above argument generalizes to prove: if h is a hyperbolic point whose unstable manifolds separate off a disk Δ containing a linear graph in the characteristic foliation containing k elliptic points, then $\Delta \cap \partial D$ is longer than k. There is one complication in this case that is not seen above. If h^{\prime} is the hyperbolic point in Δ whose unstable manifolds separate off a disk Δ^{\prime} containing $k-1$ elliptic points, then by induction on k we can assume that $\Delta^{\prime} \cap \partial D$ is longer than $k-1$. So if out claim is not true then $I_{c} \cup I_{a}=S \cap \partial D$ is not longer than 1 and I_{c} and I_{a} are disjoint when mapped to C, where $S=\overline{\Delta \backslash \Delta^{\prime}}$. As above we would like to say that we can construct an overtwisted disk as in Figure 9 in [E]. Unfortunately one of
the intervals, say I_{a}, might not limit to a single elliptic point when pushed across C (strangely enough this does not happen in the situation above), but if this happens the other interval will limit to a single elliptic point when pushed across C. So if K is the union of all leaves in D_{ξ} that intersect I_{c} and end at a fixed elliptic point, then we can find a disk B close to $S \cup K$ such that $B \cap C$ is a neighborhood of I_{a} on C and B contains a single hyperbolic point h whose unstable manifolds intersect C in ∂I_{a}. Note we might have $B \cap D \neq \emptyset$ but then we may (topologically) isotope D keeping C fixed so that it has the same number and type of singularities and is disjoint from B (away from C). Now as in the proof of Lemma 3.8 in [E] we may use this disk B to decrease $e_{+}(D)$ by p (contradicting the minimality of $\left.e_{+}(D)\right)$. Combining this argument with the one in the proof of Theorem 4.6 in $[\mathrm{E}]$ one may easily remove the word "linear" from the above statement.

We now know that $e_{+}(D) \leq p$ since the total "length" of ∂D is p.
Theorem 4.6 (and hence Corollary 4.7 and Theorems 4.8 and 4.9) in [E] follow from the above proof as follows: Note that under the hypothesis of Theorem 4.6 there must be p elliptic and $p-1$ hyperbolic singularities in D_{ξ}. If we take an outermost hyperbolic point h then its unstable manifolds separate D into two disks Δ_{0} and Δ_{1} and by the remark at then end of the above proof $I_{0}=\Delta_{0} \cap \partial D$ is longer than 1 while $I_{1}=\Delta_{1} \cap \partial D$ is longer than $p-1$. Now take a point x on C that is in the intersection of C with the unstable manifolds of h. The interior of I_{0} contains at least 1 of the points x_{i} while the interior of I_{1} contains at least $p-1$ of the points x_{i}. That means that at least p of the x_{i} 's are accounted for on the interiors of the respective intervals but one of the x_{i} 's in on the boundary of both intervals. This contradicts the fact that there are only p, x_{i} 's. Thus there can be no tight contact structure satisfying the hypothesis of Theorem 4.6.

We have now demonstrated that the main theorems in [E] are correct; but, in order to repair a gap in [Ko] caused the incorrect proof of Lemma 3.6 in [E] we show that the lemma is indeed correct in the cases relevant to $[\mathrm{Ko}]$.

Proof of Lemma 3.6 in $[\mathrm{E}]$ for $q=1$ or $p-1$. We will show how to isotope D to a disk D^{\prime} with transverse boundary in ∂V_{1}, whose graph of singularities relates to D 's as shown in Figure 2 of [E]. Since the graph of singularities in D_{ξ} must be a tree, a sequence of such moves will clearly yield the conclusion of the lemma.

Assume that part of the graph of singularities in D_{ξ} is as shown on the left hand side of Figure 2 in [E] and let h be the hyperbolic singularity whose stable separatrix we wish to move. The unstable separatrices of h cut D into two pieces: one, Δ, containing only one elliptic singularity e and one,$D \backslash \Delta$, containing all the other singularities. Let U be a (closed) neighborhood, in V_{1}, of $\partial V_{1} \cup \Delta$ for which $U \cap D$ contains only the singularities h and e. We may assume that U is diffeomorphic to $\left(\partial V_{1}\right) \times[0,1]$ and that the characteristic foliations on both boundary components of ∂U are non singular. Moreover we need $D \cap U$ to have transverse boundary. Here is where we must assume that $q=1$ or $p-1$ since $(\partial U) \backslash\left(\partial V_{1}\right)$ will naturally have four singularities that need to be canceled. We would like to do this cancellation in the complement of $D \cap U$ so as to keep it transverse. By taking V_{0} to be a sufficiently small neighborhood of its core C when $q=1$ or $p-1$ we may achieve this (as the reader my easily verify by looking at the monodromy on ∂D induced by the characteristic foliation of $\left.\partial V_{1}\right)$. Now let
$A=D \cap U, D^{\prime}=\overline{D \backslash A}, c=\partial D^{\prime}$ and x be the intersection of c with the stable seperatrix of h that we wish to move. Note there is a region $R \subset c$ such that if D_{ξ}^{\prime} is glued to A_{ξ} via a diffeomorphism $\psi: c \rightarrow c$ that takes x into R the resulting singular foliation is as seen on the right hand side of Figure 2 in [E]. We now show how to "realize" such a diffeomorphism by isotoping A.

Let T^{\prime} be the boundary component of U that lies in the interior of V_{1}. Since the characteristic foliation of T^{\prime} is non singular and contains no leaves parallel to c (since ξ is tight) we may use T_{ξ}^{\prime}, thought of as a flow, to define a Poincaré return $\operatorname{map} \phi: c \rightarrow c$. We can assume that ϕ has irrational rotation number since by isotoping T^{\prime} in the neighborhood of a meridional curve (away from D) we will change ϕ. During this isotopy the rotation numbers for the corresponding ϕ 's will change and thus at some point be irrational.

If we cut T^{\prime} along c we get annulus A^{\prime}. Gluing one boundary component of A^{\prime} to $c \subset A$ and the other to $c \subset D^{\prime}$ and rounding corners we have a new meridional disk D_{1} whose characteristic foliation is D_{ξ}^{\prime} glued to A_{ξ} via ϕ. (Note that using Makar-Limanov's corner rounding method [ML] one can round both corners above without altering the topological type of the characteristic foliation.) It is useful to think of D_{1} as obtained from D by pushing part of the interior of D once around V_{1}.

If ϕ does not take x into R then we do not have the desired characteristic foliation. But since ϕ has irrational rotation number the orbit of x under ϕ is dense in c. Thus there is some power, say n, of ϕ that will take x into R. If we take n disjoint copies of T^{\prime} then we can do the above procedure using all n copies of T^{\prime} to obtain a disk D_{n}. Of course the characteristic foliation on D_{n} will not be exactly D_{ξ}^{\prime} glued to A_{ξ} via ϕ^{n} since the Poincaré return maps on the copies of T^{\prime} are not exactly ϕ. But if we take the copies of T^{\prime} to be sufficiently close to T^{\prime} then the gluing map will be close enough to ϕ^{n} to still take x into R. Thus D_{n} will be the desired new meridional disk whose characteristic foliation is related to D 's as seen if Figure 2 in [E].

Acknowledgments: The author thanks R. Gompf for pointing out the mistake in $[\mathrm{E}]$

REfERENCES

[E] J. Etnyre, Tight Contact Structures on Lens Spaces, Commun. in Contemp. Math. 2 No. 4 (2000), 559-577.
[Ko] S. Ko, More about Tight Contact Structures on Lens Spaces, Dissertation, UC Berkeley, 2000.
[ML] S. Makar-Limanov, Tight contact structures on solid tori, Trans. Amer. Math. Soc. 350 (1998), pp. 1013-1044.

Stanford University, Stanford, CA 94305
E-mail address: etnyre@math.stanford.edu
URL: http://math.stanford.edu/~etnyre

