1. (13 points) Economists are studying the spending habits of a large group of people. Let \(x \) be the total disposable income of this entire group and let \(C \) be the total amount spent by the entire group. The relationship between \(x \) and \(C \) is: \(C(x) = 0.75x + 6 \), where both \(x \) and \(C \) are measured in billions of dollars. (a) (5) Calculate \(C(12) \) and \(C(50) \). (b) (4) In terms of the definitions of \(x \) and \(C \), interpret your answer to \(C(50) \). (c) (4) In terms of \(x \) and \(C \), explain why your answer to \(C(12) \) does NOT seem to be correct. (Use the correct units in all answers.)

Solution: (a) \(C(12) = 15 \) billion dollars & \(C(50) = 43.5 \) billion dollars

b. If the total disposable income of the entire group is 50 billion dollars, then the total amount spent by the group is 43.5 billion dollars

c. \(x = 12 \) ($) is the total disposable income; \(C(12) = 15 \) ($). It seems to be a contradiction that the group can spend more money that it has at its disposal.

(TA's: You are going to need to read (b & c) their answers carefully to see if they understand what they are saying; it does not need to be exactly as mine)

2. (13 points) A study by the Chamber of Commerce of a small city estimates that the population \(P \) of the city is related to \(x \), the number of months from now by the relationship: \(P(x) = 50000 + 30x^{3/2} + 20x \). a. (5) What is the population now? b. (8) By how much will the population increase in the next 9 months?

Solution: a. now means that \(x = 0 \) ==> population now = \(P(0) = 50,000 \) people

b. In 9 months the population will be \(P(9) = 50000 + 30 \cdot 9^{3/2} + 20 \cdot 9 = 50,990 \) people

==> increase in population = \(P(9) - P(0) = 50990 - 50000 = 990 \) people

3. (13 points) The monthly variable costs (V) to produce \(x \) units of a certain product is given by: \(V(x) = 0.000003x^3 - 0.03x^2 + 200x \) and the monthly fixed cost is $100,000. a. (7) Find a function that relates \(C = \) total cost to \(x \). b. (6) What is the total cost if the company produces 2000 units/month.

Solution: a. total costs = variable costs + fixed costs
\[C(x) = 0.000003 \cdot x^3 - 0.03 \cdot x^2 + 200 \cdot x + 100000 \]

b. If \(x = 2000 \), then \(C(2000) = 0.000003 \cdot 2000^3 - 0.03 \cdot 2000^2 + 200 \cdot 2000 + 100000 \)

\[
= 404,000
\]

4. (15 points) Compute the following limits:

a. \[\lim_{t \to 3} (4 \cdot t^2 - 2 \cdot t + 1) = (4 \cdot 3^2 - 2 \cdot 3 + 1) = 31 \]

b. \[\lim_{x \to -2} \left(\frac{x^2 - 4}{x + 2} \right) = \lim_{x \to -2} \frac{(x-2)(x+2)}{(x+2)} = \lim_{x \to -2} (x-2) = -4 \]

c. \[\lim_{x \to 1} \left(\frac{\sqrt{x} - 1}{x - 1} \right) \cdot \frac{\sqrt{x} + 1}{\sqrt{x} + 1} = \lim_{x \to 1} \frac{(x-1)}{(x-1)(\sqrt{x} + 1)} = \lim_{x \to 1} \left(\frac{1}{\sqrt{x} + 1} \right) = \frac{1}{2} \]

5. (13 points) The concentration (\(C \) – measured in \(\frac{mg}{cm^3} \)) of a drug in a patient's blood \(t \) hours after injection is given by: \[C(t) = \frac{2 \cdot t^2}{100 \cdot t^2 + 100} \].

a. (9) Find the horizontal asymptote (\(t \to \infty \)) of the function \(C(t) \);

b. (4) Interpret your answer to a in terms of the concentration of the drug and the time (use the correct units in your answer).

Solution: a. To find the H.A., compute:

\[\lim_{t \to \infty} \left(\frac{2 \cdot t^2}{100 \cdot t^2 + 100} \right) = \lim_{t \to \infty} \left(\frac{2 \cdot t^2}{100 \cdot t^2} \right) = \frac{2}{100} = 0.02 \frac{mg}{cm^3} \]

b. After a significant amount of hours (\(t \)) has passed, the concentration of the drug in the patient will be approximately \(0.02 \frac{mg}{cm^3} \).

TA's – see the note on problem 1.

6. (13 points) The demand function for a certain product has the form:

\[p = \sqrt{-a \cdot x^2 + b} \], where \(x \) is the demand (in thousands) and \(p \) is the unit price (dollars). If the demand is 6000 units, then the price is $8.00 and if the demand is 8000 units, then the price is $6.00.

a. (9) Find the values of \(a \) & \(b \).

b. (4) Find the
demand when the unit price is $9.00.

Solution: a. From the data:

\[6 = \sqrt{-64a + b} \implies 36 = -64a + b \]

\[8 = \sqrt{-36a + b} \implies 64 = -36a + b \] now subtract the second equation from the first

\[\implies 28 = 28a \implies a = 1 \]

From the first equation, \[36 = -64 + b \implies b = 100 \]

b. \[p = 9 \implies 9 = \sqrt{-x^2 + 100} \implies 81 = -x^2 + 100 \]

\[\implies x^2 = 100 - 81 = 19 \implies x = \sqrt{19} = 4.36 \text{ units} \]

7. (20 points) Let \(f(x) = x^2 + x \). a. (13) Compute \(f'(x) \) using the process in our book in chapter 2; b. (7) Find the equation of the tangent line when \(x = -2 \) and put in the \(y = mx + b \) form.

Solution: a. From the definition in the book:

\[f'(x) = \lim_{h \to 0} \left(\frac{f(-2 + h) - f(-2)}{h} \right) = \lim_{h \to 0} \left(\frac{(-2 + h)^2 + 2 + h - 2}{h} \right) \]

\[= \lim_{h \to 0} \left(\frac{4 - 4h + h^2}{h} \right) \]

\[= \lim_{h \to 0} \left(\frac{h^2 - 3h}{h} \right) \]

\[= \lim_{h \to 0} (h - 3) = -3 \]

b. For the tangent line when \(x = -2 \), slope = \(f'(-2) = -3 \).

A point on the TL is \(x = -2 \) and \(y = f(-2) = 2 \).
Equation of TL is: \(y - 2 = -3 \{ x + 2 \} \); solving for \(y \)

\[\implies y = -3x - 4 \]