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Abstract. We show that there exists a transverse link in the standard contact structures
on the 3–sphere such that all contact 3–manifolds are contact branched covers over this
transverse link.

1. Introduction

In 1982, William Thurston showed there was a six component link in the 3–sphere such that
any closed smooth oriented 3–manifold is the branched cover over the 3–sphere with branch
locus this link [20]. He called such a link universal. Later Hilden, Lozano, and Montesinos
showed there was a universal knot in the 3–sphere [10, 11]. Since then there has been several
papers showing certain knots and links are universal or not universal. For example the figure
eight knot, Whitehead link, and Borromean rings are all universal [13, 12].
In 2002, Emmanuel Giroux showed that any contact 3–manifold is a 3–fold simple branched
cover of the 3–sphere with the standard contact structure (S3, ξstd) and branch locus a trans-
verse link [7]. This is a contact strengthening of the Hilden-Montesinos Theorem [9, 16]
for smooth 3–manifolds. These contact constructions are useful for constructing open books
for some contact 3–manifolds and embedding contact 3–manifolds in the standard contact
structure on the 5–sphere [5].

Figure 1. The universal transverse link in Theorem 1.1.

Given this work it is natural to wonder if there is a universal transverse link in (S3, ξstd).
That is, a transverse link L ⊆ (S3, ξstd) such that any contact 3–manifold is the contact
branched cover of (S3, ξstd) along L. This question was first considered by M. Casey in [3]
where she showed that no transverse knot in the knot type of the figure eight can be universal
and that many covers of the Whitehead link and Borromean rings yielded only overtwisted
contact structures, raising doubts as to whether or not there exist universal transverse links.
The main result in the present work is that they exist:

Theorem 1.1. Any contact 3-manifold (M, ξ) can be realized as a contact branched cover of
(S3, ξstd) branched along the transverse link L shown in Figure 1.

The proof presented here directly adapts the argument for the existence of topologically
universal links in [10] to the contact case. It is interesting to note that similar constructions

2010 Mathematics Subject Classification. Primary: 53D10. Secondary: 53D15, 57R17.
1



2 ROGER CASALS AND JOHN B. ETNYRE

of universal links that lead to universal knots cannot be easily adapted to the contact setting,
leaving open the natural question

(a) Does there exist a transverse universal knot K ⊆ (S3, ξstd) ?

The Figure-8 knot is a smooth universal knot, but it cannot be a contact universal knot after
the results from M. Casey’s thesis [3]. This leads to the following problem:

(b) Find sufficient conditions for a smooth universal knot or link to admit transverse
representatives which are contact universal.

In line with the first question, we would also like to know the answer to the following question:

(c) Let (S3, ξot) be an overtwisted contact structure. Does there exist a transverse knot
K ⊆ (S3, ξot) such that the contact branched cover of (S3, ξot) along K is contacto-
morphic to (S3, ξstd) ?

It is possible to produce branched covers of overtwisted structures on S3 which are tight cf.
[3], yet it is apparent that such K in the question — should it exist — cannot be a smooth
unknot.
Finally, a natural continuation of Theorem 1.1, in line with [15, 19], would be to answer the
following question:

(d) Does there exist a symplectic surface S ⊆ (D4, λstd) such that any Weinstein 4-fold
(W,λ) is a branched cover of (D4, λstd) along S ?

Acknowledgements: The first author is supported by the NSF grant DMS-1608018 and
a BBVA Research Fellowship. He also thanks Adán Medrano Martín del Campo for useful
conversations. The second author was partially supported by NSF grant DMS-1608684.

2. Background

In this section we recall some necessary definitions concerning transverse knots and branched
covers. In the last subsection we show that many standard modifications of the branch locus
for branched covering maps that are known in the topological setting also hold in the contact
geometric setting as well.

2.1. Transverse knots. For more details on transverse knots the reader is referred to [4].
Here we briefly review the aspects that will be relevant for our main result.
We will consider our knots in (R3, ξstd) ⊂ (S3, ξstd) where on R3 we have the standard contact
structure

ξstd = ker(dz − y dx),
where (x, y, z) are Cartesian coordinates on R3. A knot K is transverse if K is transverse to
ξstd at every point of K. Since ξstd is co-oriented by the contact form and R3 is oriented, K
will have an orientation induced on it so that K and ξstd intersect positively.
We will study transverse knots via their front projection, that is, via the image of K under
the projection π : R3 → R2 : (x, y, z) 7→ (x, z). Notice that being transverse to ξstd implies
that the y–coordinate of K satisfies

y <
dz

dx
,

where we think of the page as the xz-plane so that the positive y-axis points into the page. It
is easy to see that any diagram for an oriented knot in the xz-plane determines a transverse
knot up to isotopy through transverse knots as long as no portion of the knot is as shown
in Figure 2. Moreover, Type II and III Reidemeister moves are allowed in front diagrams as
long as no portion of the move contains a forbidden diagram from Figure 2.
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Figure 2. Forbidden portions of the front diagram of a transverse knot.

In addition to the front projections, there is a different presentation of transverse knots that
will be useful for us as well. Consider S3 = {(z1, z2) ∈ C2 : |z1|2+|z2|2 = 1} as the unit sphere
in C2 with the standard contact structure ξstd = TS3 ∩ i(TS3) given as the set of complex
tangencies to S3. The link H = {z1 = 0} ∪ {z2 = 0} is a Hopf link with each component
being an unknot with self-linking number −1. It is easy to check that the contact structure
on the complement S3 −H = T 2 × (0, 1) is given by

ξstd = ker
(
cos
(π
2
t
)
dφ+ sin

(π
2
t
)
dθ
)
,

where (φ, θ) are angular coordinates on T 2 = S1 × S1 and t is the coordinate on (0, 1). We
can now consider transverse knots in T 2× (0, 1) and their front projection will be obtained by
projecting out the t-coordinate. Once again a transverse knots can be recovered from its front
projection. The only real difference with the situation described above is that the tangent
vector to the projection cannot have both φ and θ component negative.
A closed transverse braid in R3 can always be assumed to lie in the thickened torus T 2×(0, 1)
and such braids are in one-to-one correspondence curves in T 2×(0, 1) whose oriented tangents
always have positive θ-coordinate [1].

2.2. Contact branched covers. A branched covering map is a smooth map p : M → Y
between smooth 3–manifolds such that there is a link L ⊆ Y , called the branch locus, such
that p restricted to M − p−1(L) is a covering map from M − p−1(L) to Y − L and each
component of p−1(L) has a neighborhood N = S1 × D2 such that p(N) = S1 × D2 and in
these coordinates p is of the form (φ, z) 7→ (nφ, zm) for some integers n and m where φ is
the angular coordinate on S1 and z is the complex coordinate on D2 thought of as the unit
disk in C. We say the component has order m and we say p is ramified at the component if
m > 1. An branched covering map of degree k is called simple if the pre-image of any point
has size either k or k − 1.
Given a contact submanifold, it is quite easy to construct contact structures on branched
covering spaces from a contact structure on the base space.

Theorem 2.1 (Geiges 1997, [6]; Öztürk and Niederkrüger 2007, [18]). Let p : M → Y be a
branched covering map with branch locus L. Given a contact structure ξ on Y with contact
from α such that L is transverse to ξ, then p∗α may be deformed by an arbitrarily small
amount near p−1(L) to give a contact form defining a unique, up to contact isotopy, contact
structure ξL on M .

The starting point for our main result is Giroux’s proof that every contact 3–manifold can be
constructed as a branched cover over the standard contact structure on S3.

Theorem 2.2 (Giroux 2002, [7]). Given a contact structure ξ on a 3–manifold M , there
is a 3–fold simple branched covering map p : M → S3 such that ξ is the contact structure
induced on M by p, the standard contact structure on S3, and some transverse realization of
the branch locus of p.

For each contact 3–manifold (M, ξ), Theorem 2.2 asserts the existence of a transverse link
L(M, ξ) ⊆ (S3, ξstd), depending on (M, ξ), such that (M, ξ) is the contact branched cover of
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(S3, ξstd) along L(M, ξ). Our main result Theorem 1.1 shows that the transverse link L(M, ξ)
can be chosen to be independent of (M, ξ), thus encoding all the complexity of the contact
structure on (M, ξ) in the combinatorics of the deck transformation group for coverings of
S3 \ L.
Let us briefly recall the argument for Theorem 2.2. E. Giroux first shows that any contact
3–manifold is supported by an open book decomposition, whose binding can be assumed to
be connected. Building on work of J.S. Birman [2] and D.L. Goldsmith [8], J.M. Montesinos
and H.R. Morton showed in [17] that any open book decomposition on a smooth 3–manifold
M with connected binding is pulled back from the open book decomposition of S3 with disk
page by a 3–fold branched cover map p :M → S3 whose branch locus is a braid. Since a braid
is naturally a transverse knot the branched cover can be taken to be a contact branched cover
and it is easy to see that the induced contact structure on the covering space is supported by
the original open book, thus concluding the statement.
We end this subsection with two simple observations. The first follows immediately from the
definition of contact branched cover.

Lemma 2.3. Suppose p : (M ′, ξ′) → (M, ξ) is a contact branched covering map with branch
set B ⊂M . Let L be a link inM disjoint from B and L′ = p−1(L). If p′ : (M ′′, ξ′′)→ (M ′, ξ′)
is a contact branched covering map with branch set L′, then p′ ◦ p : (M ′′, ξ′′) → (M, ξ) is a
contact branched covering map with branch set B ∪ L. �

The second fact is also standard in contact topology:

Lemma 2.4. The contact manifold obtained from any branched cover of (S3, ξstd) branched
along a transverse unknot with self-linking number −1 is contactomorphic to (S3, ξstd).

Proof. It is clear that smoothly the branched cover of S3 branched over the unknot is dif-
feomorphic to S3. Moreover if U is the transverse unknot in the standard contact struc-
ture on S3 with self-linking number −1 then S3 − U = S1 × R2 with the contact structure
ξ = ker(dφ+ r2 dθ), where φ is the angular coordinate on S1 and (r, θ) are polar coordinates
on R2. Now any finite covering space of (S1×R2, ξ) is contactomorphic to (S1×R2, ξ), from
which the result follows. �

The hypothesis on the self-linking number in Lemma 2.4 is meaningful, since branched covers
along stabilized transverse knots are overtwisted.

2.3. Monodromy representations. A covering map p : M → Y , for M connected, is
determined by its monodromy representation. Let x0 ∈ Y be a fixed base point and label the
points in p−1(x0) = {x1, . . . , xn}. Then, given a loop γ in Y based at x0 we can define the
element σγ of the symmetric group Sn by σγ(i) is the index on γ̃(1) where γ̃ is the lift of γ
based at xi. This defines a transitive representation of the fundamental group

r : π1(Y )→ Sn = Aut(p−1(x0)).

Moreover, given such a representation the subgroup G = {g ∈ π1(Y ) : r(g)(1) = 1} gives a
covering space M that corresponds to the representation.
One may similarly prove that a branched covering map p : M → Y with branch locus L is
determined by a representation π1(Y −L)→ Sn, since any covering of Y −L may be uniquely
extended to a branched covering map of Y thanks to the local model near the branch locus.
In the case that Y is smoothly S3, the fundamental group π1(Y − L) is well-known to be
generated by meridians to L. In particular, given a diagram for L we have the Wirtinger
presentation for π1(Y − L) with generators xi corresponding to the strands in the diagram
and relations coming from the crossings: xi = x−1k xjxk, respectively xi = xkxjx

−1
k , at a right

handed, respectively left handed, crossing, where strand k goes over incoming strand j and
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outgoing strand i. Thus a branched covering map over S3 with branch set L is determined
by labeling a diagram of L with elements of Sn that satisfy the required relations at the
crossings.
It is easy to see if a branched covering map is simple using the monodromy representation:
one just needs the image of the representation to consist only of transpositions, for higher
length cycles correspond to more than two points coming together.
We now discuss some modifications one can make to the branch locus of a branched covering
map without affecting the induced contact covering space.

Lemma 2.5. Let L be a transverse link in a contact 3–manifold (Y, ξ) and p : M → Y be a
branched covering map with branch locus L inducing the contact structure ξ′ on M . If part
of a diagram for L is as shown on one side of a row in Figure 3 then replacing that portion
of L with the other diagram shown in that row will result in a new contact branched covering
of Y that still yields the same contact manifold (M, ξ′).

(i j)

(j k)

(i j)

(j k)

(i k)

(i j)

(j k)

(i j)

(i j)

(j k)

(i j)

(i j)

(j k)

(i k)

(i k)

(j k)

(i j)

(i j)

(j k)

(i j)

(j k)

(i j)

(j k)
(i k)

(i j)

(j k)

(i j)

(i j)(k l)

(i j) (k l)

(k l)

Figure 3. Replacing a portion of the branch locus of a simple cover with one
of the figures in a row with the other does not change the manifold or contact
structure described by the contact branched cover. All strands are oriented
from left to right.

Proof. The changes to the diagram depicted in the first two rows of Figure 3 correspond to
contact isotopies of the underlying branch locus. This induces an isotopy of the branch cover
map, thus does not change the branched cover or the contact structure.
The change in the fourth row was proven to leave the contact branched cover unchanged in
[3] and can easily be seen by observing that the branched cover of the ball containing either
branched loci is simply a ball and the contact structure on it is tight. See [3] for details.
That the change in the third row does not affect the contact branched cover follows exactly
as for the fourth row. That is, the pre-image by the covering map of a ball containing the
diagram on either side is a union of balls and the contact structure on each ball is tight. �

There is a second simple modification to the transverse branched locus which preserves the
contact isotopy type of the branched cover, it adds a standard transverse unknot to the branch
locus at the cost of increasing the degree of the branched cover:
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Lemma 2.6. Let L be a transverse link in a contact 3–manifold (Y, ξ) and p : M → Y be
an n–fold branched covering map with branch locus L inducing the contact structure ξ′ on
M . Let L′ be L together with a maximal self-linking unknot U that is separated from L by a
sphere.
The monodromy data for L′ given by using the monodromy data on L and labelling the merid-
ian of U by (n, n+1) defines an (n+1)–fold branch covering map from M to Y that induces
the same contact structure ξ′ on M .

Proof. We begin with a simple observation. Let K = K0 ∪ K1 be a link with monodromy
data for an n–fold branched covering map, such that there is a sphere S that separates K0

and K1. We can assume that S is a convex sphere and cut S3 into two contact 3–balls B0

and B1 along S so that Bi contains Ki. Then cap off Bi by a tight contact 3–ball Ci to get a
tight contact 3-sphere S3

i that contains Ki. Let pi :Mi → S3
i be the n–fold branched covering

map determined by Ki and its monodromy data. Note that the pre-image p−1i (Ci) consists
of n distinct 3–balls. Moreover if p : Y → S3 is the branched covering map corresponding to
K then Y \ p−1(S) is contactomorphic to (Y0 \ p−10 (C0)) ∪ (Y1 \ p−11 (C1)). In consequence,
the contact manifold Y is the contact n–fold, possibly internal, connect sum of Y0 and Y1.
Now given the link L′ = L ∪ U in the lemma notice that Y0 = Y ∪ S3 since Y0 will be an
(n+ 1)–fold cover of S3 branched along L, where the monodromy data for L only has labels
between 1 and n, so the cover is disconnected and the (n+ 1)–sheet is disjoint from the rest.
Similarly Y1 is the union of n copies of 3–spheres by Lemma 2.4. It then follows that the
(n + 1)–fold contact connected sum of Y0 and Y1 results in a manifold contactomorphic to
Y . �

3. Transverse universal links

In this section we prove Theorem 1.1 by showing the link L in Figure 1 is a universal transverse
link L ⊆ (S3, ξstd). The proof will follow from two following lemmas.

Lemma 3.1. Let L′ be the link shown in Figure 4. There is a branched cover

p : (S3, ξstd)→ (S3, ξstd),

branched along the Hopf link discussed at the end of Section 2.1 such that the link Lm,n shown
in Figure 5 is a sub-link of p−1(L′).

Figure 4. The front projection of the link L′ in T 2 × (0, 1) = S3 −H.

Lemma 3.2. Any contact 3-manifold (Y, ξ) can be realized as a contact branched cover of
(S3, ξstd) branched along the transverse link Ln,m shown in Figure 5, for some n and m.

Lemmas 3.1 and 3.2, which will be momentarily proven, suffice to conclude our main result:
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Figure 5. The transverse link Lm,n in Lemma 3.1. There are n horizontal
lines that are closed into a trivial braid and there are m vertical rows of
clasping unknots. Lemma 3.2 states that for any contact manifold (Y, ξ) there
is a choice of n,m ∈ N such that (Y, ξ) is the contact branched cover of
(S3, ξstd) over this transverse link.

Proof of Theorem 1.1. Let (M, ξ) be any given contact 3–manifold, we can apply Lemma 3.2
to construct a branched covering map p′ : (M, ξ) → (S3, ξstd) with branched set Ln,m. By
Lemma 3.1 there is also a branched covering map p : (S3, ξstd) → (S3, ξstd) with branched
set the red Hopf link H depicted in Figure 1 such that Ln,m is a sub-link of p−1(L′), where
L′ ⊆ T 2 × (0, 1) ' S3 \ H is the link presented in Figure 4. Then Lemma 2.3 implies that
the composition p′ ◦ p : (Y, ξ) → (S3, ξstd) is a contact branched covering map with branch
set the transverse link L′ ⊆ T 2 × (0, 1) = S3 −H union the transverse Hopf link H ⊂ S3.
In order to conclude Theorem 1.1 it suffices to identify the link in Figure 4 with the blue
sub-link in Figure 1. This is tantamount to identifying the contact structures

ξ0 = ker{2dz − xdy + ydx}, ξstd = ker{dz − ydx},

the former being the rotationally invariant contact structure on R3 and the latter the standard
contact structure. The contactomorphism from the first to the second is explicitly given by
the map ϕ(x, y, z) = (x, 2y, xy + z) extended to S3 by fixing the point at infinity.
Now we consider the 2-component transverse link in Figure 4 with T 2 × (0, 1) embedded in
(S3, ξ0) (see the end of Section 2.1 for this embedding), as depicted in the left of Figure 6
with the components of L′ shown in blue and the Hopf link H shown in red. For any given
ε ∈ R+, the non-horizontal blue component can be confined inside the region |x| ≤ ε, and
so the contactomorphism ϕ : (S3, ξ0) → (S3, ξstd) can be assumed to be C∞-close to the
identity in that region. It is a simple exercise to show that the other blue component is, up
to contact isotopy, sent to itself with an added loop when considered in the front projection
for (R3, ξstd), see for instance [14, Figure 6]. In consequence, adding the red Hopf link to this
link gives the link in Figure 1, as desired.

�

Let us now prove the two Lemmas 3.1 and 3.2.

Proof of Lemma 3.1. Let pm,n : (T 2 × (0, 1)) → (T 2 × (0, 1)) be the covering map that un-
winds the θ-circle m times and the φ-circle n times, where we are using the coordinates from
Section 2.1. This covering map smoothly extends to a branched covering map p : S3 → S3.
Moreover, since (pm,n)

∗(ξstd) is contactomorphic to ξstd, it is clear the contact structure
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Figure 6. The link L′ in ξ0

induced on S3 by this branched covering map is the standard contact structure. By construc-
tion, the link Lm,n in Figure 5 is a sub-link of the pre-image p−1(L′) of L′ via this explicit
branched cover. �

Proof of Lemma 3.2. Given a contact manifold (M, ξ), we apply Theorem 2.2 to construct
a 3–fold simple branched cover from M onto (S3, ξstd) with branch locus a transverse braid
B, such that ξ is induced from the covering. Note that since the covering map is simple,
the labels on the strands of B are all transpositions. We will now modify the transverse
braid B without changing the contact isotopy type of the branched cover (M, ξ) until the B
has the desired form depicted in Figure 5. Step 1: Change B so that at each crossing the

(j k)

(i j)

(i j)

(i j)

(j k)

(i j)

(i j)

(i j)

(i k)

(i k)

(i k)

(j k)

(i j)

(i j)

(i j)

(i j)

Figure 7. Arranging all crossings to have multiple labelings on the strands.

strands have three distinct labels. Thinking of B as the closure of a braid we assume B has n
strands. We will think of a diagram for B as n horizontal strands the xz-plane with twists at
distinct x values, i.e. presented using standard generators of the braid group. Each of the n
different strands at any x value must be labelled with at least two different transpositions in
the symmetric group. If there is a single x value where there is just one then all strands in
the braid will be labelled by this transposition and the covering is not a 3–folding covering,
but just a cyclic 2–fold covering.
Now, let us suppose c is a crossing in the transverse braid B. The strands at c will either be
labelled with three distinct transpositions or just one. In the former case, there is nothing to
do, whereas in the latter case some other strand of the braid with the same x-value as the
crossing must be labelled with a different transposition. Taking the strand with a different
permutation that is closest to the crossing we can push it past the crossing as shown in
Figure 7. This is done by a sequence of moves shown in the first two rows of Figure 3 and
results in a braid with distinct labels at each crossing.
Step 2: Change B so that it has only positive crossings and they occur in pairs. We can
apply the move shown in row four of Figure 3 to each negative crossing in order to change it
into a pair of two positive crossings. Note that we also need to use the move in row one to
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Figure 8. Adding an unknotted component to the branch locus.

remove adjacent positive and negative crossings. For each unpaired positive crossing we can
just change them into two paired positive crossings.
Step 3: Change B so that it is the trivial braid with linking unknots as in Figure 5. For
each pair of positive crossings we can use Lemma 2.6 to introduce an unknot with label (j l),
where when considering this crossing we already have an (l − 1)–fold branched cover and j
is chosen as shown in Figure 8. Now Figure 8 shows a sequence of isotopies of the unknot
and applications of the move in row three of Figure 3 which manages to remove the pair of
crossings at the expense of inserting a linked unknot. We will call such an unknot a clasping
unknot.
If the braid after Step 2 had k pairs of crossings, then after Step 3, there are k clasping
unknots and no clasping unknot is above another. Then adding (n−2) new clasping unknots
labelled with the identity permutation to the strands above and below each existing clasping
unknot yields the link in Figure 5. Lemma 3.2 is now proven once we note that adding a
knot to the branch locus whose strands are labelled with the identity permutation does not
change the contact branched covering. �
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