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Abstract. We present an approach for proving uniqueness of ODEs in the
Wasserstein space. We give an overview of basic tools needed to deal with

Hamiltonian ODE in the Wasserstein space and show various continuity results
for value functions. We discuss a concept of viscosity solutions of Hamilton-

Jacobi equations in metric spaces and in some cases relate it to viscosity solu-

tions in the sense of differentials in the Wasserstein space.

1. Introduction. We consider infinite dimensional Hamiltonian systems in the
Wasserstein space which arise in the study of limits of physical systems of indistin-
guishable particles in motion when the number of particles tends to infinity, and
the associated Hamilton-Jacobi equations. Such systems appear in many interesting
cases, for instance in the theory of Mean Field Games pioneered by J-M. Lasry and
P-L. Lions [57, 58, 59, 60], which has become a fast growing area during the past
few years [1, 2, 21, 45, 49, 50, 51, 52, 56]. The study of Hamilton–Jacobi equations
in the Wasserstein space P2(M) and in more general metric spaces is an important
problem of its own. Here, M = RD or M = TD and P2(M) is the set of Borel mea-
sures on M with finite second moments. The theory of Mean Field Games when
M = Rd, leads to the investigation of equation

∂tU(t, x, µ) +
1

2
|∇xU(t, x, µ)|2 + F(µ)−

∫
Rd
〈∇xU(t, q, µ),∇µU(t, q, µ)〉µ(dq) = 0,

(1.1)
which is related to the so called mean-field equations in [60]. Here, the variables
are t > 0, x ∈ Rd and µ ∈ P2(Rd). The rigorous treatment of (1.1) is open to our
knowledge. A model equation for us will be the Hamilton-Jacobi equation

∂tU(t, µ) +H(µ,∇µU(t, µ)) = 0 on (0, T )× P2(M), (1.2)

where

H(µ, ξ) :=
1

2
||ξ||2µ + F(µ), (µ, ξ) ∈ T P2(M). (1.3)

Here, T P2(M) is the union of the sets {µ} × L2(µ) where µ ∈ P2(M) and L2(µ)
stands for the set of Borel maps ξ : M → RD such that

∫
M
|ξ|2dµ < ∞. There is

an embedding of T P2(M) into P2(M × RD) given by (µ, ξ) → (id × ξ)#µ and so,
T P2(M) can be viewed as a subspace of P2(M ×RD). Here # is the push forward
operator (cf. e.g. [7]).

2010 Mathematics Subject Classification. Primary: 35F21, 37K05, 49L25; Secondary: 76A99.
Key words and phrases. Optimal transport, conservative systems, infinite dimensional Hamil-

tonian systems, Hamilton-Jacobi equations.

1397

http://dx.doi.org/10.3934/dcds.2014.34.1397


1398 WILFRID GANGBO AND ANDRZEJ ŚWIE↪CH

Hamilton–Jacobi equations in the Wasserstein and related spaces also appear in
the study of large deviations of empirical measures for stochastic particle systems,
statistical mechanics, fluid mechanics, and many other areas [11, 12, 13, 14, 15, 16,
41, 32, 34, 35, 36]. In this article we give an overview of basic tools needed to deal
with Hamiltonian ODE in the Wasserstein space, show various continuity results
for value functions, and discuss viscosity solutions of Hamilton-Jacobi equations in
the Wasserstein and metric spaces.

In Section 3, inspired by the work of Loeper [61, 62] and Yudovich [68], we present
tools for proving uniqueness of solutions σ ∈ AC2(0, T ;P2(M)) of ordinary differ-
ential equations in the Wasserstein space; our study covers the case where σ(t) may
not be absolutely continuous with respect to the Lebesgue measure. Applying these
tools for proving uniqueness of characteristics in Equation (1.2) remains however a
challenge because of the lack of regularity of µ→ ∇µU(t, ·). The result obtained in
Theorem 5.2 (iv) would be, in finite dimension, equivalent to the fact that U(t, ·) is
semiconvex and semiconcave and so its gradient is Lipschitz.

In Section 4, we study non–autonomous Hamiltonian equations for a one particle
system and link them to systems of infinitely many particles. The idea there is that
in order to study infinite dimensional ordinary differential equations of the form

∂t(σv) +∇ · (σv ⊗ v) = −σ∇µF(σ)

on (0, T ) × P2(M), one needs to understand the one particle non–autonomous or-
dinary differential equations

q̈ = −σ∇µF(σ(t))(q).

Making this statement rigorous requires proving some estimates which we establish
in Section 5. For simplicity, in Sections 4 – 6 we keep our focus on Hamiltonians of
the form

F(µ) =

∫
M

(V +W ∗ µ)dµ. (1.4)

The main result of Section 5 is Theorem 5.2 (iv) which states that the value function
provided by the Hopf–Lax formula is differentiable along special paths (cf. also
Remark 7 (i)).

In Section 6 we consider functions more general than those appearing in (1.4) and
prove that the value function provided by the Hopf–Lax formula is Lipschitz. Most
of the techniques used there mimic those used in the finite dimensional setting.
The new ingredient is Lemma 8.3 which says that any 2–absolutely continuous
curve in the Wasserstein space can be in some sense translated in any prescribed
direction while its velocities are controlled. Moreover there is a difficulty which one
encounters when trying to show that the value function is semi–concave. Given a
curve σ ∈ AC2(0, T ;P(M)), ν ∈ P2(M) and t ∈ (0, T ), one can consider the path
σν which coincides with σ on [0, t] and extend it to the geodesic which connects σt
to ν. In the Hilbert space setting, the analogue of the path σν is used to prove that
the value function given by the Hopf–Lax formula is λ–concave if F is λ–convex.
Making that proof work in the Wasserstein setting is a harder task which we could
complete only under some restrictive smoothness assumptions on the initial value
function U0 (cf. Theorem 5.2). In a Hilbert space, one can translate any curve with
its tangents in any given direction whereas we are lacking of ways of performing the
analogue operation in the Wasserstein space. This substantially complicates the
proof of the fact that the value function is differentiable along characteristics unless
one imposes that the initial value function is of class C3 in a sense to be specified.



OPTIMAL TRANSPORT AND LARGE NUMBER OF PARTICLES 1399

In a Hilbert space, there is a natural Poisson structure and the study of Hamilton-
Jacobi equations has a long history (see next paragraphs). The characteristics exist
and are unique when the initial function is smooth (cf. the recent study [47]). In
the Wasserstein space there are major difficulties one has to face. Indeed, one can
show the existence of a Hamiltonian flow Ψ : [0,∞)×P2(M ×RD)→ P2(M ×RD)
(cf. [6]) for the Hamiltonian

H̆(γ) :=
1

2

∫
M×RD

|p|2γ(dq, dp) + F(µ), µ = πM#γ (1.5)

which extends H from T P2(M) to P2(M × RD). However, if we choose (µ, ξ) ∈
T P2(M) and identify it with γ = (id × ξ)#µ ∈ P2(M × RD), Ψ(t, γ) may es-
cape T P2(M) and so, there is no known Hamiltonian flow for H. An existence or
uniqueness theory remains open in T P2(M). We refer the reader to [20] where a
Hamiltonian flow for H and M = R was proposed via some selection criteria.

The terminology of Hamiltonian systems in the Wasserstein space which we use
throughout this manuscript is justified by the fact that there exists a Poisson struc-
ture on P(Td × Rd) as well as on P(Rd × Rd) (cf. [38] and [55], [63]). In some
cases, for instance when M = T1, one can exploit the well–developed theory of
Hamiltonian systems on the Hilbert space L2(M) to study Hamiltonian systems on
the Wasserstein space P2(M) (cf. e.g. [40, 41, 42, 46]). A direct approach on the
infinite dimensional torus P(Td) appeared for the first time in [43].

Hamilton-Jacobi-Bellman equations in infinite dimensional spaces have a long
history. Earlier results in Hilbert spaces can be found in [9]. The theory of viscosity
solutions in Hilbert spaces started with papers of M. Crandall and P. L. Lions [24]-
[30]. Other notions of viscosity solution were also introduced (see e.g. [54, 65, 66])
and there is by now a huge literature on the subject, including a theory of second
order equations in Hilbert spaces. As regards equations in spaces of probability
measures and more general metric spaces, several approaches have been introduced.
In [34] a very general theory of viscosity solutions in metric spaces was proposed.
The main motivation of [34] was to apply it to equations coming from large deviation
problems for particle systems. More concrete problems in the Wasserstein space
have been studied in [33, 35, 36]. The definitions of viscosity solutions there were
based on the use of special test functions related to the problems that reduced the
state space to measures absolutely continuous with respect to Lebesgue measure
and guaranteed coercivity estimates. P. L. Lions in [60] proposed an approach in
which an equation in the Wasserstein space is pulled to an equation in a Hilbert
space L2 where measures are replaced by random variables in L2 having given laws.
The definition of viscosity solution for equations in the Wasserstein space given
in [41] is based on the notions of sub- and superdifferentials of functions in the
Wasserstein space. In [44] a notion of metric viscosity solution was introduced. It
looks at the behavior of functions along curves and it is substantially based on the
sub- and super-optimality inequalities of dynamic programming. Another paper
that studies a special Hamilton-Jacobi-Isaacs equation in the space of measures
associated with a zero-sum differential game with imperfect information is [22].
Finally we mention the papers [8, 48, 64] where it was proved that Hopf-Lax formulas
satisfy certain differential inequalities and equalities involving local slopes (see (7.2))
for the associated Hamilton-Jacobi equation.

In this paper we discuss the notion of viscosity solution in the Wasserstein space
using the notion of sub- and superdifferentials and a notion of viscosity solution
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in a geodesic metric space. In Section 6 we show that in the Wasserstein space,
the Hopf-Lax formula provides a subsolution in the viscosity sense in terms of the
subdifferential of a value function. The Hopf-Lax formula is not known to provide
a supersolution in the viscosity sense in terms of the superdifferential of the value
function except in some simple cases [53]. In Section 7 we discuss a notion of
viscosity solution in a geodesic metric space for Hamilton-Jacobi equations whose
gradient variable only depends on its “length”. We prove a general comparison
result, show that a viscosity solution can be obtained by Perron’s method, and
prove in a model case that the function given by the Hopf-Lax formula is a viscosity
solution.

This manuscript relies on the material developed by Ambrosio, Gigli and Savaré
[7] which contains the classical theory the mass transport is built upon. We also
refer the reader to [67] for an alternative presentation of the mass transport theory.

2. Preliminaries. Throughout this manuscript M is either Rd, Td, Rd × Rd or
Td ×Rd and id : M →M is the identity map on M. If x, y ∈M then |x− y| is the
natural distance between x and y. We write M ⊂ RD having in mind that either
D = d or D = 2d.

Recall that P2(M), the set of probability measures on M with bounded second
moments, is endowed with the Wasserstein metric W2, which makes it a geodesic
space. Given µ, ν ∈ P2(M), we denote by Γ(µ, ν) the set of Borel measures γ on
M×M which have µ as the first marginal and ν as the second marginal. We denote
by Γo(µ, ν) the subset of Γ(µ, ν) which consists of measures γ such that

W 2
2 (µ, ν) =

∫
M×M

|x− y|2γ(dx, dy).

When M is a bounded set then P2(M) coincides with P(M), the set of Borel
probability measures on M. If µ ∈ P2(M) and ξ : M → RD is a Borel vector field
such that ||ξ||2µ :=

∫
M
|ξ|2µ(dq) < ∞, we write ξ ∈ L2(µ). We denote by TµP2(M)

the closure of ∇C∞c (M) in L2(µ), and denote by TP2(M) the set of (µ, ξ) such that
µ ∈ P2(M) and ξ ∈ TµP2(M). If n is a positive integer, Pn(M) is the set of discrete
measures of the form

µx :=
1

n

n∑
i=1

δxi , where x1, · · · , xn ∈M, x := (x1, · · · , xn).

Given a metric space S and time dependent function f : [0, T ] → S, throughout
this manuscript, we write ft in place of f(t). For instance if X : [0, T ]×M → RD,
we write Xt(q) instead of X(t, q). If σ ∈ AC2(0, T,P2(M)) we write σt instead of
σ(t).

Theorem 2.1, stated below, is a fundamental theorem of the Monge–Kantorovich
mass transport theory which was first due to Brenier [19] and was later refined by
Gangbo–McCann [39].

Theorem 2.1. Assume M = Rd or M = Td, µ, ν ∈ P2(M) and µ vanishes on
(d− 1)–rectifiable sets. Then there exists a unique γ ∈ Γo(µ, ν). Furthermore, there
exists a Borel map T : M →M such that γ = (id× T )#µ and so, T#µ = ν.

The following stability result on optimal couplings can be found in Proposition
7.1.3 [7].



OPTIMAL TRANSPORT AND LARGE NUMBER OF PARTICLES 1401

Theorem 2.2. Assume {µn}n, {νn}n ⊂ P2(M) converge narrowly to µ, ν re-
spectively and γn ∈ Γo(µn, νn). Then, {γn}n is narrowly relatively compact in
P2(M ×M) and any narrow limit point belongs to Γo(µ, ν).

3. Uniqueness of ODEs in the Wasserstein space.

3.1. Properties of curves in the Wasserstein space.

Definition 3.1. Let (S,dist) be a metric space. A curve t ∈ (a, b) 7→ σt ∈ S is 2–

absolutely continuous if there exists β ∈ L2(a, b) such that dist(σt, σs) ≤
∫ t
s
β(τ)dτ

for all a < s < t < b. We then write σ ∈ AC2(a, b;S). For such curves the limit
|σ′|(t) := lims→t dist(σt, σs)/|t − s| exists for L1–almost every t ∈ (a, b). We call
this limit the metric derivative of σ at t. It satisfies |σ′| ≤ β L1–almost everywhere
(cf. e.g. [7]).

Remark 1. (i) If σ ∈ AC2(a, b;S), since |σ′| ∈ L2(a, b) and dist(σs, σt)

≤
∫ t
s
|σ′|(τ)dτ for a < s < t < b, we can apply Hölder’s inequality to conclude

that dist2(σs, σt) ≤ c|t− s| where c =
∫ b
a
|σ′|2(τ)dτ.

(ii) It follows from (i) that σ is continuous and so, since [0, T ] is a compact set,
so is {σt| t ∈ [a, b]}, the range of σ. In particular the range of σ is a bounded set

and if s ∈ S, by the triangle inequality dist(σs, s) ≤
√
c|s− a|+ dist(σa, s).

The proof of the following proposition can be found in [7] (cf. [43] when M = Td).

Proposition 1. If σ ∈ AC2(a, b;M) then there exists a Borel map v : (a, b)×M →
RD such that vt ∈ L2(σt) for L1–almost every t ∈ (a, b), t → ||vt||σt belongs to
L2(a, b) and

∂tσ +∇ · (σv) = 0

in the sense of distributions: for all φ ∈ C∞c ((a, b)×M),∫ b

a

∫
M

(
∂tφ+ 〈∇φ,v〉

)
dσt dt = 0. (3.1)

We refer to v as a velocity for σ.
Furthermore, one can choose v such that vt ∈ TσtP2(M) and ||vt||σt = |σ′|(t)

for L1–almost every t ∈ (a, b). In that case, for L1–almost every t ∈ (a, b), vt is
uniquely determined. We denote this velocity σ̇ and refer to it as the velocity of
minimal norm, since if w is any other velocity for σ then ||σ̇t||σt ≤ ||wt||σt for
L1–almost every t ∈ (a, b).

Assuming v is the velocity of minimal norm for σ then for L1–almost every
t ∈ (a, b)

lim
h→0

W2

(
σt+h, (id+ hvt)#σt

)
|h|

= 0. (3.2)

Remark 2. Suppose {σn}n ⊂ AC2(a, b;M). By definition of |(σn)′|

sup
n∈N

∫ b

a

|(σn)′|2(t)dt <∞

if and only if there are velocities vn : (a, b)×M → RD for σn such that

sup
n∈N

∫ b

a

||vn||2σnt dt <∞.

The following proposition is a consequence of Propositions 3 and 4 of [40].
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Proposition 2. Suppose ν ∈ P2(M), {σn}n ⊂ AC2(a, b;M) and

sup
n∈N

W2(σn0 , ν), sup
n∈N

∫ b

a

|(σn)′|2(t)dt <∞.

Then there exist σ ∈ AC2(a, b;M) and an increasing sequence of integers {nk}k
such that for all t ∈ [a, b], {σnkt }k converges narrowly to σt. Furthermore, we have

lim inf
k→∞

∫ b

a

|(σnk)′|2(t)dt ≥
∫ b

a

|σ′|2(t)dt. (3.3)

Lemma 3.2. (i) Let σi ∈ AC2(a, b;P2(M)) and let vi be velocities for σi (i = 1, 2).
Set

g(t) = W2(σ1
t , σ

2
t ).

Then g ∈ W 1,2(a, b) and the distributional derivative of 1/2g2 satisfies almost ev-
erywhere

1

2
(g2)′(t) ≤

∫
M×M

〈v1
t (x)− v2

t (y), x− y〉γt(dx, dy) (3.4)

for any γt ∈ Γo(σ
1
t , σ

2
t ).

Proof. let v̄i be velocities of minimal norm for σi (i = 1, 2). Since

||v̄1
t ||σ1

t
+ ||v̄2

t ||σ2
t
≤ ||v1

t ||σ1
t

+ ||v2
t ||σ2

t
=: β(t),

if a ≤ t1 ≤ t2 ≤ b, by the triangle inequality and Remark 1 (i)

g(t1) ≤W2(σ1
t1 , σ

1
t2) + g(t2) +W2(σ2

t2 , σ
2
t1) ≤ g(t2) +

∫ t2

t1

β(t)dt.

Interchanging the role of t1 and t2 we conclude that |g(t2) − g(t1)| ≤
∫ t2
t1
β(t)dt.

This proves that g ∈W 1,2(a, b). Hence, 1/2g2 is W 1,1(a, b), its pointwise derivative
exists and coincides almost everywhere with its distributional derivative.

Recall that the set N of t ∈ (a, b) such that Equation (3.2) fails to hold for either
(σ1, v̄1) or (σ2, v̄2) is of null measure. Let t ∈ (a, b) \ N . For |h| small enough, by
the triangle inequality

g(t+h) ≤W2(σ1
t+h, (id+hv̄1

t )#σ
1
t )+ ḡ(h)+W2((id+hv̄2

t )#σ
2
t , σ

2
t+h) = ḡ(h)+o(h),

where

ḡ(h) = W2((id+ hv̄1
t )#σ

1
t , (id+ hv̄2

t )#σ
2
t ).

Hence,

g2(t+ h) ≤ ḡ2(h) + o(h). (3.5)

Let γ ∈ Γo(σ
1
t , σ

2
t ) and define the Borel measure

γh =
(

(id+ hv̄1
t )× (id+ hv̄2

t )
)

#
γ.

We have

γh ∈ Γ
(
(id+ hv̄1

t )#σ
1
t , (id+ hv̄2

t )#σ
2
t

)
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and so,

ḡ2(h) ≤
∫
M×M

|w − z|2γh(dw, dz)

=

∫
M×M

|x+ hv̄1
t (x)− y − tv̄2

t (y)|2γ(dx, dy)

= g2(t) + 2h

∫
M×M

〈x− y, v̄1
t (x)− v̄2

t (y)〉γ(dx, dy) +O(h2). (3.6)

If t ∈ (a, b) \ N and g2 is differentiable at t, Equations (3.5) and (3.6) imply

1

2
(g2)′(t) ≤

∫
M×M

〈v̄1
t (x)− v̄2

t (y), x− y〉γt(dx, dy). (3.7)

Since ∇·
(
σit(v

i
t− v̄it)

)
= 0 we combine Proposition 8.5.4 of [7] and (3.7) to conclude

that (3.4) holds.

3.2. Uniqueness of solutions of ODEs driven by vector fields on P2(M).
Let O be a subset of P2(M) and let X be a vector field on O in the sense that for
each µ ∈ O, X(µ) ∈ L2(µ). We assume that X is continuous in the sense that for
each Y ∈ Cb(M,RD)

µ→ Λµ(Y ) = 〈X(µ), Y 〉µ is contintuous. (3.8)

We further assume that

m := sup
µ∈O
||X(µ)||L1(µ) <∞. (3.9)

Remark 3. Suppose Equation (3.8) holds and let σ ∈ AC2(0, T ;P2(M)).

(i) We have

m := sup
t∈[0,T ]

||X(σt)||L1(σt) <∞.

(ii) If Z ∈ Cr(0, T ;Cb(M,RD)) then A : t→ A(t) = Λσt(Z(t, ·)) is continuous.

Proof. (i) Consider the linear maps

λt : Cb(M,RD)→ R, Y → Λσt(Y ).

By Remark 1 and Equation (3.8) t→ λt(Y ) is continuous as the composition of two
continuous functions and so it is bounded on the compact set [0, T ]. By the uniform
boundedness principle

∞ > sup
t∈[0,T ]

||λt||L(Cb(M,RD)) = sup
t∈[0,T ]

||X(σt)||L1(σt).

(ii) Assume that Z ∈ Cr(0, T ;Cb(M,RD)). We will only show that A is contin-
uous at every t ∈ (0, T ) since the proof of that case can easily be adapted to the
cases t = 0 or t = T. For |h| small enough, we have

A(t+ h) = λt+h(Z(t, ·)) + λt+h(Z(t+ h, ·)− Z(t, ·)), (3.10)

lim sup
h→0

|λt+h(Z(t+ h, ·)− Z(t, ·))| ≤ lim sup
h→0

m||Z(t+ h, ·)− Z(t, ·)||Cb(M,RD) = 0

(3.11)
and

lim
h→0

λt+h(Z(t, ·)) = λt(Z(t, ·)). (3.12)

We combine (3.10–3.12) to conclude the proof of (ii).
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Remark 4. Let ω∗ be a real valued Borel function on [0,∞), let µ1, µ2 ∈ O and
let γ ∈ Γo(µ

1, µ2). Thanks to the Cauchy–Schwarz inequality, a sufficient condition
to have∫

M×M
〈X(µ1)(x)−X(µ2)(y), x− y〉γ(dx, dy) ≤ ω∗(W2(µ1, µ2))W2(µ1, µ2) (3.13)

is ∫
M×M

|X(µ1)(x)−X(µ2)(y)|2γ(dx, dy) ≤ ω2
∗(W2(µ1, µ2)).

Theorem 3.3. Let ω∗ be a real valued Borel function on [0,∞) such that ω∗(y) >
ω∗(0) = 0 for all y ∈ [0,∞) and for some a ∈ (0,∞)∫ a

0

dy

ω∗(y)
=∞. (3.14)

Assume that for every µ1, µ2 ∈ O there exists γ ∈ Γo(µ
1, µ2) such that (3.13) holds.

If σi ∈ AC2(0, T ;O) and X(σit) : (0, T )×M → RD are velocities for σi (i = 1, 2),
then σ1 = σ2 on [0, T ] provided that σ1(0) = σ2(0).

Proof. We are to prove that G ≡ 0, where

G(t) = W 2
2 (σ1

t , σ
2
t ).

By Lemma 3.2, G ∈ W 1,2(a, b) and its distributional derivative, which coincides
almost everywhere with its pointwise derivative satisfies

Ġ(t) ≤ 2

∫
M×M

〈X(σ1
t )(x)−X(σ2

t )(y), x− y〉γt(dx, dy)

≤ 2ω∗

(√
G(t)

)(√
G(t)

)
= ω

(
G(t)

)
, (3.15)

for any γt ∈ Γo(σ
1
t , σ

2
t ). Here we have set ω(y) = 2

√
yω∗(
√
y) for y ≥ 0. Observe

that ω is a nonnegative Borel function on [0,∞) such that ω(y) > ω(0) = 0 for
y > 0. Thanks to Lemma 8.1, Equations (3.14) and (3.15), together with the fact
that G(0) = 0, imply G ≡ 0 on [0, T ].

Remark 5. In fact one can reach the conclusions of Theorem 3.3 under weaker
assumptions. More precisely, let ω∗ be a real valued Borel function on [0,∞) such
that ω∗(y) > ω∗(0) = 0 for all y ∈ [0,∞) and for some a ∈ (0,∞) Equation (3.14)
holds. Suppose σi ∈ AC2(0, T ;O) and X(σit) : (0, T ) ×M → RD are velocities for
σi (i = 1, 2). Suppose there exists ā > 0 such that (3.13) holds for all µ1, µ2 ∈ O
satisfying

W2(µ1, σ1
0), W2(µ2, σ2

0) ≤ ā,

and some γ ∈ Γo(µ
1, µ2). If σ1

0 = σ2
0 then σ1 = σ2 on [0, T ].

3.3. Examples. We consider setsO ⊂ P(M) when M = Td or M = Rd, and vector
fields X defined on O ⊂ P2(M). We give examples of existence and uniqueness of
solutions for some well–known initial value problem problems of the form

σ0 = µ, ∂tσ +∇ · (σX(σ)) = 0 in D′
(

(0, T )× Td
)
. (3.16)
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Example 3.4 (A trivial example). When

X(µ) =

∫
M

∇(V +W ∗ µ)dµ.

and ∇V,∇W : M → Rd are Lipschitz functions then X satisfies (3.8), (3.9) and
(3.13) with O = P2(M).

The following result is a well-kown one, due to V. Yudovich [68], but we present
a proof based on Theorem 3.3.

Example 3.5 (2-d Euler incompressible systems in terms of vorticities). Let m be
a positive real number and let O be the set of probability measures µ on T2 such
that µ = %L2, and −m ≤ % − 1 ≤ m. Define φµ such that 4φµ = % − 1 on Td so
that ∇φµ is uniquely determined. Set

X(µ) = (∇φµ)⊥.

For all T > 0 (3.16) admits a unique solution t→ σt ∈ O.

Proof. Here, we only deal with the issue of uniqueness. For a constant Cm which
depends only on m (cf. e.g. [62] Proposition 5.2)

||X(µ1)−X(µ2)||L2(T2) ≤ CmW2(µ1, µ2). (3.17)

Therefore, since W2 ≤ 1/
√

2, Equation (3.9) holds.
Set

H(y) = y ln2 y.

Note that

H increases on [0, e−2], (3.18)

H is concave on [0, e−1], H(0) = 0 and so, if a ∈ [0, e−1] and λ ∈ [0, 1], then

λH(a) = λH(a) + (1− λ)H(0) ≤ H
(
λa+ (1− λ)0

)
= H(λa). (3.19)

Choose 0 < α < e−2. For instance, we can choose α = e−2/2. Let µ1, µ2 ∈ O and
let γ ∈ Γ0(µ1, µ2). We have∫

T2×T2

|X(µ2)(q)−X(µ1)(q)|2γ(dq, dr) =||X(µ2)−X(µ1)||2µ1

≤m||X(µ2)−X(µ1)||2T2 . (3.20)

Thanks to Remark 5 we may assume without loss of generality that

1

− lnW2(µ1, µ2)
< α < e−2. (3.21)

Note that the diameter of T2 is 1/
√

2 and so, W2(µ1, µ2) < 1. Hence, − lnW2(µ1, µ2)
> 0. Increasing the value of Cm if necessary, we have (cf. e.g. [17] chapter 8)

|X(µ)(q)−X(µ)(r)| ≤ Cm|q − r| ln
1

|q − r|2
.

Thus,∫
T2×T2

|X(µ2)(q)−X(µ2)(r)|2γ(dq, dr) ≤ C2
m

∫
T2×T2

H(|q − r|2)γ(dq, dr). (3.22)

Set

A := {(q, r) ∈ T2 × T2, | |q − r| < α}, B := T2 × T2 \A.
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We have

W 2
2 (µ1, µ2) =

∫
T2×T2

|q − r|2γ(q, r) ≥ α2γ(B)

and so,

γ(B) ≤ 1

α2
W 2

2 (µ1, µ2) ≤W 2
2 (µ1, µ2) ln2W 2

2 (µ1, µ2). (3.23)

Set

Dm := C2
m sup
l∈[0,1/

√
2]

l2 ln2 l2.

Since the diameter of T2 is 1/
√

2, we have |q − r| ≤ 1/
√

2 and thus by (3.23),

C2
m

∫
B

H(|q − r|2)γ(dq, dr) ≤ Dmγ(B) ≤ DmW
2
2 (µ1, µ2) ln2W 2

2 (µ1, µ2). (3.24)

Write ∫
A

H(|q − r|2)γ(dq, dr) = γ(A)

∫
A

H
(
|q − r|2

)
γ̃(dq, dr),

where γ̃ = γ/γ(A) is a probability measure. Since H is a concave function, we
apply Jensen’s inequality to conclude that∫

A

H(|q − r|2)γ(dq, dr) ≤ γ(A)H
(∫

A

|q − r|2γ̃(dq, dr)
)
.

Thanks to (3.19) we conclude that∫
A

H(|q − r|2)γ(dq, dr) ≤ H
(∫

A

|q − r|2γ(dq, dr)
)
.

We use that H increases on [0, e−2] (cf. (3.18)) and that by Equation (3.21), W2 ≤
e−e

2 ≤ e−2 to conclude that∫
A

H(|q − r|2)γ(dq, dr) ≤ H
(∫

T2×T2

|q − r|2γ(dq, dr)
)

= H
(
W 2

2 (µ1, µ2)
)
. (3.25)

By (3.24) and (3.25) ∫
T2×T2

|X(µ2)(q)−X(µ2)(r)|2γ(dq, dr)

≤ DmW
2
2 (µ1, µ2) ln2W 2

2 (µ1, µ2)

+ C2
mH

(
W 2

2 (µ1, µ2)
)

=
(Dm

4
+ C2

m

)
H
(
W 2

2 (µ1, µ2)
)
. (3.26)

By (3.17), (3.20) and (3.26)∫
T2×T2

|X(µ2)(r)−X(µ1)(q)|2γ(dq, dr) ≤ 2
(Dm

4
+ C2

m

)
H
(
W 2

2 (µ1, µ2)

+ 2mC2
mW

2
2 (µ1, µ2), (3.27)

which yields (3.8). Thanks to (3.27), Remark 4 yields (3.13) if we set

ω∗(t) = t
√

2

√
mC2

m +
(Dm

4
+ C2

m

)
ln2 t.

By Remark 5, Equation (3.16) admits at most one solution t→ σt ∈ O.
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4. One particle Hamiltonian systems. Throughout this section we suppose
that U0 : P(Td)→ R and:

(U1) U0 is differentiable on P(Td) (cf. Definition 6.2) and

sup
µ∈P(Td)

||∇µU0(µ)||C2(Td) < +∞.

(U2) If {µk}k ⊂ P(Td) converges narrowly to µ, then {∇µU0(µk)} converges uni-
formly to ∇µU0(µ) on Td.

Examples include

U0(µ) =

∫
Td

(v0 + w0 ∗ µ)dµ,

where v0, w0 ∈ C3(Td). Using the terminology of [43], (U1–U2) imply that U0 ∈
C1(P(Td)).

We assume that V,W ∈ C3(Td), W is even and C∗ > 0 satisfies

||V ||C3(Td), ||W ||C3(Td), sup
µ∈P(Td)

||∇µU0(µ)||C2(Td) ≤ C∗. (4.1)

We will denote by CV,W a generic constant depending only on V and W. We denote
by πTd : Td × Rd → Td and πRd : Td × Rd → Rd the maps

πTd(q, p) = q, πRd(q, p) = p (q, p) ∈ Td × Rd.

Given T > 0 and σ ∈ AC2

(
0, T,P(Td)

)
we define the one particle Hamiltonian

Hσ(t, q, p) =
|p|2

2
+ V (q) +W ∗ σt(q)

and consider the Hamiltonian vector field

XHσ (t, q, p) =
(
p,−∇

(
V +W ∗ σt

)
(q)
)
.

We have

XHσ ∈ C
(
[0, T ];C2(Td × Rd)

)
,

||∇(q,p)XHσ ||2∞ ≤ d+
(
||∇V ||∞ + ||∇W ||∞

)2
=: s∞ (4.2)

and

sup
σ,T

{
||∇2

(q,p)XHσ ||∞ | σ ∈ AC2(0, T,P(Td)), T ∈ (0, 1]
}
< +∞. (4.3)

Consider the flow, which may be defined globally in time, as the solution of the
initial value problem

Φ̇σt = XHσ (t,Φσt ), Φσ0 (q, p) = (q, p).

4.1. Compactness properties of Hamiltonian flows. Thanks to Equations
(4.2–4.3) the standard theory of Hamiltonian systems ensures the existence of con-
stants C0 and C1 independent of T ∈ (0, 1] such that

||∇Φσt ||∞, ||∇Φ̇σt ||∞, ||∇2Φσt ||∞ ≤ C0 exp(C1t). (4.4)

Furthermore,

|Φ̇σt |2 = |XHσ (·,Φσt )|2 ≤ s∞. (4.5)

The diameter of Td being smaller than
√
d/2, integrating, we have

|Φσ(t, q, p)|2 ≤ d

4
+ |p|2 + Ts∞. (4.6)
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Lemma 4.1. Suppose v is a velocity for σ, and

c = sup
t∈[0,T ]

||vt||σt <∞. (4.7)

Then
||∇(t,q,p)XHσ ||2∞ ≤ s∞ + c2||∇2W ||∞. (4.8)

Proof. We have the distributional derivatives

XHσ (t, q, p) =
(
p,−∇(V +W ∗ σt)

)
and so, since v is a velocity for σ we have

∂tXHσ (t, q, p) =
(

0,

∫
Td
∇2W (q − y)vt(y)σt(dy)

)
.

This, together with (4.2) yields (4.8).

Corollary 1. Suppose σ, σn ∈ AC2(0, T ;P(Td)) and vn is a velocity for σn such
that for each t ∈ [0, T ] {σnt }n converges narrowly to σt. Suppose

c = sup
t,n
{||vnt ||σnt | n ∈ N, t ∈ [0, T ]} <∞.

Then

(i) {XHσn }n converges uniformly to XHσ on [0, T ]× Td × Rd.
(ii) {Φσn}n converges locally uniformly to Φσ on [0, T ]× Td × Rd.

Proof. (i) Since for each t ∈ [0, T ], {σnt }n converges narrowly to σt we obtain that
{∇H̄σn}n converges pointwise to ∇H̄σ. We apply Lemma 4.1 to {XH̄σn }n and use
the compact embedding of W 1,∞([0, T ]× Td

)
into C

(
[0, T ]× Td

)
to conclude that

{XH̄σn }n converges uniformly to XH̄σ on [0, T ]× Td. This proves (i).
(ii) By (4.4–4.6) if K ⊂ Rd then {Φσn}n is precompact for the uniform con-

vergence on [0, T ] × Td × K. If a subsequence of {Φσn}n converges uniformly on
[0, T ]× Td ×K to a function Φ, then by (i) Φ = Φσ.

4.2. The Hamiltonian flows restricted to subsets of the cotangent bundle.
For ν ∈ P(Td), set

Sσ,νt = πTd ◦ Φσt (·,∇µU0(ν)).

Since Φσt (q + l, p) = Φσt (q, p) + l for all q, p ∈ Rd and all l ∈ Zd we conclude that

Sσ,νt (q + l) = Sσ,νt (q) + l. (4.9)

Hence we can view Sσ,νt as a map of Td into Td.
Note that

Ṡσ,νt (q) = ∇µU0(ν) +

∫ t

0

∇(V +W ∗ στ )(Sσ,ντ (q))dτ (4.10)

and
S̈σ,νt = ∇(V +W ∗ σt) ◦ Sσ,νt . (4.11)

We use (U1) and Equations (4.4), (4.11) to obtain

sup
σ,ν,T

{
||∇t,qṠσ,ν ||∞ + ||∇2

qqS
σ,ν ||∞ | T ∈ (0, 1], σ ∈ AC2(0, T ;P(Td)), ν ∈ P(Td)

}
<∞. (4.12)

Remark 6. If t ∈ [0, T ], σ ∈ AC2(0, T ;P(Td)) and ν ∈ P(Td) then Sσ,νt : Rd → Rd
is surjective.
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Proof. Fix arbitrary y ∈ Rd. Choose r > 1 large enough so that Ts∞ < r and
2|y| < r. If q ∈ ∂B2r, the boundary of the closed ball in Rd of radius 2r, centered
at the origin, then by the Mean Value Theorem there exists θ ∈ (0, t) such that

Sσ,νt q = q + tṠσ,νθ q. Hence by Equation (4.5)

|Sσ,νt q| ≥ |q| − ts∞ > 2r − r = r > |y|.
This proves that y 6∈ Sσ,νt (∂B2r) and so, f(t) := deg (Sσ,νt , B2r, y), the topological
degree of Sσ,νt on B̄2R at y, is a well–defined continuous function of t. Since f(t)
assumes only integer values and f(0) = 1, we conclude that f(t) ≡ 1. Thus, y
belongs to the range of Sσ,νt (cf. e.g. [37]).

The identity

Sσ,νt = id+

∫ t

0

Ṡσ,ντ dτ

yields

∇Sσ,νt = Id +

∫ t

0

∇(Ṡσ,ντ )dτ. (4.13)

We combine (4.12) and (4.13) to obtain a constant CU0,V,W such that

||∇Sσ,νt − Id|| ≤ tCU0,V,W . (4.14)

for all t ∈ [0, T ]. Hence there is T∗ ∈ (0, 1] such that if T ≤ T∗ then

det∇Sσ,νt ≥ 1

2
(4.15)

for all σ ∈ AC2(0, T ;P(Td)), ν ∈ P(Td) and all t ∈ [0, T ].

Theorem 4.2. Suppose 0 < T ≤ T∗. Then

(i) Sσ,νt : Rd → Rd is a bijection for σ ∈ AC2(0, T ;P(Td)), ν ∈ P(Td) and
t ∈ [0, T ].

(ii) Denote by Rσ,νt the inverse of Sσ,νt . We have

sup
σ,ν,T

{
||∇(t,q)R

σ,ν ||∞ |σ ∈ AC2(0, T ;P(Td)), ν ∈ P(Td), T ∈ (0, T∗]
}
<∞.

Proof. (i) In light of Remark 6, it suffices to show that if r0 > 0 and y ∈ B̄r0 ,
where B̄r0 is the closed ball of radius r0, then for all r large enough, the equation
y = Sσ,νt q admits at most one solution in B̄2r. By (4.12), ∇(t,q)S

σ,ν is of class

W 1,∞ and so, Sσ,ν is of class C1. Inequality (4.15), combined with the fact that
deg (Sσ,νt , B̄2r, y) = 1 (cf. e.g. [37]), implies the existence of a unique q ∈ B̄2r such
that y = Sσ,νt q. This concludes the proof of (i).

(ii) Since Sσ,νt : Rd → Rd is an invertible function of class C1 with a positive
determinant, its inverse Rσ,νt : Rd → Rd is of class C1. We have

∇Rσ,νt =
(cof∇Sσ,νt )T

det∇Sσ,νt

(
Rσ,νt

)
, Ṙσ,νt = −∇Rσ,νt Ṡσ,νt

(
Rσ,νt

)
.

Hence, exploiting (4.10), (4.12), (4.14) and (4.15) one concludes the proof of (ii).

We define

vσ,νt y = Ṡσ,νt

(
Rσ,νt y

)
t ∈ [0, T ], y ∈ Rd.

Using (4.5), (4.12) and Theorem 4.2 (ii) we conclude that

sup
σ,ν,T

{
||∇(t,q)v

σ,ν ||∞ |σ ∈ AC2(0, T ;P(Td)), ν ∈ P(Td), T ∈ (0, T∗]
}
<∞. (4.16)
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Lemma 4.3. Suppose {νn}n ⊂ P(Td) converges narrowly to ν and 0 < T ≤ T∗.
Suppose {σ}∪{σn}n ⊂ AC2(0, T ;P(Td)), {σnt }n converges narrowly to σt for every
t ∈ [0, T ] and

sup
n

∫ T

0

|(σn)′|2(t)dt <∞.

Then {Sσn,νn}n converges uniformly to Sσ,ν on [0, T ]×Td and {vσn,νn}n converges
uniformly to vσ,ν on [0, T ]× Rd.

Proof. Assumption (U1) ensures that the ranges of the ∇µU0(νn) are contained
in a ball whose radius is independent of n. Next, (U2) and Corollary 1 ensure

that {Sσn,νn}n converges uniformly to Sσ,ν on [0, T ]×Td and {Ṡσn,νn}n converges

uniformly to Ṡσ,ν on [0, T ] × Td. Thus, {Sσn,νn}n converges uniformly to Sσ,ν on

[0, T ]×Rd and {Ṡσn,νn}n converges uniformly to Ṡσ,ν on [0, T ]×Rd. We conclude
that {Rσn,νn}n converges uniformly to Rσ,ν on [0, T ] × Td and so, it converges
on [0, T ] × Rd. These facts show that {vσn,νn}n converges uniformly to vσ,ν on
[0, T ]× Rd.

5. Many particle Hamiltonian systems. As in Section 4 we assume throughout
this section that

(U1) and (U2) hold, together with (4.1).

We define on P(Td)

V(µ) =

∫
Td
V dµ, W(µ) =

1

2

∫
Td
W ∗ µdµ.

We define the Lagrangian L and the Hamiltonian H

L(µ,v) =
1

2
||v||2µ − V(µ)−W(µ), H(µ,v) =

1

2
||v||2µ + V(µ) +W(µ),

for µ ∈ P(Td), v ∈ L2(µ) and we define the value function

U(t, ν) = inf
(σ,v)

{∫ t

0

L(σs,vs)ds+ U0(σ0) | σt = ν
}
. (5.1)

We also define the costs

Ct0(µ, ν) = inf
(σ,v)

{∫ t

0

L(σs,vs)ds | σ0 = µ, σt = ν
}
. (5.2)

In Equations (5.1–5.2) the infimum is taken over the set of pairs (σ,v) such that
σ ∈ AC2(0, t;P2(Td)) and v is a velocity for σ.

If x1, · · · , xn ∈ Rd we set

Un0 (x1, · · · , xn) = U0

(
µx
)
, where µx :=

1

n

n∑
i=1

δxi .

We further assume that for all integers n ≥ 1

(U3) Un0 ∈ C3
(
(Td)n

)
and for all x1, · · · , xn ∈ Rd

1

n
∇µU0(µx)(xi) = ∇xiUn0 (x1, · · · , xn). (5.3)
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5.1. Uniform estimates for finite dimensional systems. In this subsection
we review results of the theory of finite dimensional dynamical systems which can
be found in [10] or [31] and then provide uniform estimate on dynamical systems
consisting of finitely many indistinguishable particles.

For t ∈ (0, T ] we define

Un(t,x) =
1

n
min
r

{ n∑
i=1

∫ t

0

(1

2
|ṙi|2 − V (ri)− 1

2n

n∑
j=1

W (ri − rj)
)
ds+ Un0 (r(0))

}
,

where the minimum is performed over the set of r ∈ W 1,2
(
0, t; (Td)n

)
such that

r(t) = x. Observe that Un(t,x) is invariant under the permutation of the xi’s and
so, we can define

Un(t, µx) := Un(t,x).

There exists rn ∈ W 1,2
(
0, t; (Td)n

)
which achieves the minimum in Un(t,x). We

have

r̈n,is = −∇V
(
rn,is
)
− 1

n

n∑
i=1

∇W
(
rn,is − rn,js

)
(i = 1, · · · , n). (5.4)

We set

σns =
1

n

n∑
i=1

δrn,is , vns =
1

n

n∑
i=1

ṙn,is δrn,is .

In general, we have 1/nṙn0 belongs to the super differential of Un0 at rn0 . Since Un0 is
assumed to be differentiable we have, thanks to Equation (5.3)

ṙn,i0 = ∇µU0

(
µrn0
)(
rn,i0

)
. (5.5)

Hence,

(rn,it , ṙn,it ) = Φσ
n

t

(
rn,i0 ,∇µU0

(
µrn0
)(
rn,i0

))
(5.6)

and so,

σnt =
(
S
σn,σn0
t

)
#
σn0 and vnt = v

σn,σn0
t . (5.7)

Equations (4.5), (4.6), (5.6) and (5.7) yield

1

n
|ṙnt |2 = ||vσ

n,σn0
t ||2σn ≤ s∞. (5.8)

By the fact that V,W ∈ C3(Td) there exists a constant C > 0 such that

−C ≤ ∇2V,∇2W ≤ C.

If x1, · · · , xn, y1, · · · , yn ∈ Rd permuting the order of the yi’s if necessary, we may
assume that

1

n

n∑
i=1

|xi − yi|2 = W 2
2 (µx, µy).

Set

γn :=
1

n

n∑
i=1

δ(xi,yi).

We have γn ∈ Γo(µ
x, µy). Furthermore,

V(µy)− V(µx) =
1

n

n∑
i=1

V (yi)− 1

n

n∑
i=1

V (xi)
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≥ 1

n

n∑
i=1

〈∇V (xi), yi − xi〉 − C

2n

n∑
i=1

|yi − xi|2

which means

V(µy) ≥ V(µx) +

∫
Td×Td

〈∇µV(µx)(q), r − q〉γn(dq, dr)− C

2
W 2

2 (µx, µy). (5.9)

Similarly,

V(µy) ≤ V(µx) +

∫
Td×Td

〈∇µV(µx)(q), r − q〉γn(dq, dr) +
C

2
W 2

2 (µx, µy). (5.10)

For W, we lose the coefficient 1/2 in front of C to obtain∣∣∣W(µy)−W(µx)−
∫
Td×Td

〈∇µW(µx)(q), r− q〉γn(dq, dr)
∣∣∣ ≤ CW 2

2 (µx, µy). (5.11)

Since P(Td) is a bounded set, Theorem 6.1 yields that U is a κT –Lipschitz function
on [0, T ]×P(Td), where κT depends only on T and the Lipschitz constant of U0. The
bounds in Equations (5.8–5.11) are what is needed to obtain the following standard
theorem with uniform estimates in n.

Theorem 5.1. For t ∈ [0, T ]

(i)

Un(t, σnt ) = Un0
(
σn0
)

+

∫ t

0

(1

2
|(σn)′|2(s)− V(σns )−W(σns )

)
ds

(ii) The Lipschitz constant of Un on [0, T ]× P(Td) is less than or equal to κT .
(iii) If µy ∈ Pn(Td) and t ∈ (0, T ) then there exists γnt ∈ Γo(σ

n
t , µ

y) such that∣∣∣Un(t, µy)− Un(t, σnt )−
∫
Td×Td

〈vnt (q), r − q〉γnt (dq, dr)
∣∣∣ ≤ 4(C + 1)

t
W 2

2 (σnt , µ
y).

Proof. (i) The optimality of rn in Un(T, ·) yields (i).
(ii) The standard theory of Hamiltonian systems ensures that (ii) holds with

uniform estimates resulting from Equation (5.8) and the fact that the diameter of
P(Td) is finite. However, a proof of (ii) in a more general setting has been provided
in Subsection 6.3.

(iii) Under conditions (5.9–5.11) the theory of Hamiltonian systems yields (iii).

By the fact that Pn(Td) ⊂ P(Td) we have that

Un ≥ U on [0, T ]× Pn(Td). (5.12)

Set

Ŭn(s, ν) = inf
t,µ

{
Un(t, µ) + κT

(
|s− t|+W2(µ, ν)

)
| t ∈ [0, T ], µ ∈ Pn(Td)

}
.

Note that Ŭn is a Lipschitz extension of Un over [0, T ] × P(Td), with a Lipschitz
constant less than or equal to κT .
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5.2. Optimal paths and their properties. Fix µ ∈ P(Td). The goal of this
subsection is to construct a special path σ ∈ AC2(0, T ;P(Td)) such that

U(T, µ)− U0(σ0) =

∫ T

0

L(σt,vt)dt

and along which U is differentiable.
We choose a µn = 1/n

∑n
i=1 δxn,i such that {µn}n converges to µ in the W2–

metric (cf. Lemma 8.2). Let {σn}n be the optimal paths obtained in Subsection
5.1. The metric W2 being bounded on P(Td), thanks to Proposition 2 there ex-
ists an increasing sequence of integers {nk}k (depending on µ) and paths σµ ∈
AC2(0, T ;P(Td)) such that for all t ∈ [a, b], {σnkt }k converges narrowly to σµt .
Futhermore, (3.3) holds.

Note that |Ŭn(0, ·)| ≤ ||U0||∞. Since for each Ŭn is κT –Lipschitz, we obtain

that {Ŭn}n is equicontinuous and bounded in [0, T ] × P(Td). The latter set being

compact (cf. [43]), we use the Ascoli–Arzela Theorem to obtain that {Ŭn}n is pre–
compact for the uniform convergence. Any of its points of accumulation will be
κT –Lipschitz.

Theorem 5.2. The following hold:

(i) the sequence {Ŭn}n converges uniformly to U on [0, T ]× P(Td) as n→∞.
(ii) There exists σ ∈ AC2(0, T ;P(Td)) such that(

Sσ,σ0

t

)
#
σ0 = σt

and

U(T, µ) = U0(σ0) +

∫ T

0

L
(
σt,v

σ,σ0

t

)
dt. (5.13)

(iii) vσ,σ0

t is the velocity of minimal norm for σ.
(iv) If ν ∈ P(Td) and t ∈ (0, T ) then there exists γt ∈ Γo(σt, ν) such that∣∣∣U(t, ν)− U(t, σt)−

∫
Td×Td

〈vσ,σ0

t (q), r − q〉γt(dq, dr)
∣∣∣ ≤ 4(C + 1)

t
W 2

2 (σt, ν).

Proof. (i) Let Ŭ be a point of accumulation of {Ŭn}n for the uniform convergence,

so that a subsequence of {Ŭn}n converges to Ŭ . To alleviate the notation we assume

that the whole sequence {Ŭn}n converges to Ŭ and will show that Ŭ = U .
Fix ν ∈ P(Td) and t ∈ [0, T ]. Then choose νn ∈ Pn(Td) such that {νn}n con-

verges to ν in the W2–metric. We use Equation (5.12) to conclude that up to an
appropriate subsequence

Ŭ(t, ν) = lim
n→∞

Un(t, νn) ≥ lim
n→∞

U(t, νn) = U(t, ν). (5.14)

Above, we have used the fact that U is Lipschitz as stated right before Theorem
5.1.

Let δ be an arbitrary positive number and let σ ∈ AC2(0, t;P(Td)) be such that
σt = ν and

U(t, ν) ≥ −δ + U0(σ0) +

∫ t

0

(1

2
|σ′|2(s)−

∫
Td

(V +
1

2
W ∗ σs)dσs

)
ds. (5.15)
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By Lemma 8.2 there exist σ̄n ∈ AC2(0, T ;Pn(Td)) such that

lim
n→∞

sup
s∈[0,t]

W2(σs, σ̄
n
s ) = 0 and lim

n→∞

∣∣∣∫ T

0

|(σ̄n)′|2(s)ds−
∫ T

0

|σ′|2(s)ds
∣∣∣ = 0.

(5.16)
Furthermore, we can find x̄n,i ∈ AC2(0, T,Td) (i = 1, · · · , n) such that

σ̄ns =
1

n

n∑
i=1

δx̄n,i(s), and |(σ̄n)′|2(s) =
1

n

n∑
i=1

| ˙̄xn,i|2(s).

Thus,

Un(t, σ̄nt )− U0(σ̄n0 ) ≤
∫ t

0

(1

2
|(σ̄n)′|2(s)−

∫
Td

(V +
1

2
W ∗ σ̄ns )dσ̄ns

)
ds. (5.17)

We first combine (5.15) and the second identity in (5.16) and then combine the
first identity in (5.16) and (5.17) to obtain

U(t, ν) ≥ −δ + U0(σ0) + lim
n→∞

∫ t

0

(1

2
|(σ̄n)′|2(s)−

∫
Td

(V +
1

2
W ∗ σ̄ns )dσ̄ns

)
ds

≥ −δ + U0(σ0) + lim sup
n→∞

Un(t, σnt )− U0(σn0 )

= −δ + Ŭ(t, σt). (5.18)

Since δ is an arbitrary positive number, (5.14) and (5.18) establish (i).
(ii) We use (5.8), the fact that W2 is uniformly bounded on P(Td) in Proposition

2 to obtain σ ∈ AC2(0, T ;P(Td)) and an increasing sequence of integers {nk}k such
that for all t ∈ [0, T ], {σnkt }k converges narrowly to σt. To alleviate the notation, we
assume that the whole sequence converges. By assumption (U2), {∇µU0(σn0 )}n con-

verges uniformly ∇µU0(σ0) on Td. By Lemma 4.3, {Sσn,νn}n converges uniformly

to Sσ,σ0 on [0, T ] × Td and {vσn,νn}n converges uniformly to vσ,σ0 on [0, T ] × Rd.
By (5.7),

(
Sσ,σ0

t

)
#
σ0 = σt. We use Theorem 5.1 (i) to conclude the proof of (ii).

(iii) The fact that vσ
n,νn is a velocity for σn implies that vσ,σ0 is a velocity for

σ. The optimality condition in Equation (5.13) imposes that vσ,σ0

t is the velocity of
minimal norm for σ.

(iv) Let {νn}n ⊂ P(Td) be a sequence converging narrowly to ν. For t ∈ (0, T ),
Theorem 5.1 (iii) provides us with γnt ∈ Γo(σ

n
t , ν

n) such that∣∣∣Un(t, νn)− Un(t, σnt )−
∫
Td×Td

〈vnt (q), r − q〉γnt (dq, dr)
∣∣∣ ≤ 4(C + 1)

t
W 2

2 (σnt , µ
y).

(5.19)
By Theorem 2.2, there exists a subsequence {γnkt }k (depending on t) that converges
narrowly to some γt ∈ Γo(σt, ν). We use the fact that {Un}n converges uniformly,
that {vσn,νn}n converges uniformly to vσ,σ0 , and (5.19) to conclude the proof of
(iv).

Remark 7. In fact Theorem 5.2 proves the following (we write v instead of vσ,σ0):

(i) For each t ∈ (0, T ), Ut is differentiable at σt,

∇µUt(σt) = vt

and by (4.16), v is Lipschitz.
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(ii) Since σµ satisfies the optimality condition (5.13), it then satisfies the PDEs
(cf. [40])

∂t(σv) +∇ ·
(
σv ⊗ v

)
= −σt∇

(
V +W ∗ σ

)
,

with the initial condition

v0 = ∇µU0(σ0).

6. Value functions and Hamilton Jacobi equations in the sense of dif-
ferentials. In the previous sections we have used that P(Td) is compact for the
Wasserstein metric, a property which fails for P2(Rd). The results obtained in this
section do not require such a compactness property and so, in the sequel M = Rd
or M = Td. We also consider the potential functions which are more general than
the ones considered in the previous sections. We only assume thatW : P2(M)→ R
be a Borel function that is bounded below on bounded sets of

(
P2(M),W2

)
. The

main results of this section are Proposition 5 and Theorems 6.1, 6.4.
If µ ∈ P2(M) and v, ζ ∈ L2(µ), we define

L(µ,v) =
1

2
||v||2µ −W(µ) and H(µ, ζ) =

1

2
||ζ||2µ +W(µ).

For t ∈ (0, T ] we define

U(t, ν) = inf
(σ,v)

{∫ t

0

L(σs,vs)ds+ U0(σ0) | σt = ν
}
, (6.1)

where the infimum is taken over the set of pairs (σ,v) such that σ ∈ AC2(0, t;P2(M))
and v is a velocity for σ.

6.1. Conditions (I) and Lipschitz value function U(t, ·). Assume that U0,W :
P2(M) → R have a modulus of continuity ω ∈ C([0,∞)). In other words, ω is
monotone nondecreasing, ω(0) = 0 ≤ ω(y) for all y ≥ 0 and

|U0(µ1)− U0(µ0)|, |W(µ1)−W(µ0)| ≤ ω
(
W2(µ0, µ1)

)
for all µ0, µ1 ∈ P2(M).

Proposition 3. Assume U has only finite values for t ∈ (0, T ] and µ ∈ P2(M).
Under the assumption that W and U0 have ω as a modulus of continuity, U(t, ·) has
(t+ 1)ω as a modulus of continuity. In particular, if U0 and W are l–Lipschitz then
U(t, ·) is (t+ 1)l–Lipschitz.

Proof. Let ε be an arbitrary positive number and let ν0, ν1 ∈ P2(M). Interchanging
ν0 with ν1 if necessary, we assume without loss of generality that U(t, ν1) ≥ U(t, ν0).
Let σ ∈ AC2(0, t;P2(M)) and let v be a velocity for σ such that σ0 = µ1, σt = ν0

and

U(t, ν0) ≥ −ε+

∫ t

0

L(σs,vs)ds+ U0(σ0). (6.2)

By Lemma 8.3 there exist σ∗ ∈ AC2(0, t;P2(M)) and a velocity v∗ for σ∗ such that
σ∗t = ν1, ∫ t

0

||v∗s ||2σ∗
s
ds ≤

∫ t

0

||vs||2σsds

and for all s ∈ [0, t]

W2(σs, σ
∗
s ) ≤W2(σt, σ

∗
t ). (6.3)
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We have

U(t, ν1) ≤
∫ t

0

(1

2
||v∗s ||2σ∗

s
−W(σ∗s )

)
ds+U0(σ∗0) ≤

∫ t

0

(1

2
||vs||2σs−W(σ∗s )

)
ds+U0(σ∗0).

This, together with (6.3), implies

U(t, ν1) ≤
∫ t

0

(1

2
||vs||2σs −W(σs) + ω

(
W2(σs, σ

∗
s )
))
ds+ U0(σ0) + ω

(
W2(σ0, σ

∗
0)
)
.

(6.4)
We combine (6.2–6.4) to obtain

|U(t, ν1)− U(t, ν0)| ≤ ε+ (t+ 1)ω
(
W2(σt, σ

∗
t )
)

= ε+ (t+ 1)ω
(
W2(ν0, ν1)

)
.

Since ε is an arbitrary positive number, this concludes the proof of the proposition.

6.2. Continuity of (T, µ, ν)→ CT0 (µ, ν) under conditions (II). We suppose W
is a Borel function, bounded from below on balls. We suppose that

lim sup
n→∞

W(µn) ≤ W(µ) (6.5)

for all bounded sequences {µn}n ⊂ P2(M) that converge narrowly to µ. We further
assume there exist constants C0 > 0 and β ∈ [1, 2) such that

W(µ) ≤ C0

(
1 +

∫
M

|x|βµ(dx)
)

(6.6)

for all µ ∈ P2(M).
For ε0 > 0, let Dε0 be a positive number depending only on ε0 and β such that

|x|β ≤ ε0|x|2 +Dε0 . Throughout this subsection we assume that

2C0ε0T
2 < 1/4. (6.7)

Set

λ̄(µ) = C0

(
1 +Dε0 + 2ε0

∫
M

|x|2µ(dx)
)
, λ∗(T, µ) = 4

(
λ̄(µ) +L(µ,~0) +

1

T
U0(µ)

)
.

Since W is bounded from below on bounded sets, there exists a monotone non-
decreasing function Wo ∈ C([0,∞)) such that for each R > 0,

Wo(R) ≥ sup
µ
{−W(µ) |

∫
M

|x|2µ(dx) ≤ R2}. (6.8)

Examples of W include

W(µ) =

∫
M

ϕ(x)µ(dx) +

∫
M×M

φ(x− y)µ(dx)µ(dy),

where ϕ, φ ∈ C1(M) are semiconcave and satisfy

|ϕ(x)| ≤ C0

2
(1 + |x|β) and |φ(x)| ≤ C0

4
(1 + |x|β)

for all x ∈M.

Remark 8. Let σ ∈ AC2(0, T ;P2(M)) be such that v is one of its velocities. We
have

W(σt) ≤ λ̄(µ) +
1

4T

∫ T

0

||vτ ||2στ dτ (6.9)
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and ∫ T

0

L(σt, vt)dt ≥ −T λ̄(µ) +
1

4

∫ T

0

||vt||2σtdt. (6.10)

Let σ ∈ AC2(0, T ;P2(M)) has v as a velocity. First,∫
M

|z|βσt(dz) ≤ Dε0 + ε0

∫
M

|z|2σt(dz). (6.11)

We use Remark 1 and Hölder’s inequality to obtain

W 2
2 (σt, δ~0) ≤ 2W 2

2 (σs, δ~0) + 2T

∫ T

0

||vτ ||2στ dτ. (6.12)

We have by (6.12)∫
M

|x|βσt(dx) ≤ Dε0 + 2ε

∫
M

|x|2σs(dx) + 2Tε0

∫ T

0

||vτ ||2στ dτ. (6.13)

Setting s = T in (6.13) and using (6.6) we conclude that if 2C0ε0T
2 < 1/4, then

(6.9) holds. A direct integration over [0, T ] yields (6.10).

Proposition 4 (Existence of optimal paths and velocity estimate). Suppose W
satisfies (6.5), U0 is bounded below by a constant u− and lower semicontinuous for
the narrow convergence topology. Then Equation (6.1) admits a minimizer (σ,v)
such that v is the velocity of minimal norm for σ and H(σt,vt) is time independent.
We have

W 2
2 (µ, σt) ≤ T 2λ∗(T, µ)− 4Tu−, (6.14)

W 2
2 (σt, δ~0) ≤ 2T 2λ∗(T, µ)− 8Tu− + 2W 2

2 (µ, δ~0). (6.15)

Furthermore,

||vt||2σt ≤ λ∗(T, µ)− 6u−
T

+ 2Wo
(√

2T 2λ∗(T, µ)− 8Tu− + 2W 2
2 (µ, δ~0)

)
+ 2λ̄(µ) +

1

2
λ∗(T, µ). (6.16)

Proof. The proof of Lemma 5.3 [42] can be adapted to obtain existence of a min-
imizer (σ,v). Observe that v must be the velocity of minimal norm and so, by
Proposition 3.11 [41], we may assume without loss of generality that H(σt,vt) is
time independent.

Existence of a minimizer (σ,v) in (6.1) was proved in [41]. Setting

σ∗t = µ, v∗t = ~0

for all t ∈ [0, T ] we have∫ T

0

L(σt,vt)dt+ U0(σ0) = U(t, µ) ≤
∫ T

0

L(σ∗t ,vt)dt+ U0(σ∗0) = TL(µ,~0) + U0(µ).

We exploit (6.10) to conclude that∫ T

0

||vt||2σtdt ≤ Tλ
∗(T, µ)− 4u−. (6.17)

This, together with Remark 1 implies that (6.14) holds. We combine (6.12) (with
σs = µ) with (6.14) to obtain (6.15). Hence, by (6.8) and (6.15)

−W(σt) ≤ Wo
(√

2T 2λ∗(T, µ)− 8Tu− + 2W 2
2 (µ, δ~0)

)
. (6.18)
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We use the first inequality in Remark 8 and (6.17) to conclude that

W(σt) ≤ λ̄(µ) +
1

4
λ∗(T, µ)− u−

T
. (6.19)

By (6.17), the set of t0 ∈ [0, T ] such that

||vt0 ||2σt0 ≤ λ
∗(T, µ)− 4u−

T

is a set of positive measure. Choose such a t0 and use the fact that H(σt,vt) is
independent of t to conclude

||vt||2σt = ||vt0 ||2σt0 + 2
(
W(σt0)−W(σt)

)
≤ λ∗(T, µ)− 4u−

T
+ 2
(
W(σt0)−W(σt)

)
.

This together with (6.18) and (6.19) yields (6.16).

Remark 9 (The discrete case). Suppose W satisfies (6.5), U0 is bounded from
below by a constant u− and is lower semicontinuous for the narrow convergence
topology. For an integer n ≥ 1, µ ∈ Pn(M) we define

Un(t, µ) = min
(σ,v)

{∫ t

0

L(στ ,vτ )dτ + U0(µ) | σt = µ
}
, (6.20)

where the minimum is performed over the set of (σ,v) such that σ ∈ AC2(0, t;
Pn(M)) and v is a velocity for σ. Existence of a minimizer (σ,v) in the finite
dimensional problem (6.20) is obtained by standard methods of the calculus of
variations. As above, H(σt,vt) is time independent and (6.14, 6.15, 6.16) continue
to hold.

Assume σ : [0, 1] → P2(Rd) is a geodesic of constant speed connecting µ to ν.
Then, the velocity v of minimal norm for σ is such that ||vt||σt = W2(µ, ν). Given
ε > 0 we consider the path σε : [0, 1] → P2(Rd) obtained by the reparametrization
σετ = στε−1 . Its velocity of minimal norm vε satisfies vετ = ε−1vτε−1 and so,∫ ε

0

||vετ ||2σετ =
W 2

2 (µ, ν)

ε
. (6.21)

We have
W2(σεt , σ

ε
0) = W2(σtε−1 , σ0) = tε−1W2(µ, ν)

and
W2(σt, δ~0) ≤W2(σt, σ0) +W2(σ0, δ~0) = tW2(σ1, σ0) +W2(σ0, δ~0).

Hence,
W2(σt, δ~0) ≤ 2(W2(σ1, δ~0) +W2(δ~0, σ0)). (6.22)

By (6.22)

−
∫ ε

0

W(σετ )dt ≤ εWo
(

2
(
W2(µ, δ~0) +W2(ν, δ~0)

))
and so, by (6.21)

Cε0(µ, ν) ≤ W 2
2 (µ, ν)

2ε
+ εWo

(
2
(
W2(µ, δ~0) +W2(ν, δ~0)

))
. (6.23)

By (6.10), CT0 never achieves the value −∞ on P2(M)× P2(M).
Assume σ ∈ AC2(0, T ;P2(M)), v is a velocity for σ, σ0 = µ, σT = ν and∫ T

0

L(σt,vt)dt ≤ CT0 (µ, ν) + T.
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By (6.10) ∫ T

0

||vt||2σtdt ≤ 4Tλ(ν) + CT0 (µ, ν) + T. (6.24)

Hence, the set of t ∈ [0, T ] such that

||vt||2σt ≤ 4λ̄(ν) +
CT0 (µ, ν)

T
+ 1 (6.25)

is of positive measure. We use (6.12) and (6.24), then replace ε by T in (6.23) to
obtain

W 2
2 (σt, ν) ≤ T 2 + 4T 2λ(ν) +

W 2
2 (µ, ν)

2
+T 2Wo

(
2
(
W2(µ, δ~0) +W2(ν, δ~0)

))
. (6.26)

Remark 10. Since W satisfies (6.5), as in Proposition 4, (6.1) admits a minimizer
(σ,v). By (6.26), the range of W(σ) is contained in an interval centered at the
origin and whose length l(µ, ν) is a monotone nondecreaasing function of W2(µ, δ~0)+
W2(ν, δ~0). By Proposition 3.11 [41], we may assume without loss of generality that
H(σt,vt) is independent of t. Choose t0 such that (6.25) holds. We have

||vt||2σt = ||vt0 ||2σt0 + 2
(
W(σt0)−W(σt)

)
.

This, together with (6.24-6.25), yields existence of a function R ∈ C
(
[0,∞)2

)
,

monotone, nondecreasing in each of their variables, such that

sup
t∈[0,T ]

||vt||2σt ≤
CT0 (µ, ν)

T
+R

(
T,W2(µ, δ~0) +W2(ν, δ~0)

)
. (6.27)

Proposition 5. The function F : (T, µ, ν)→ CT0 (µ, ν) is continuous on the metric
space S = (0,∞) × P2(M) × P2(M). Suppose U0 : P2(M) → R is continuous,
bounded from below and set

U(T, µ) = inf
ν∈P2(M)

{CT (ν, µ) + U0(ν)} .

Then U is continuous on [0,∞)× P2(M).

Proof. We are to show that F is sequentially lower and upper semicontinuous at
each point (T, µ, ν) ∈ S. Suppose {Tn}n ⊂ (0,∞) converges to T ∈ (0,∞), {µn}n
converges to µ in P2(M) and {νn}n converges to ν in P2(M).

1. Let δ > 0 and let σ ∈ AC2(0, T ;P2(M)) and let v be its velocity of minimal
norm such that

CT0 (µ, ν) >

∫ T

0

L(σt,vt)dt− δ, σ0 = µ, σT = ν. (6.28)

Fix ε > 0 small enough and assume without loss of generality that |T − Tn| < ε.
Then,

CT
n

0 (µn, νn) ≤ Cε0(µn, σε) + CT−εε (σε, σT−ε) + CT
n

T−ε(σT−ε, ν
n). (6.29)

By (6.23)

lim sup
n→∞

Cε0(µn, σε) ≤
W 2

2 (µ, σε)

2ε
+ εWo

(
2
(
W2(µ, δ~0) +W2(σε, δ~0)

))
. (6.30)

Similarly,

lim sup
n→∞

CT
n

T−ε(σT−ε, ν
n) ≤ W 2

2 (σT−ε, ν)

2ε
+ εWo

(
2
(
W2(ν, δ~0) +W2(σT−ε, δ~0)

))
.

(6.31)
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By Remark 1

W 2
2 (µ, σε)

ε
≤
∫ ε

0

||vτ ||2στ dτ,
W 2

2 (σT−ε, ν)

ε
≤
∫ T

T−ε
||vτ ||2στ dτ.

This, together with (6.29–6.31), implies

lim sup
n→∞

CT
n

0 (µn, νn) ≤ lim inf
ε→0+

CT−εε (σε, σT−ε)

≤ lim
ε→0+

∫ T−ε

ε

L(σt,vt)dt

=

∫ T

0

L(σt,vt)dt.

Hence by (6.28)

lim sup
n→∞

CT
n

0 (µn, νn) ≤ CT0 (µ, ν) + δ.

Since δ > 0 is arbitrary, we conclude that F is upper semicontinuous.
2. For each n let σn ∈ AC2(0, Tn;P2(M)) and let vn be its velocity of minimal

norm such that

CT
n

0 (µn, νn) >

∫ Tn

0

L(σnt ,v
n
t )dt− 1

n
, σn0 = µn, σnT = νn. (6.32)

Since {(Tn, µn, νn)}n is bounded in S, (6.23) implies that {CTn0 (µn, νn)}n is bound-
ed above in R. Thus by (6.24) and (6.26), for each δ > 0 small enough, the following
suprema are not only independent of δ but they are finite:

sup
n

∫ T−δ

0

||vnt ||2σnt dt, sup
n,t
{W2(σnt , δ~0) | t ∈ [0, T − δ], n ∈ N} <∞. (6.33)

We refer to Propositions 3 and 4 in [40] to infer the existence of σ ∈ AC2(0, T ;
P2(M)) such that, up to a subsequence which is independent of t, {σnt }n converges
narrowly to σt for each t ∈ [0, T ) and

lim inf
n→∞

∫ Tn

0

||vnt ||2σnt dt ≥ lim inf
n→∞

∫ T−δ

0

||vnt ||2σnt dt ≥
∫ T−δ

0

||vt||2σtdt. (6.34)

Here, v is the velocity of minimal norm for σ. Letting δ tend to 0 in (6.34) we have

lim inf
n→∞

∫ Tn

0

||vnt ||2σnt dt ≥ lim inf
n→∞

∫ T−δ

0

||vnt ||2σnt dt ≥
∫ T−δ

0

||vt||2σtdt. (6.35)

It is apparent that we can define univoquely σT and obtain

σ ∈ AC2(0, T ;P2(M)), σ0 = µ and σT = ν.

By (6.33), {σnt }n,t is a bounded subset of P2(M). Thus, by (6.6), {−W(σnt )}n,t is
bounded from below in R by a certain number b. We then apply Fatou’s Lemma
and use (6.5) to conclude that

lim inf
n→∞

∫ Tn

0

(−W(σnt )−b)dt ≥ lim inf
n→∞

∫ T−δ

0

(−W(σnt )−b)dt ≥
∫ T−δ

0

(−W(σt)−b)dt.

Letting δ tend to 0, we obtain

lim inf
n→∞

∫ Tn

0

−W(σnt ) ≥
∫ T

0

−W(σt)dt. (6.36)
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Thus, combining (6.32) (6.35) and (6.36) we infer that

lim inf
n→∞

CT
n

0 (µn, νn) ≥
∫ T

0

L(σt,vt)dt ≥ CT0 (µ, ν).

Consequently, F is also lower semicontinuous and so, it is continuous.
3. Suppose that T = 0. Then

U(Tn, µn) ≤ CT
n

0 (µn, µn) + U0(µn) ≤ −TnW(µn) + U0(µn).

Since W is bounded from below on bounded sets, we have that {U(Tn, µn)}n is
bounded above in R by a constant which we denote by λ. We first conclude that

lim sup
n→∞

U(Tn, µn) ≤ lim sup
n→∞

{−TnW(µn) + U0(µn)} ≤ U0(µ).

Hence, U is upper semicontinuous at (0, µ).
Let {ηn}n ⊂ P2(M) be such that

λ ≥ U(Tn, µn) ≥ − 1

n
+

∫ Tn

0

L(σnt ,v
n
t )dt+ U0(ηn) ≥ − 1

n
+ CT

n

0 (ηn, µn) + U0(ηn),

where

σn ∈ AC2(0, Tn;P2(M)), σn0 = ηn, and σnTn = µn.

By (6.33) and the fact that U0 is bounded from below, we have that {ηn}n is a
bounded sequence. As above

sup
n

∫ Tn

0

||vnt ||2σnt dt, sup
n
W2(σnt , δ~0) <∞. (6.37)

By Remark 1

W 2
2 (ηn, µn) ≤ Tn

∫ Tn

0

||vnt ||2σnt dt.

We conclude that {ηn}n converges to µ and so, by (6.6), {W(σnt )}n is bounded
from below. Hence,

lim inf
n→∞

U(Tn, µn) ≥ lim inf
n→∞

CT
n

0 (ηn, µn) + U0(ηn)

≥ lim inf
n→∞

−
∫ Tn

0

W(σnt )dt+ U0(ηn)

≥ U0(µ).

Hence, U is also lower semicontinuous at (0, µ) and so, it is continuous there.
4. Arguments similar to those used in steps 1–3 yield that U is continuous at

(T, µ) if T > 0.

6.3. Lipschitz properties of U in all variables under conditions (I) and
(II). Throughout this subsection we assume that

U0,W : P2(M)→ R

are κ–Lipschitz, U0 is lower semicontinuous for the narrow convergence, W satisfies
(6.5) and (6.6). We assume that

T > 0, ε0 > 0, 8κε0 < 1, 8C0ε0T
2 < 1

and Dε0 is such that

|x|β ≤ ε0|x|2 +Dε0
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for all x ∈ M . For each r > 0, we define Sr to be the Cartesian product of [0, T ]
and the closed ball of center δ~0 and radius r in P2(M). The purpose of this section
is to show that the value function U in (6.1) is Lipschitz on Sr.

We will use the fact that U satisfies the following property (cf. Lemma 2.4 [41]):

U(s, µ) = min
σ

{∫ s

t

L(στ ,vτ )dτ + U(t, σt)
}

0 ≤ t < s ≤ T, (6.38)

where, the infimum is performed over the set of (σ,v) such that σ ∈ AC2(t, s;
P2(M)), v is a velocity for σ and σs = µ.

If µ ∈ P2(M),

U(t, µ) ≤ Ct0(µ, µ) + U0(µ) ≤ −tW(µ) + U0(µ). (6.39)

Let σ ∈ AC2(0, t;P2(M)), let v be a velocity for σ and assume that σt = µ. If∫ t

0

L(στ ,vτ )dτ + U0(σ0) ≤ U(t, µ) + t

then by (6.39)∫ t

0

L(στ ,vτ )dτ ≤ −tW(µ) + U0(µ) + t− U0(σ0) ≤ (1−W(µ))t+ κW2(σ0, µ).

We use Remark 1 to conclude that∫ t

0

L(στ ,vτ )dτ ≤ (1−W(µ))t+ κ

∫ t

0

||vτ ||στ dτ

≤ (1−W(µ))t+ κε0

∫ t

0

||vτ ||2στ dτ +
κt

ε0
.

By (6.10)∫ t

0

||vτ ||2στ dτ ≤ 4tλ̄(σt) + 4(1−W(µ))t+ 4κε0

∫ t

0

||vτ ||2στ dτ + 4
κt

ε0
.

Thus, ∫ t

0

||vτ ||2στ dτ ≤ 8tλ̄(µ) + 8(1−W(µ))t+ 8
κt

ε0
. (6.40)

By Remark 1 and (6.40)

W 2
2 (σt, µ) ≤ 8t2λ̄(µ) + 8(1−W(µ))t2 + 8

κ

ε0
. (6.41)

Theorem 6.1. The restriction of U to Sr is a Lipschitz continuous function.

Proof. Recall that by Proposition 3, for each t ∈ [0, T ], U(t, ·) is ((T+1)κ)–Lipschitz.
It remains to show that for each µ ∈ P2(M) such that W2(µ, δ~0) ≤ r, U(·, µ) is
Lipschitz, with a Lipschitz constant independent of µ and depending only on r.

As done in Subsection 6.2, we use (6.40–6.41) and the fact that U0 is lower
semicontinuous for the narrow convergence topology to obtain the following: if
µ ∈ P2(M)) and t ∈ [0, T ], there exists σµ,t ∈ AC2(0, t;P2(M)) and a velocity vµ,t

for σµ,t such that

U(t, µ) =

∫ t

0

L(σµ,tτ ,vµ,tτ )dτ + U0(σµ,t0 )

and

sup
τ,t,µ
{||vµ,tτ ||σtτ | 0 ≤ τ ≤ t ≤ T, W2(µ, δ~0) ≤ r} <∞.
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Hence, by Remark 1

sup
τ,t,µ
{W2(σtτ , µ) | 0 ≤ τ ≤ t ≤ T, W2(µ, δ~0) ≤ r} <∞.

Thus,

s1 = sup
τ,t,µ

{
||vµ,tτ ||σµ,tτ + |L(σtτ ,v

µ,t
τ )|

∣∣ 0 ≤ τ ≤ t ≤ T, W2(µ, δ~0) ≤ r
}
<∞.

Let s ∈ [0, t). By equation (6.38)

U(t, µ) =

∫ t

s

L(σµ,tτ ,vµ,tτ )dτ + U(s, σµ,ts )

and so,

|U(t, µ)− U(s, µ)| ≤
∣∣∣∫ t

s

L(σµ,tτ ,vµ,tτ )dτ
∣∣∣+ |U(s, σµ,ts )− U(s, µ)|. (6.42)

We use the fact that U(s, ·) is (1 + s)κ–Lipschitz and Remark 1 to obtain

|U(s, σµ,ts )− U(s, µ)| ≤W2(σµ,ts , µ) ≤
∫ t

s

||vµ,tτ ||σµ,tτ dτ ≤ s1|t− s|. (6.43)

We combine (6.42) and (6.43) to conclude that

|U(t, µ)− U(s, µ)| ≤ s1|t− s|+ (1 + s)κs1|t− s| ≤ s1|t− s|+ (1 + T )κs1|t− s|.

6.4. Hamilton Jacobi equations. Let V,W ∈ C1(Rd) be such that there exist
β ∈ [1, 2) and C0 > 0 such that

4|W (z)|, 2|V (z)| ≤ C0(|z|2−ε + 1) (6.44)

and assume

W(µ) =

∫
Rd

(
V (x) +W ∗ µ

)
µ(dx).

In this subsection we consider viscosity solutions of the equation

∂tU +H(µ,∇µU) = 0, U(0, ·) = U0. (6.45)

Definition 6.2. Let U : P2(M)→ R∪{±∞}, let µ ∈ P2(M) and let ξ ∈ TµP2(M)
(cf. Section 2).

(i) We say that ξ is in the subdifferential of U at µ and we write ξ ∈ ∂·U(µ) if

U(ν)− U(µ) ≥ sup
γ∈Γo(µ,ν)

∫
M×M

ξ(q) · (r − q)γ(dq, dr) + o
(
W2(µ, ν)

)
∀ν ∈ P2(M).

(6.46)
(ii) We say that ξ is in the superdifferential of U at µ and we write ξ ∈ ∂·U(µ) if
−ξ ∈ ∂·(−U)(µ).

(iii) When ∂·U(µ) and ∂·U(µ) are both nonempty then they are equal and reduce
to a single element (cf. e.g. [41]) which we denote by ∇µU(µ), and refer to as
the Wasserstein gradient of U .

Definition 6.3. Let T > 0 and let U : [0, T )× P2(M)→ R.

(i) We say that U is a viscosity subsolution for (6.45) if U is upper semicontinuous
on [0, T )× P2(M), if for all (t, µ) ∈ (0, T )× P2(M) and all θ, ζ) ∈ ∂·U(t, µ)

U(·, 0) ≤ U0, and θ +H(µ, ζ) ≤ 0. (6.47)
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(ii) We say that U is a viscosity supersolution for (6.45) if U is lower semicontinu-
ous on [0, T )×P2(M), if for all (t, µ) ∈ (0, T )×P2(M) and all (θ, ζ) ∈ ∂·U(t, µ)

U(·, 0) ≥ U0, and θ +H(ζ, µ) ≥ 0. (6.48)

(iii) We say that U is a viscosity solution for (6.45) if U is both a viscosity subso-
lution and a viscosity supersolution.

Denote by Ld the Lebesgue measure on (0, 1)d. Given f ∈ L2
(
(0, 1)d

)
we set

Ū0(f) = U0(f#Ld)

Theorem 6.4. Suppose U0 : P2(M) → R is bounded below and lower semicontin-
uous for the narrow convergence. Let U be the value function in Equation (6.1).
Then:

(i) The infimum in (6.1) is a minimum.
(ii) U is a viscosity subsolution of Equation (6.45).

(iii) Suppose d = 1, Ū0 is Frechet differentiable and λ–convex for some λ ∈ R
and Tλ− < 1. We assume that the gradient of Ū0 is a continuous map of the
Hilbert space L2

(
(0, 1)d

)
into itself. Then U is a viscosity solution of Equation

(6.45).

Proof. (i) It suffices to verify that the assumptions of Proposition 4 are satisfied.
Only (6.5) remains to be checked. However, in fact a statement stronger which we
need in the proof of (ii), can be made. Indeed, By (6.44) and by the fact that β < 2,
W is bounded from below on bounded subsets of P2(M) and

lim
n→∞

W(µn) =W(µ)

whenever {µn}n ⊂ P2(M) is a bounded sequence that converges narrowly to µ. In
particular, W is continuous.

(ii) Inequality (6.44) yields (6.6). Since β < 2 we obtain the existence of e0, e1 > 0
such that 8e0T

2 < π2 and

W(ν) ≤ e0

∫
M

|x|2ν(dx) + e1

for all ν ∈ P2(M). We apply Theorem 3.9-(i) of [41] to conclude the proof of (ii).
(iii) Corollary 5.3 of [41] yields (iii).

Remark 11. We learned from R. Hynd and H-K. Kim that when d ≥ 1 and W ≡ 0,
the value function in Theorem 6.4 is a viscosity solution of Equation (6.45) [53].

7. Metric viscosity solutions. In this section we want to show that with little
effort one can define a notion of a metric viscosity solution, based on local slopes,
for a class of Hamilton–Jacobi equations that only depend on the “length” of the
gradient variable. We present one possible definition but the readers should be free
to experiment with it by possibly choosing different sets of test functions or by
interpreting some terms differently. This section was motivated by [8, 48]. We do
not know if the results here are completely new. N. Gigli mentioned to the second
author a year ago that he had a notion of a viscosity solution for which he was able
to show uniqueness. The second author was also told that L. Ambrosio and J. Feng
are working on a notion of viscosity solution for similar equations and obtained
existence and uniqueness results [4].
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7.1. Definition and comparison. Let (S, d) be a complete metric space which is
a geodesic space. By this we mean that for every x, y ∈ S there exists a geodesic of
constant speed xt, 0 ≤ t ≤ 1, connecting x and y, i.e. a curve such that

x0 = y, x1 = x, d(xs, xt) = |s− t|d(x, y), 0 ≤ t ≤ s ≤ 1.

Let T > 0. We consider an equation{
∂tu+H(t, x, |∇u|) = 0, in (0, T )× S,
u(0, x) = g(x) on S, (7.1)

where H : [0, T ]× S× [0,+∞)→ R is continuous, and |∇u| is the local slope of u.
Let x0 ∈ S be a fixed point.

Following [7, 8, 48, 64], for v : (0, T )×S→ R we define the upper and lower local
slopes of v

|∇+v(t, x)| := lim sup
y→x

[v(t, y)− v(t, x)]+
d(y, x)

, |∇−v(t, x)| := lim sup
y→x

[v(t, y)− v(t, x)]−
d(y, x)

,

(7.2)
and its local slope

|∇v(t, x)| := lim sup
y→x

|v(t, y)− v(t, x)|
d(y, x)

.

It is easy to see that |∇−v| = |∇+(−v)|. We also define

|∇v(t, x)|∗ = lim sup
(s,y)→(t,x)

|∇v(s, y)|.

Equation (7.1) must be interpreted in a proper viscosity sense. We first define a
class of test functions.

Definition 7.1. A function ψ : (0, T )×S→ R is a subsolution test function (ψ ∈ C)
if ψ(t, x) = ψ1(t, x) + ψ2(t, x), where ψ1, ψ2 are Lipschitz on every bounded and
closed subset of (0, T )× S, |∇ψ1(t, x)| = |∇−ψ1(t, x)| is continuous, and ∂tψ1, ∂tψ2

are continuous. A function ψ : (0, T ) × S → R is a supersolution test function
(ψ ∈ C) if −ψ ∈ C.

Lemma 7.2. Let ψ1(t, x) = k(t) + k1(t)ϕ(d2(x, y)), where y ∈ S, ϕ ∈ C1([0,+∞)),
ϕ′ ≥ 0, k, k1 ∈ C1((0, T )), k1 ≥ 0. Then

|∇−ψ1(t, x)| = |∇ψ1(t, x)| = 2k1(t)ϕ′(d2(x, y))d(x, y).

In particular |∇ψ1(t, x)| is continuous and thus the function can be used as the ψ1

part of a test function.

Proof. We have

ψ1(t, z)− ψ1(t, x) = k1(t)ϕ′(d2(x, y))(d2(z, y)− d2(x, y)) + o(d2(z, y)− d2(x, y)).

Therefore by triangle inequality

|∇ψ1(t, x)| ≤ lim sup
z→x

k1(t)ϕ′(d2(x, y))
2d(z, x)d(x, y) + d2(z, x)

d(z, x)

= 2k1(t)ϕ′(d2(x, y))d(x, y).

Let xs, 0 ≤ t ≤ 1 be a geodesic of constant speed connecting x and y, i.e. a
curve such that x0 = y, x1 = x, d(xs, xτ ) = |s − τ |d(x, y). Then d(xs, y) =
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sd(x, y), d(xs, x) = (1− s)d(x, y). Then

|∇−ψ1(t, x)| ≥ lim sup
s→1

k1(t)ϕ′(d2(x, y))
d2(x, y)− d2(xs, y)

d(xs, x)

= lim
s→1

k1(t)ϕ′(d2(x, y))d(x, y)
1− s2

1− s
= 2k1(t)ϕ′(d2(x, y))d(x, y).

This proves the claim since |∇−ψ1(t, x)| ≤ |∇ψ1(t, x)|.

Remark 12. Our choice of test functions is rather arbitrary. All of the results
would still be true if we restricted the class of test functions so that we had enough
test functions to prove comparison principle. In particular we could take the ψ1

part of test functions to be composed of the functions from Lemma 7.2.

We define for r ≥ 0

Hr(t, x, s) := inf
|τ−s|≤r

H(t, x, τ), Hr(t, x, s) := sup
|τ−s|≤r

H(t, x, τ).

Definition 7.3. An upper semicontinuous function u : [0, T ) × S → R is a metric
viscosity subsolution of (7.1) if u(0, x) ≤ g(x) on S, and whenever u−ψ has a local
maximum at (t, x) for some ψ ∈ C, then

∂tψ(t, x) +H|∇ψ2(t,x)|∗(t, x, |∇ψ1(t, x)|) ≤ 0. (7.3)

A lower semicontinuous function u : [0, T )×S→ R is a metric viscosity supersolution
of (7.1) if u(0, x) ≥ g(x) on X, and whenever u − ψ has a local minimum at (t, x)
for some ψ ∈ C, then

∂tψ(t, x) +H |∇ψ2(t,x)|∗(t, x, |∇ψ1(t, x)|) ≥ 0. (7.4)

A continuous function u : [0, T )× S→ R is a metric viscosity solution of (7.1) if it
is both a metric viscosity subsolution and a metric viscosity supersolution of (7.1).

Remark 13. We stated the definition of viscosity solution for equations defined in
the whole space, however we can define metric viscosity subsolutions/supersolutions
in any open subset Q of (0, T )× S by requiring that (7.3)/(7.3) be satisfied when-
ever a local maximum/minimum is in Q. Initial condition is disregarded in such
cases. The definition can also be applied in an obvious way to stationary equations
H(x, u, |∇u|) = 0.

We recall a variational principle of Borwein-Preiss (see [18], Theorem 2.6 and
Remark 2.7 about the result in a metric space) formulated in a form suitable for
us. It can be obtained following the proof of Theorem 2.6 of [18] using the metric

d((t, s, x, y), (t′, s′, x′, y′)) = (|t− t′|2 + |s− s′|2 + d2(x, x′) + d2(y, y′))
1
2 .

We remark that it would be enough for our purposes to use a version of Ekeland’s
variational principle but the perturbation function from Lemma 7.4 is more regular.
Lemma 7.4 was also used in [36].

Lemma 7.4. Let Φ : [0, T ]× [0, T ]× S× S→ [−∞,+∞) be upper semicontinuous
and bounded from above. Let for n ≥ 1, (t̂n, ŝn, x̂n, ŷn) be such that

Φ(t̂n, ŝn, x̂n, ŷn) > sup Φ− 1

n
.
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Then there exist sequences xnk , y
n
k such that d(xnk , x̂n) ≤ 1, d(ynk , ŷn) ≤ 1, k ≥ 1,

points t̄n, s̄n ∈ [0, T ], x̄n, ȳn ∈ S, such that (xnk , y
n
k ) → (x̄n, ȳn), sequences of non-

negative numbers βnk such that
∑+∞
k=1 β

n
k = 1, and quadratic polynomials pn1 , p

n
2 ≥ 0

with |(pn1 )′(t̄n)| ≤ 4/n, |(pn2 )′(s̄n)| ≤ 4/n, such that

Φ(t̄n, s̄n, x̄n, ȳn) > sup Φ− 1

n
and

Φ(t̄n, s̄n, x̄n, ȳn)− 1

n

∞∑
k=1

βnk (d2(x̄n, x
n
k ) + d2(ȳn, y

n
k ))− pn1 (t̄n)− pn2 (s̄n)

≥ Φ(t, s, x, y)− 1

n

∞∑
k=1

βnk (d2(x, xnk ) + d2(y, ynk ))− pn1 (t)− pn2 (s).

for all (t, s, x, y) ∈ [0, T ]× [0, T ]× S× S.

From now on we will restrict our attention to equations{
∂tu+H(|∇u|) + f(x) = 0, in (0, T )× S,
u(0, x) = g(x) on S. (7.5)

We assume that H : [0,+∞)→ R is continuous and

f : S→ R, g : S→ R
are uniformly continuous, i.e. there exists a modulus ω such that

|f(x)− f(y)|+ |g(x)− g(y)| ≤ ω(d(x, y)) for x, y ∈ S. (7.6)

We could assume that f also depends on t but we do not do so for simplicity.
We will only present the proof of comparison for equation (7.5) since it is the

most relevant for the class of Hamilton-Jacobi equations studied in this paper and
since we do not want to make any assumptions about the growth and continuity
of H. Once the basic techniques are in place the proof is not much different from
typical viscosity proofs in finite dimensions [23] or in Hilbert spaces and can be
modified to general equations (7.1) under typical assumptions on H and growth
conditions for sub- and supersolutions. The proof would be much easier if S was
compact (or locally compact) since we could avoid the use of Lemma 7.4.

Theorem 7.5. Let (7.6) hold and H be continuous. Let u be a metric viscosity
subsolution of (7.5) and v be a metric viscosity supersolution of (7.5) satisfying

|u(t, x)|+ |v(t, x)| ≤ K(1 + d(x0, x)) (7.7)

for some K ≥ 0, and

lim
t→0

([u(t, x)− g(x)]+ + [v(t, x)− g(x)]−) = 0 uniformly on bounded sets of S.
(7.8)

Then u ≤ v.

Proof. We first notice that the functions u1(t, x) = e−tu(t, x), v1(t, x) = e−tv(t, x)
are respectively a viscosity subsolution and a viscosity supersolution of the equation{

∂tu+ u+ e−tH(et|∇u|) + e−tf(x) = 0
u(0, x) = g(x).

(7.9)

Let L > 0 be such that ω(s) ≤ 1 + Ls. For 0 < µ < 1 we define

uµ(t, x) = u1(t, x)− µ

T − t
, vµ(s, y) = v1(s, y) +

µ

T − s
.
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Step 1. We will first show that for every µ

lim
R→+∞

lim
r→0

sup
t,s,x,y

{uµ(t, x)− vµ(s, y)− 2Ld(x, y) : |t− s| < r,

d(x0, x) + d(x0, y) < R} < +∞. (7.10)

Let γR ∈ C1([0,+∞)), γR ≥ 0, γ′R ≥ 0, R ≥ 1, be a family of functions such that

lim inf
r→∞

γR(r)

r
≥ 3K for every R ≥ 1, (7.11)

|γ′R(r)| ≤ C for all R ≥ 1, r ∈ [0,+∞), (7.12)

γR(r) = 0 for r ∈ [0, R], R ≥ 1. (7.13)

For R ≥ 1, β > 0, µ > 0 we define the function

ΦR,β(t, s, x, y) = uµ(t, x)− vµ(s, y)− 2L(1 + d2(x, y))
1
2

− γR(d(x0, x))− γR(d(x0, y))− (t− s)2

2β
.

The function Φ is upper semicontinuous on [0, T ]×[0, T ]×S×S and, by (7.7), (7.11),
is bounded from above. If (7.10) is not satisfied, then (7.13) implies that for every
n there exist Rn, (t

i
n, s

i
n, x

i
n, y

i
n) such that d(x0, x

i
n) + d(x0, y

i
n) < Rn, |tin − sin| → 0

as i→ +∞, and uµ(tin, x
i
n)−vµ(sin, y

i
n)−2Ld(xin, y

i
n) ≥ n. Thus for every β > 0, n,

lim supi→+∞ ΦRn,β(tin, s
i
n, x

i
n, y

i
n) ≥ n− 2L, and thus

lim
R→+∞

lim sup
β→0

sup ΦR,β ≥ lim
n→+∞

lim sup
i→+∞

ΦRn,β(tin, s
i
n, x

i
n, y

i
n) =∞. (7.14)

Therefore, Lemma 7.4 applied with n = 1 implies that for large R, there exist
βk, xk, yk, p1, p2 satisfying conditions of Lemma 7.4 such that

ΦR,β(t, s, x, y)−
∞∑
k=1

βk(d2(x, xk) + d2(y, yk))− p1(t)− p2(s)

has a maximum at a point (t̄, s̄, x̄, ȳ) such that

ΦR,β(t̄, s̄, x̄, ȳ) > sup ΦR,β − 1, (7.15)

and hence

u1(t̄, x̄)− v1(s̄, ȳ) ≥ uµ(t̄, x̄)− vµ(s̄, ȳ) ≥ 2Ld(x̄, ȳ). (7.16)

It follows from (7.14) and (7.15) that

lim sup
R→+∞

lim sup
β→0

ΦR,β(t̄, s̄, x̄, ȳ) = +∞. (7.17)

We also notice that since Φ̃R,β is bounded by a constant depending on R,

(t̄− s̄)2

2β
≤ CR

for some constant CR.
Therefore, when (7.15) holds, it is easy to see from (7.6) and (7.8), that 0 <

t̄, s̄ < T for sufficiently small β. Therefore using the definition of viscosity solution
we have

u1(t̄, x̄) +
t̄− s̄
β

+
µ

(T − t̄)2
+ p′1(t̄) + e−t̄Het̄|∇ψ2(x̄)|∗(et̄|∇ψ1(x̄)|) + e−t̄f(x̄) ≤ 0,

v1(s̄, ȳ) +
t̄− s̄
β
− µ

(T − s̄)2
− p′2(s̄) + +e−s̄Hes̄|∇ψ̃2(ȳ)|∗(es̄|∇ψ̃1(ȳ)|) + e−s̄f(ȳ) ≥ 0,
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where

ψ1(x) = 2L(1 + d2(x, ȳ))
1
2 , ψ2(x) = γR(d(x0, x)) +

∞∑
k=1

βkd
2(x, xk),

ψ̃1(y) = −2L(1 + d2(x̄, y))
1
2 , ψ̃2(y) = −γR(d(x0, y))−

∞∑
k=1

βkd
2(y, yk).

The function ψ1 is globally Lipschitz and since from Lemma 7.4 we have d(x̄, xk) ≤ 2
for all k, it is easy to see that |∇ψ1(x̄)| + |∇ψ2(x̄)|∗ ≤ C for some C independent

of R,µ, β. Similarly we have |∇ψ̃1(ȳ)|+ |∇ψ̃2(ȳ)|∗ ≤ C.
Using the continuity of H we thus obtain

u1(t̄, x̄)− v1(s̄, ȳ) + e−t̄f(x̄)− e−s̄f(ȳ) ≤ C1,

where C1 is independent of R,µ, β. It thus follows from (7.6), and (7.16) that

u1(t̄, x̄)− v1(s̄, ȳ) ≤ 1 + C1 + (e−s̄ − e−t̄)f(ȳ) + Ld(x̄, ȳ)

≤ 1 + C1 + (e−s̄ − e−t̄)f(ȳ) +
1

2
(u1(t̄, x̄)− v1(s̄, ȳ)),

and hence
u1(t̄, x̄)− v1(s̄, ȳ) ≤ 2(1 + C1) + 2(e−s̄ − e−t̄)f(ȳ).

Therefore,

Φ(t̄, s̄, x̄, ȳ) ≤ u1(t̄, x̄)− v1(s̄, ȳ) ≤ 2(1 + C1) + 2(e−s̄ − e−t̄)f(ȳ),

which, noticing that for fixed µ,R, the distances d(x0, ȳ) remain bounded, implies

lim sup
R→∞

lim sup
β→0

Φ(t̄, s̄, x̄, ȳ) ≤ 2(1 + C1),

which contradicts (7.17).
Step 2. Suppose that u1(t̃, x̃) − v1(t̃, x̃) > 2ν for some ν > 0 and t̃, x̃. Then the
function

Ψ(t, s, x, y) := uµ(t, x)− vµ(s, y)− d2(x, y)

2ε
− δ(d2(x0, x) + d2(x0, y))− (t− s)2

2β

is upper semicontinuous on [0, T ]× [0, T ]× S× S and bounded from above. Define

mµ,ε,δ,β := sup
t,s,x,y

Ψ(t, s, x, y).

We have mµ,ε,δ,β > 3ν/2 for small µ, ε, δ, β > 0. Thus, for small µ, ε, δ, β > 0 and
large n there exist βnk , x

n
k , y

n
k , p

n
1 , p

n
2 as in Lemma 7.4 such that

Ψ(t, s, x, y)− 1

n

∞∑
k=1

βnk (d2(x, xnk ) + d2(y, ynk ))− pn1 (t)− pn2 (s)

has a maximum at a point (t̄, s̄, x̄, ȳ) such that

Ψ(t̄, s̄, x̄, ȳ) ≥ mµ,ε,δ,β −
1

n
≥ ν. (7.18)

Defining

mµ,ε,δ := lim
r→0
{Ψ̃(t, s, x, y) : |t− s| < r},where Ψ̃(t, s, x, y) = Ψ(t, s, x, y) +

(t− s)2

2β
.

we claim that
mµ,ε,δ = lim

β→0
mµ,ε,δ,β . (7.19)
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To see this let (tr, sr, xr, yr) be such that |tr − sr| < r and

mµ,ε,δ = lim
r→0

Ψ̃(tr, sr, xr, yr).

Then for every β > 0

lim
r→0

Ψ̃(tr, sr, xr, yr) = lim
r→0

Ψ(tr, sr, xr, yr) ≤ mµ,ε,δ,β ,

which implies
mµ,ε,δ ≤ lim

β→0
mµ,ε,δ,β .

Now let (tβ , sβ , xβ , yβ) be such that

mµ,ε,δ,β < Ψ(tβ , sβ , xβ , yβ) + β ≤ Ψ̃(tβ , sβ , xβ , yβ) + β.

Since Ψ̃ is bounded by a constant depending on R, there is a constant C̃R such that

(tβ − sβ)2

2β
≤ C̃R.

This implies

mµ,ε,δ < sup{Ψ̃(t, s, x, y) : |t− s| ≤ (2C̃Rβ)
1
2 }+ β.

Letting β → 0 above it thus follows that

mµ,ε,δ ≥ lim
β→0

mµ,ε,δ,β

which completes the proof of the claim.
Now

mµ,ε,δ,β ≤ Ψ(t̄, s̄, x̄, ȳ) +
1

n
and thus

mµ,ε,δ,β +
(t̄− s̄)2

4β
≤ Ψ(t̄, s̄, x̄, ȳ) +

1

n
+

(t̄− s̄)2

4β
≤ mµ,ε,δ,2β +

1

n
.

This implies

lim
β→0

lim sup
n→+∞

(t̄− s̄)2

β
= 0 for fixed µ, ε, δ. (7.20)

By (7.7) we also have

d(x0, x̄) + d(x0, ȳ) ≤ Rδ for fixed µ, ε, (7.21)

for some Rδ > 0. Therefore, by (7.6), and (7.20), for sufficiently small µ, ε, δ, β, we
must have 0 < t̄, s̄ < T . Now, by (7.18),

d2(x̄, ȳ)

2ε
+ δ(d2(x0, x̄) + d2(x0, ȳ)) +

(t̄− s̄)2

2β
≤ uµ(t̄, x̄)− vµ(s̄, ȳ)

and thus, taking lim supβ→0 lim supn→+∞ above and using (7.10), (7.20) and (7.21),
we obtain for every µ, ε, δ

lim sup
β→0

lim sup
n→∞

d2(x̄, ȳ)

2ε
+ δ(d2(x0, x̄) + d2(x0, ȳ)

≤ lim sup
β→0

lim sup
n→∞

(uµ(t̄, x̄)− vµ(s̄, ȳ))

≤ lim sup
β→0

lim sup
n→∞

2Ld(x̄, ȳ) + C2

≤ lim sup
β→0

lim sup
n→∞

d2(x̄, ȳ)

4ε
+ C3,
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where C2, C3 may depend on µ. This in particular implies that

lim sup
β→0

lim sup
n→+∞

d(x̄, ȳ)

ε
≤ 2

(
C3

ε

) 1
2

, (7.22)

δ(d(x0, x̄) + d(x0, ȳ)) ≤ Cµ
√
δ (7.23)

for some constant Cµ. Using the definition of viscosity solution and Lemma 7.2 we
obtain

u1(t̄, x̄) +
t̄− s̄
β

+
µ

(T − t̄)2
+ (pn1 )′(t̄) + e−t̄Het̄|∇ψ2(x̄)|∗

(
et̄
d(x̄, ȳ)

ε

)
+ e−t̄f(x̄) ≤ 0,

v1(s̄, ȳ) +
t̄− s̄
β
− µ

(T − s̄)2
− (pn2 )′(s̄) + e−s̄Hes̄|∇ψ̃2(ȳ)|∗

(
es̄
d(x̄, ȳ)

ε

)
+ e−s̄f(ȳ) ≥ 0,

where

ψ2(x) = δd2(x0, x) +
1

n

∞∑
k=1

βnk d
2(x, xnk ),

ψ̃1(y) = −δd2(x0, y)− 1

n

∞∑
k=1

βnk d
2(y, ynk ).

In particular, (7.21) and (7.23) give

lim sup
δ→0

lim sup
β→0

lim sup
n→+∞

(|∇ψ2(x̄)|∗ + |∇ψ̃2(ȳ)|∗) = 0.

We now subtract the above inequalities, use the continuity of H, and (7.20), (7.21),
(7.23), (7.22) to get

e−t̄H

(
et̄
d(x̄, ȳ)

ε

)
− e−t̄H

(
et̄
d(x̄, ȳ)

ε

)
+ e−t̄f(x̄)− e−t̄f(ȳ) ≤ − 2µ

T 2
+ σ(δ, β, n),

where lim supδ→0 lim supβ→0 lim supn→+∞ σ(δ, β, n) = 0 for fixed µ, ε. It remains
to take

lim sup
ε→0

lim sup
δ→0

lim sup
β→0

lim sup
n→+∞

in the above inequality and use (7.6), (7.22) to obtain a contradiction.

Corollary 2. Let u be a metric viscosity subsolution of{
∂tu+H(|∇u|) + f1(x) = 0
u(0, x) = g1(x),

(7.24)

and v be a metric viscosity supersolution of{
∂tv +H(|∇v|) + f2(x) = 0
v(0, x) = g2(x),

(7.25)

where f1, g1, f2, g2 satisfy (7.6), H is continuous, and u, v satisfy (7.7) and (7.8)
with g1 and g2 respectively. Then

u− v ≤ sup
x
{g1(x)− g2(x)}+ t sup

x
{f2(x)− f1(x)}. (7.26)

Proof. The result follows from Theorem 7.5 upon noticing that the function

v1(t, x) = v(t, x) + sup
x
{g1(x)− g2(x)}+ t sup

x
{f2(x)− f1(x)}

is a viscosity supersolution of (7.24).
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It is easy to see that the notion of metric viscosity solution has good limiting
properties. In particular it is stable with respect to uniform limits. Moreover, if
the metric space S is locally compact, the method of half-relaxed limits of Barles-
Perthame (see [23]) also works for it.

7.2. Existence of solutions. We first show that a version of Perron’s method can
be applied to produce a viscosity solution of (7.5) without any additional restrictions
on H. Let us first recall that the upper semicontinuous envelope of a function f
is denoted by f∗ and is the least upper semicontinuous function which is greater
than or equal to f . Similarly, the lower semicontinuous envelope of a function f is
denoted by f∗ and is the largest lower semicontinuous function which is less than
or equal to f . We say that a function f has a strict maximum at (t, x) over a
set A ⊂ [0, T ] × S if f(s, y) ≤ f(t, x) for all (s, y) ∈ A and whenever (tn, xn) is a
sequence in A such that f(tn, xn)→ f(t, x) then (tn, xn)→ (t, x). Strict minimum
is defined similarly.

Theorem 7.6. Let (7.6) hold and H be continuous. Let u be a metric viscosity
subsolution of (7.5) and v be a metric viscosity supersolution of (7.5) satisfying
(7.7),

lim
t→0

([v∗(t, x)− g(x)]+ + [u∗(t, x)− g(x)]−) = 0 uniformly on bounded sets of S,
(7.27)

and u ≤ v. Denote

S := {w : u ≤ w ≤ v, w is a metric viscosity subsolution of (7.5)}.
Then

v := sup
w∈S

w

is a metric viscosity solution of (7.5).

Proof. Step 1. Suppose that v∗ − ψ has a maximum at a point (t, x) over some
set A = {(s, y) : |t − s|2 + d2(y, x) ≤ η for some η > 0 and ψ = ψ1 + ψ2 ∈ C.
Replacing ψ(s, y) by ψ(s, y) + (s− t)2 + d2(y, x) we can assume that the maximum
is strict. By the definition of v∗ there exist wn ∈ S and (t̃n, x̃n)→ (t, x) such that
wn(t̃n, x̃n)→ v∗(t, x), and thus

sup
A

(wn − ψ)→ v∗(t, x)− ψ(t, x).

Applying Lemma 7.4 on A, there exist points (tn, xn) ∈ A, and perturbation func-
tions ϕn(s, y) = 1

n

∑∞
k=1 β

n
k d

2(y, xnk ) + pn1 (t) from Lemma 7.4 such that

|∂tϕn(tn, xn)| ≤ 1/n, |∇ϕn(tn, xn)|∗ ≤ 1/n

and such that wn − ψ − ϕn has a maximum over A at (tn, xn), and

sup
A

(wn−ψ)− 1

n
< wn(tn, xn)−ψ(tn, xn) ≤ v∗(tn, xn)−ψ(tn, xn) ≤ v∗(t, x)−ψ(t, x).

Letting n→ +∞ above we thus obtain

lim
n→+∞

(v∗(tn, xn)− ψ(tn, xn)) = v∗(t, x)− ψ(t, x).

Since the maximum at (t, x) was strict this implies (tn, xn)→ (t, x).
We now have

∂tψ(tn, xn) + ∂tϕn(tn, xn) +H|∇ψ̃n(tn,xn)|∗(|∇ψ1(tn, xn)|) + f(xn) ≤ 0, (7.28)



OPTIMAL TRANSPORT AND LARGE NUMBER OF PARTICLES 1433

where ψ̃n = ψ2 + ϕn. It follows from the definition that

|∇ψ̃n(tn, xn)|∗ ≤ |∇ψ2(tn, xn)|∗ + |∇ϕn(tn, xn)|∗.

Therefore

lim sup
n→+∞

|∇ψ̃n(tn, xn)|∗ ≤ lim sup
n→+∞

|∇ψ2(tn, xn)|∗ +
1

n
≤ |∇ψ2(t, x)|∗, (7.29)

where we used the upper semicontinuity of |∇ψ2|∗. It is not difficult to see that
since H is continuous, the function Hr(s) is continuous in r, s (and hence uniformly
continuous on bounded sets) and is non-increasing in r. It thus remains to let
n→ +∞ in (7.28) and use (7.29) to get

∂tψ(t, x) +H|∇ψ2(t,x)|∗(|∇ψ1(t, x)|) + f(x) ≤ 0.

It now follows from Theorem 7.5 that v∗ ≤ v and hence v = v∗ ∈ S.
We remark that it is obvious from the definition of metric viscosity subsolution

that the maximum of two metric viscosity subsolutions in any open subset of (0, T )×
S is a metric viscosity subsolution, a fact which we will use in Step 2.
Step 2. If v∗ is not a viscosity supersolution then there exist (t, x) and ψ =
ψ1 + ψ2 ∈ C such that v∗ − ψ has a local minimum at (t, x) and

∂tψ(t, x) +H |∇ψ2(t,x)|∗(|∇ψ1(t, x)|) + f(x) < −2ε. (7.30)

for some ε > 0. If v∗(t, x) = v(t, x) then, since v∗ ≤ v, this would mean that v − ψ
has a local minimum at (t, x). But v is a viscosity supersolution and hence (7.30)
could not be true. Therefore we must have v∗(t, x) < v(t, x). Moreover

ψt(s, y) +H |∇ψ2(s,y)|∗(|∇ψ1((s, y)|) + f(y) < −ε if |t− s|2 + d2(x, y) < r2 (7.31)

for some t > r > 0. Without loss of generality we can assume that v∗(t, x)−ψ(t, x) =
0 and the minimum is strict. Therefore, by possibly making r smaller, there exists
0 < η such that v∗(s, y) > ψ(s, y)+η for r2/2 ≤ |t−s|2 +d2(x, y) < r2 and ψ+η < v
if |t− s|2 + d2(x, y) < r2 . Define a function

w(s, y) =

{
max(ψ + η, v) if |t− s|2 + d2(x, y) < r2,
v otherwise.

We claim that w is a viscosity subsolution of (7.5). To prove this it is enough to
show that the function ψ (and hence ψ + η) is a viscosity subsolution of (7.5) in

{(s, y) : |t− s|2 + d2(x, y) < r2}. Let then ψ− ψ̃ have a local maximum at (s, y) for

some ψ̃ = ψ̃1 + ψ̃2 ∈ C. Then obviously ∂tψ̃(s, y) = ∂tψ(s, y) and

|∇+(ψ1 − ψ̃1)(s, y)| ≤ |∇+(ψ̃2 − ψ2)(s, y)| ≤ |∇(ψ̃2 − ψ2)(s, y)|. (7.32)

Therefore

|∇+(ψ̃2 − ψ2)(s, y)|

≥ lim sup
z→y

[(ψ1 − ψ̃1)(s, z))− (ψ1 − ψ̃1)(s, y))]+
d(z, y)

≥ lim sup
z→y

[ψ1(s, z))− ψ1(s, y)]+
d(z, y)

− lim sup
z→y

|ψ̃1(s, z)− ψ̃1(s, y)|
d(z, y)

= |∇+ψ1(s, y)| − |∇ψ̃1(s, y)| = |∇ψ1(s, y)| − |∇ψ̃1(s, y)|.
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Likewise we obtain

|∇+(ψ̃2 − ψ2)(s, y)| ≥ |∇+(−ψ̃1)(s, y)| − |∇ψ1(s, y)|
= |∇−ψ̃1(s, y)| − |∇ψ1(s, y)|
= |∇ψ̃1(s, y)| − |∇ψ1(s, y)|.

It thus follows from the above two inequalities and (7.32) that

||∇ψ̃1(s, y)| − |∇ψ1(s, y)|| ≤ |∇(ψ̃2 − ψ2)(s, y)| ≤ |∇ψ2(s, y)|+ |∇ψ̃2(s, y)|

which, together with (7.31), implies

∂tψ̃(s, y) +H|∇ψ̃2(s,y)|∗(|∇ψ̃1((s, y)|) + f(y) < −ε.

Therefore w is a viscosity subsolution of (7.5) and hence w ∈ S (since w ≤ v).
However, it is clear from the definition of w that w(τ, z) > v(τ, z) for some (τ, z)
close to (t, x). This is a contradiction so v∗ must be a viscosity supersolution of
(7.5). Since by Theorem 7.5 we must have v ≤ v∗ it finally follows that v = v∗ = v∗
is a viscosity solution of (7.5).

We remark that under the assumptions u ≤ v and (7.6), condition (7.27) is
equivalent to

lim
t→0

(|v(t, x)− g(x)|+ |u(t, x)− g(x)|) = 0

uniformly on bounded sets of S.

Corollary 3. Let g be Lipschitz continuous and f satisfy (7.6) and be bounded,
and H be continuous. Then there exists a viscosity solution of (7.5).

Proof. We notice that for sufficiently big C, the functions

u(t, x) = −Ct+ g(x), u(t, x) = Ct+ g(x)

are respectively a viscosity subsolution and a viscosity supersolution of (7.5) satis-
fying (7.7) and (7.27). To see this for the subsolution case, suppose that u− ψ has
a local maximum at a point (t, x) for some ψ = ψ1 + ψ2 ∈ C. Then

ψi(t, y)− ψ1(t, x) ≥ (u(t, y)− ψ2(t, y))− (u(t, x)− ψ2(t, x)).

Therefore

|∇ψ1(t, x)| = |∇−ψ1(t, x)|
≤ |∇−(u− ψ2)(t, x)|
≤ |∇u(t, x)|+ |∇ψ2(t, x)| ≤ C1 + |∇ψ2(t, x)|∗,

where C1 is the Lipschitz constant of g. Therefore |∇ψ1(t, x)| − |∇ψ2(t, x)|∗ ≤ C1

and hence

H|∇ψ2(t,x)|∗(|∇ψ1(t, x)|) ≤ sup
0≤s≤C1

H(s) =: C2

which implies that u is a viscosity subsolution if C ≥ C2 + sup f .
The result thus follows from Theorem 7.6.

Let us now consider a simpler case of equation{
∂tu+H(|∇u|) = 0
u(0, x) = g(x),

(7.33)
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where the Hamiltonian H is convex and g is bounded and uniformly continuous on
bounded subsets of S. More precisely, suppose that

H(s) = sup
r≥0
{sr − α(r)}, for s ≥ 0,

where α : [0,+∞) → [0,+∞) is an increasing convex function such that α(0) = 0
and α(r)/r → +∞ as r → +∞. In particular H(0) = 0 and H is increasing. The
solution of (7.33) should be given by the Hopf-Lax formula

u(t, x) = inf
y∈S

{
g(y) + tα

(
d(y, x)

t

)}
. (7.34)

Indeed it was proved in [8, 48] (see also [64]) that u satisfies

d

dt+
u(t, x) +H(|∇u(t, x)|) = 0 for every t > 0, x ∈ S.

We will prove that u is a metric viscosity solution of (7.33). First we observe that,
since the space is geodesic, it is easy to see that u satisfies the semigroup property

u(t+ h, x) = inf
y∈S

{
u(t, y) + hα

(
d(y, x)

h

)}
0 ≤ t < t+ h ≤ T. (7.35)

Theorem 7.7. Under the above assumptions on H and g, the function u given by
(7.34) is a metric viscosity solution of (7.33) on [0,+∞)× S.

Proof. It is standard to see that u is continuous on [0,+∞)× S.
Step 1. Suppose that u − ψ has a local maximum at a point (t, x) for some
ψ = ψ1 + ψ2 ∈ C. Set r > 0. By the definition of test functions, there must exist
points xn such that d(x, xn)→ 0 and

|∇ψ1(t, x)| = |∇−ψ1(t, x)| = lim
n→+∞

ψ1(t, x)− ψ1(t, xn)

d(x, xn)
.

Denote εn = d(x, xn)/r and let s = t− εn. Then by (7.35) we have

ψ(t, x)−ψ(t− εn, xn) ≤ u(t, x)−u(t− εn, xn) ≤ εnα
(
d(xn, x)

εn

)
= εnα(r). (7.36)

Now

ψ(t, x)− ψ(t− εn, xn)

εn
=

ψ(t, x)− ψ(t, xn)

εn
+
ψ(t, xn)− ψ(t− εn, xn)

εn
≥ (|∇ψ1(t, x)| − |∇ψ2(t, x)|+ σ1(n))r

+
1

εn

∫ t

t−εn
∂tψ(s, xn)ds

= (|∇ψ1(t, x)| − |∇ψ2(t, x)|)r + ∂tψ(t, x)

+ σ1(n). (7.37)

where limn→+∞ σ1(n) = 0. Combining (7.36) and (7.37) and letting n → +∞ we
thus obtain for every r > 0

∂tψ(t, x) + (|∇ψ1(t, x)| − |∇ψ2(t, x)|)r − α(r) ≤ 0

This obviously implies that

∂tψ(t, x) +H|∇ψ2(t,x)|(|∇ψ1(t, x)|) ≤ 0.
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Step 2. Suppose that u − ψ has a local minimum at a point (t, x) for some ψ =
ψ1 + ψ2 ∈ C. By (7.35), for every ε > 0 there exists xε, d(x, xε)→ 0 as ε→ 0, such
that

ψ(t, x)− ψ(t− ε, xε) ≥ u(t, x)− u(t− ε, xε) ≥ εα
(
d(xε, x)

ε

)
− ε2. (7.38)

We have

ψ(t, x)− ψ(t− ε, xε)
ε

=
ψ(t, x)− ψ(t, xε)

ε
+
ψ(t, xε)− ψ(t− ε, xε)

ε

≤ (|∇ψ1(t, x)|+ |∇ψ2(t, x)|+ σ2(ε))
d(xε, x)

ε

+
1

ε

∫ t

t−ε
∂tψ(s, xε)ds

= (|∇ψ1(t, x)|+ |∇ψ2(t, x)|+ σ2(ε))
d(xε, x)

ε
+ ∂tψ(t, x) + σ2(ε), (7.39)

where limε→0 σ2(ε) = 0. Combining (7.38) and (7.39) it thus follows

− ε− σ2(ε) ≤ ∂tψ(t, x) + (|∇ψ1(t, x)|+ |∇ψ2(t, x)|+ σ2(ε))
d(xε, x)

ε

− α

(
d(xε, x)

ε

)
≤ ∂tψ(t, x) +H(|∇ψ1(t, x)|+ |∇ψ2(t, x)|+ σ2(ε))

= ∂tψ(t, x) +H |∇ψ2(t,x)|(|∇ψ1(t, x)|+ σ2(ε)).

It remains to let ε→ 0 above to conclude the proof.

We expect that value functions for more general problems, like these studied in
Section 6, are metric viscosity solutions of the associated Hamilton–Jacobi equations
in our, or perhaps slightly different sense. The relationship between the notion of
metric viscosity solution and the notion from Section 6 is also yet to be investigated.

8. Appendix.

8.1. Gronwall type inequality.

Lemma 8.1. Let ω be a nonnegative Borel function defined on [0, a] such that
ω(y) > ω(0) = 0 for y ∈ (0, a). Assume∫ a

0

dy

ω(y)
=∞.

Suppose Q : [0, T ]→ [0, a] is a Lipschitz function such that Q(0) = 0 and Q̇ ≤ ω(Q)
almost everywhere. Then Q ≡ 0 on (0, T ).

Proof. Suppose on the contrary that the open set O = {t ∈ (0, T ) |Q(t) > 0} is not
empty. Let (α, β) be a connected component of O, where 0 ≤ α < β ≤ T. If Q(α) >
0, then α 6= 0 and so, there exists ε > 0 such that (a− ε, β) ⊂ O, which contradicts
the maximality property of (α, β). Hence, Q(α) = 0. Since almost everywhere on

(α, β) we have Q̇ ≤ ω(Q) and ω(Q) > 0 we conclude that if α < t0 < t1 < β then

(t1 − t0) ≥
∫ t1

t0

Q̇

ω(Q)
dt =

∫ Q(t1)

Q(t0)

dy

ω(y)
.
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Thus,

t1 − α ≥
∫ Q(t1)

0

dy

ω(y)
=∞,

which leads a contradiction.

8.2. Shift of a curve in P2(M). Let σ ∈ AC2(0, T ;P2(M)) and let v be a velocity
for σ. The following lemma can be derived from the Appendix in [42].

Lemma 8.2. There exists an increasing sequence of integers {nk}k and paths σk ∈
AC2(0, T ;Pnk(M)) such that vk is a velocity for σk such that

W2(σt, σ
k
t ) ≤ 1

k
and

∣∣∣∫ T

0

||vkt ||2σkt dt−
∫ T

0

||vt||2σtdt
∣∣∣ ≤ 1

k
. (8.1)

Furthermore, we can find xi,k ∈ AC2(0, T,M) (i = 1, · · · , nk) such that

σkt =
1

nk

nk∑
i=1

δxi,k(t).

For almost every t ∈ (0, T )

||vkt ||2σkt =
1

nk

nk∑
i=1

|ẋi,k(t)|2.

We prove the following lemma.

Lemma 8.3. Given ν ∈ P2(M) there exist σ∗ ∈ AC2(0, T ;P2(M)) and a velocity
v∗ for σ∗ such that σ∗T = ν,∫ T

0

||v∗t ||2σ∗
t
dt ≤

∫ T

0

||vt||2σtdt, (8.2)

and for all t ∈ [0, T ]

W2(σt, σ
∗
t ) ≤W2(σT , σ

∗
T ). (8.3)

Proof. Let (σk,vk) be as in Lemma 8.2 and let {yi,k}nki=1 ⊂M be such that

lim
k→∞

W2(νk, ν) = 0, where νk =
1

nk

nk∑
i=1

δyi,k(T ). (8.4)

Reordering {yi,k}nki=1 if necessary, we may assume without loss of generality that

W 2
2 (νk, σkT ) =

1

nk

nk∑
i=1

|yi,k(T )− xi,kT |
2. (8.5)

Set

σ∗,kt =
1

nk

nk∑
i=1

δyi,k(t), where yi,k(t) = xi,k(t)− xi,k(T ) + yi,k(T ).

We have σ∗,k ∈ AC2(0, T ;Pnk(M)) and it has a unique velocity v∗,k such that for
almost every t ∈ (0, T ) (cf. Section 7.3 [42])

v∗,kt (yi,k(t)) = ẏi,k(t).
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For these t

||v∗,kt ||2σ∗,k
t

=
1

nk

nk∑
i=1

|v∗,kt (yi,k(t))|2 =
1

nk

nk∑
i=1

|ẏi,k(t)|2 =
1

nk

nk∑
i=1

|ẋi,k(t)|2 = ||vkt ||2σkt .

(8.6)
Observe that

W(σ∗,kt ) =
1

n2

n∑
i,j=1

W
(

(xi,k(t)−xj,k(t))+(yi,k(T )−yj,k(T ))−(xi,k(T )−xj,k(T ))
)
.

(8.7)
Thanks to (8.5) we conclude that for all t ∈ [0, T ],

W 2
2

(
σkt , σ

∗,k
t

)
≤ 1

nk

nk∑
i=1

|yi,k(t)−xi,k(t)|2 =
1

nk

nk∑
i=1

|yi,k(T )−xi,k(T )|2 = W 2
2 (νk, σkT ).

(8.8)
By the triangle inequality

W2

(
σ∗,kt , σ0

)
≤W2

(
σ∗,kt , σkt

)
+W2

(
σkt , σt

)
+W2

(
σt, σ0

)
.

We use (8.8), the first inequality in (8.1) and Remark 1 to conclude that

W2

(
σ∗,kt , σ0

)
≤W2(νk, σkT ) +

1

k
+

∫ t

0

||vs||σsds ≤ m+ 1 +

∫ T

0

||vs||σsds, (8.9)

where

m = sup
k
W2(νk, σkT ) ≤ sup

k
W2(νk, ν) +W2(ν, σT ) +W2(σT , σ

k
T ) <∞.

By the second inequality in (8.1) and (8.6),

sup
k∈N

∫ T

0

||v∗,ks ||2σ∗,k
s
ds ≤ 1 +

∫ T

0

||vs||2σsds. (8.10)

Passing to a subsequence if necessary and applying the refined version of the Ascoli–
Arzela Theorem in [7] (cf. also Proposition 3.20 [43]) may assume without loss of

generality that there exists σ∗ ∈ AC2(0, T ;P2(M)) such that {σ∗,kt }k converges

narrowly to σ∗t for each t ∈ [0, T ]. Since W2(σ∗,kT , νk) = 0, (8.4) implies that
W2(σ∗T , ν) = 0. We let k tend to ∞ in (8.8) to obtain (8.3).

By (8.1) and (8.6),∫ T

0

||vs||2σsds = lim inf
k→∞

∫ T

0

||vks ||2σks ds = lim inf
k→∞

∫ T

0

||v∗,ks ||2σ∗,k
s
ds. (8.11)

Since ||v∗,ks ||σ∗,k
s
≥ |(σ∗,k)′|(s) almost everywhere (cf. Proposition 1), we first use

(8.11) and then Proposition 3 [40] to conclude that∫ T

0

||vs||2σsds ≥ lim inf
k→∞

∫ T

0

|(σ∗,k)′|2ds ≥
∫ T

0

|(σ∗)′|2ds.

If v∗ is the velocity of minimal norm for σ∗ we observe that we have established
(8.2).
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[7] L. Ambrosio, N. Gigli and G. Savaré, “Gradient Flows in Metric Spaces and in the Space

of Probability Measures,” Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel,
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