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Synopsis
Let Cf, Pf, Qf and Rf be respectively the convex, polyconvex, quasi-convex and rank-one-convex

envelopes of a given function f. If h_”@_c::.lﬂ and f,(£) behaves as |£[” at infinity g € (1, ®), we
show that lim Cf, = Cf,, lim Qf, = Qf,. lim Rf, = Rf,. This is the case for (Pf,), provided that
i p—i il
q#1,...,min (N, M), otherwise liminf Pf,# Pf,. In the last part of this work, we show that
p—q

F(£) = g(1£1) does not imply in general Pf = Qf.

1. Imtroduction

Let f,: R"*™ >R be a Borel measurable function which behaves at infinity as
|£|?, p=1. Let Cf,, Pf,, Qf, and Rf, be, respectively, the convex, polyconvex,
quasiconvex and rank-one-convex envelopes of f,. (For a precise definition, see
the end of the introduction.) We want to study the continuity with respect to p of
these envelopes. As is well known, they are discontinuous at p = 1. We show that
Cf,, Qf, and Rf, are, however, continuous at p>1. (The result for Cf, is
elementary.) In the case of Pf,, we prove that it is discontinuous provided that
p=2,...,min(N, M), and otherwise continuous. We next give two examples.
the first one being elementary. _

ExampLE 1.1. For 0<p <1, let

@ =1&r, 0=p=1, £eRV

We find that
lim inf Cf,(¢) = lim inf Pf,(£) = lim inf Qf,(¢§) = lim inf Rf,(£) =0
p—1 p—1 p—1 p—

< Cfi(§) = Pfi(§) = Qfi(§) = RA(§) = &1

ExampLE 1.2. Recall first that a polyconvex function with a subquadratic
growth is necessarily convex. (See Remark 3.5.) For 1=p <2, £ e R?*?, let

_[1+]g1P if €10,
h@;c :_m_no.

In view of the above remark, we find Pf, = Cf, for every 1=p <2. Kohn and
Strang in [9] proved that Rf,=Qf, = Pf, and Cf,(¢)+ Pf(£) if and only if
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0<|£*+2|der(¢)l <1 and der(£)#0. Computing Cf,, and using the result of
Kohn and Strang:

lim inf Pf, # Pf,.
p—2
We now describe the contents of this paper. In Section 2 we show an
elementary result: for every ¢ e (1, ®), lim Cf, = Cf,,. In Section 3 we show that:
’ pP—q

(1) for every g € (1, ®), ¢ #2, ..., min (N, M) lim Pf, = Pf,;
P—q
(i) in some examples the result is false provided that g € {2, .. .., min (N, M)).

In Section 4 we prove that for every g € (1, =), lim Qf, = Qf,. To achieve this,
p=q

we first approximate Of.(€) by 1/|0| To f(§ +V¢?), where ¢ e WsP(Q)M. (See
[4].) The proof is based on Gehring’s lemma on reverse Holder inequality in [6]
and a result of Giaquinta and Modica in [7]. We deduce, as a byproduct, that
there exist quasiconvex functions f: RV >R for every N, M >1 integers, that
are not polyconvex. (See [14,1].) We also obtain a general method of
constructing such functions. We conclude this section by studying some examples
such as:

F(&) = 1€ + alder(£)I”?, a>0,
and we prove that Pf, # Qf, for p near 2.

In Section 5, we show that for every g € (1, =), lim Rf, = Rf,. To achieve this,
P

we make an additional hypothesis on the family of functions (f,), and assume that
there exists a constant K >0 such that Rf,(€) = f,(€) for every |¢]= K. In some
examples this is satisfied. In Section 6, we turn our attention to the following
question: if f is a function such that F(&) =g(1¢]), does this always imply that
Pf = Qf? Note that in the example of Kohn and Strang (Example 1.2 above)
Pf=Qf,. We show that, in general, if p <2 then Pf, < Qf,. Here, we use an
interesting method (similar to one of Boccardo and Gallouet in an article in
preparation) to obtain strong convergence of a certain weakly convergent
sequence.

We conclude this introduction by giving some definitions used above.

DEeriNiTions 1.3 (see [4]). Let f: R¥™ R be a Borel measurable function

(a) f is said to be convex if JAE+A = A)n)=Af(E) + (1 - A)f(m) for every
& n e RY™ and every A € (0, 1).

(b) fis said to be polyconvex if there exists a function h: R™M 5 R, convex
such that f(£)=h(T(¢)) for every £eRY M, where (N, M) = 3\ cesminv.iny

M\/N
A,q vﬁhv T(¢)=(adj)é, ... » @djminenmyé) and adj & stands for the matrix of all
$ X's minors of £ If N=M =2 then T (&) = (¢, det(£)).

on\mmmma8@0&:5..8::&«# __m_‘?lm + Vo) Zf(£) for every £e RVM,

every Q<= R" (or equivalently for some Q RY) and every ¢ e Wi=(Q)™.
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(d) f is said to be rank-one-convex if f(A+ (1 — >v:NoM_W\Amv +(1=AM)f(n)
i = Ae A
for every &, 7 € RV*M with rank(¢ — n) =1 and every ,
It is a well-established fact, following the work of Morrey [11,12] and later of

Ball [2] that, in general, one has:
f convex= f polyconvex = f quasiconvex = f rank-one-convex.
The different envelopes are defined as:
Cf =sup {g, g =f, g convex},
Pf=sup{g, g =f, g polyconvex},

Of =sup{g, g =f, g quasiconvex},
Rf=sup{g, g =f, g rank-one-convex}.

2. Continuity of Cf, with respect to p

We start with the main result of this section.

THEOREM 2.1. Let [a, B] = (1, ®), F, G, v,>0, C=1 N, M =1 be two infegers.
Let w:[0, ©)—[0, ) with limw(t)=w(0)=0, sup{w(),tc[0,B}=G and

1—0
£,: RV*M R lower semicontinuous, p € [a, B], such that:

€7 =£,(§)SC(1 +|£1") for every pela,B] and every £eRYM, (2.1)

15(8) — () = Nlu_e@ —q) (1 +|E"'7)  for every vy e(0, vo), (2.2)
Y
every £cRVM andevery p,qela,B] with p>gq.
Then

lim Cf, (&) = Cf,(£), forevery £eR™™ andevery qe(a,p). (2.3)
P—q
Before we prove this theorem, let us begin with some remarks.

Remarks 2.2. (a) In general, we have lim Cf, <Cf.. Indeed, if f,(£{)=

p—l

&P, £ e RV*M then 0= lim Cf, <Cf, = f..

\UI'— -, .
(b) Theorem 2.1 is still true if we replace the condition (2.1) by
tants.
a+b €’ =f(£)=C (1 +£”) where aeR b >0 are two cons
(c) To Uzmé (2.3), we will show that |Cf,(£) — Cf,(&)l and [£,(£) — £,(£)] have

the same modulus of continuity.

ExampLEs 2.3. The following examples satisfy the hypotheses of the theorem:

(1)
1+(¢l7 for |£]#0,

NXM,
i@u? for 1e1=0, ¢<%

2
N O =€ +ader(£)"™. EeRYN, a>0.
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We get that (f,), verifies (2.1) and (2.2). Hence Theorem 2.1 leads to
lim Cf, = Cf,, for every ¢ > 1.

p—q

To prove Theorem 2.1, we begin with an elementary lemma.

Lemma 2.4, Let N, M =1 be two integers, a, B (1, ), C>0 a constant and
£: RY*M s R lower semicontinuous such that:

P =f(E)=C( +|£IP) for some pela,B] and every ¢£eRMM.

Then, there exists a constant D >0 depending only on «, B and C such that, for
every ¢, £%, n e RV*M,

Cf(m)=(m, £*) ~ f*(£*), Cf(€)=(& &%)~ f*(¢*) implies |n|=D(1 +|¢)).
(2.4)
Proof. Using (2.1), we get that, for every £* e RV,
C sup ?, w mwvw %P — L = FX(E%) mﬁm £, where p = %. 2.5)
Adding (2.1) and (2.4), we deduce that there exists a constant E >0 such that
1€*= E(1 + |&)). (2.6)

Then (2.1) implies that there exists an s € [0, 1] such that

Cf(m)=(n, £) = f*(E*) =s " + (1 = s)(1 + nI"). )

Hence

[ (s +a-sc-(Zier)

)| =10-91c + pregwyer-om,
or
InI=1(1 = 5)C + (9.
Adding (2.5) and (2.6) to these previous inequalities, we conclude the proof.

We now prove Theorem 2.1.

Proof of Theorem 2.1. Let £ e R¥*™; (2.1) implies that there exists

NXM
>ﬂ....>$§+_m3.:, TR 1 €R .
such that
NM+1 NM+1 NM+1

2 M=1, 3 M&£=¢ and Y ML(E)=CLE).

i=1 i=1 i=1

Let £* e RMM such that Cf,(£) = (£, £%”) — fX(£*7). It is obvious that

CHLUEN =f(&7) and  ChH(EN) =(&7, £¥7) ~ fR(€*"), i=1,...,NM +1.
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By Lemma 2.4, we find that there exists a constant D >0 depending only on
a, B3, C such that

&1=DA+|¢)i=1,..., NM+1 forevery pcela,B]
Then we conclude that there exists a constant H >0 depending only on «, 8, C
such that
H Py 0
IC(8) — Cf(DI = S w(p—q)(1 +e/”*) for every vye(0, vo)

Hence Theorem 2.1 is proved. O

3. Continuity and discontinuity of P, with respect to p
We start with the main result of this section.
THeoreM 3.1. Let [a, B]=(1,®), F, G, vy>0, C=1 and N,M>1 be two
integers. Let w: [0, ©)— [0, ©) with m_lq.w w(t)=w(0)=0, sup{w(t),1€l0, B} =G

and f,: R¥*" — R lower semicontinuous, p € [, B], such that:

7 <£,(£)SC(+1£1P) for every pele, B] and every £eR™™; (3.1)

F
IfA&) = (N =—w(p —q)(1 +|€1""7) for every v<(0, o). (3.2)
Y
every £ e RV*M, and every p, q € [a, B] with p > q. Then
in general lim Pf,<Pf,, for q=2,...,min(N, M) (3.3)
P—q
lim Pf,(¢) = Pf,(&¢), for every
p—q
EeRY™™ and every qe(a,B)q#2,...,min(N,M). (3.4)
Before proving Theorem 3.1, let us begin with some remarks.
Remarks 3.2. (a) In general, we also have lim Pf,<Pf.. Indeed, if

p—1

HE) =1¢)7, £eRV*M then 0= lim Pf, <Pf =f.

p—I1
(b) Theorem 3.1 is still true if we change the condition (3.1) to

a+b &P =f,(£)=C( +|£|P), where aeR, b >0 are two constants.

NotaTion. For £e RYM, geN, adj,(¢) stands for the matrix of all g Xgq
minors of £ (3.5)
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ExaMmpLEs 3.3. (1) Let f,(§)=1é° +a ladj,(£)”, £eRVN, g>0 and
ge{2,3,4,...} We get that (f,)p verifies (3.1) and (3.2). Hence Theorem 3.1

leads to ‘_“5“ Pf,=Pf,,ifq#2,..., min (N, M). We show (see Step 4 of the proof

of Theorem 3.1) that lim Pf, < Pf, for suitable values of a.
pP—q

(2) Let
; 1+g” for
0 for

1€1#0,
1€1=0,

We get that (f,), verifies (3.1) and (3.2). Hence Theorem 3.1 leads to
lim Pf, = Pf,, for every ¢ >1, q #* 2.

P—q
Knowing that Pf, = Cf, for every 0<p <2 and Cf,<Pf, (see [9]), we can
deduce that lim Pf, < Pf,. We also get that lim Pf,=0<Pf,=f.

p—2" p—1

5(6) L £e R

To prove Theorem 3.1, let us now begin with the following lemma:

Lemma 3.4. Let N, M =1 be two integers, p € [1, min (N, M)], C >0 a constant
and f:R¥*M — R lower semicontinuous such that:

1P =, (E)=C(A +€]7)  for every EeRVM.

Then the three following assertions are equivalent:
 fis polyconvex;

« Ao Ae[01), &yl & ERYVY M A =1, M MNR(E)= xAM >_.m_.v (3.6)

i=1

implies
_.nM_ Aif(&) W.AMHU_ >..m..v. 3.7
where
R(€) = (adji(8), - . . » adjp(£)), E€RVY,
r=1 +M AQVAN”AV. and [p) is the integer part of p;
* f(£) =h(R(£)) (3.8)
where for
XeR ™ h(X)= :_;M Aif (&), Aiel0, )& eRVMi=1,...,r M Ai=1,
M_ AiR(&) = \4%

——

-
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Proof. The proof of Lemma 3.4 is a direct adaptation of the proof of the
representation theorem of the polyconvex envelope. (See [4. p. 201, Theorem
1.i). O

Remarks 3.4. (a) We can see that A: R~'+— R is convex.
(b) An immediate consequence of Lemma 3.4 is that a polyconvex function
fiR¥*M R with subquadratic growth is convex.

We now start with the proof of Theorem 3.1.

Proof of Theorem 3.1. We divide the proof into four steps. Let £eRY*Y, and
pela, Bl
Step 1. We prove here that lim sup Pf,(£) = Pf,(§): Let £>0. There exist

P—q

Ay oo Aen €01 6 e &4, €RV*M, such that

T+l T+1 T+1

> a=1, M_ AT(E)=T() and M Aif, (&) < —€ + Pf(&),

‘N;Amv = Ah&.:Amv‘ [N ] h&\..ﬂ.:AZ.EVAMVV. m € __%ZX\S.

S

i=1
(See [4].) Using (3.2), we get

T+1

F
Pf(&)> e+ PL(E) —7 w(p —q) M AL FIEPTY HIET)

for every p €[a, B}. Hence

_wﬂus Pf,(£) = Pf,(£). (3.9)

Step 2. We suppose in this step that g>min (N, M) and prove that

lim inf Pf,(£) Z Pf,(£)- Recalling that f, is lower semicontinuous and verifies (3.1),
p—q
we deduce that for every p > min (N, M) there exist

T+1

2 NxM —
ro . & eR >oar=1,

i=1

>~_n‘ ] >W.«._ m—o. Hu_

such that

T+1 T+l

S NT(E)=T(€) and 2 AL(EN = Pf,(£).

i=1 i=1

Using the fact that there exists a constant D >0 that depends only on N, M such
that
ITEN=D \gp[minNMD - for every i=1,...,7 +1,

adding (3.1) and the fact that p > min (N, M), we can suppose without restriction
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that the sequence (|£7]), is bounded with respect to p. By the fact that f, is lower
semicontinuous and (f,), verifies (3.2), we find that
lim inf Pf,(£) = Pf,(¢§) for every p>min (N, M). (3.10)
pP—q

Step 3. We suppose here that g <min (N, M), ¢#2,...,min(N, M) and
prove that lim inf Pf,(£) = Pf,(£). Using Lemma 3.4, knowing that [p] =[q] for p
p—q

close to g and replacing T(£) by R(¢)=(adji(§),...,adj,(§)), T by

wI_MMF__ AZVA\SVM EEAZ.EVE;EE5@?@505&0?&7@3_Emmﬂro
P/\

integer part of p, we obtain by the same arguments as those we used in Step 2
that

lim inf Pf,(¢) = Pf,(¢) for every p<min(N, M), g#2,...,min (N, M).
P—q
(3.11)

Now (3.9), (3.10) and (3.11) imply that
lim Pf, (&) = Pf,(§) forevery gele, B], g#2,...,min (N, M).
P—q

Step 4. We suppose in this step that g {l,..., min (N, M)} and prove that
lim inf Pf,(£) < Pf,(£).

" Let R(§)=(adj\(), .., adj,,(§)) and f,(§)=|él” +aladj,(£)""a>0.
Using the same arguments as in Step 3, knowing that [p]=q —1 for every

pe(q —1, g) and combining with (3.8) of Lemma 3.4, we get that

lim inf Pf,(£) = v,(£),

pP—q-

where
s+1

%&AMV = :-m AM >m.\QAm..v. >_. € _“O, H._W._ € EZX\S.. — H~ 0

i=1

L,8+1,

M A=13 AR(E) = RE),

e

We can see that the infimum is a minimum.
(i) Applying Lemma 3.4 to f,, we get that for suitable ¢ and a >0 we obtain
that |£|” + a ladj,(£)| > v,(£)- Hence

lim inf Pf,(£) < Pf,(£).
p—q

This completes the proof of Theorem 3.1. T

e

L}
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4. Continuity of Qf, with respect to p
We start with the main theorem of this section.
THEOREM 4.1. Let [a, B]=(1, ), F, G, v,>0, C=1 N, M > 1 be integers and
O={xeRYx|=3,i=1,..., N} Let w: [0, ) [0, ®) with lim w(t) = w(0) =0,

‘I.:
sup{w(t),tel0, B} =G and LIRVY SR lower
bm—a.m__a:n:Sn:

€1” = fp(§) = C(1 +|£17)  for every pela, B]

semicontinuous,

and every £eRYM, (4.1)

1o() = fo(§) = Miw —q)A+1""Y) for every ye(0, o), (42)

_EZXE

every £ e , and every p, q € [a, B] with p > q. Then

056) =int {5 | fe + Vo) sewiri0r| (43)

o
Q]
for every £ e RV*M and every p €[a, B], and

lim Qf,(¢) = Of,(€), for every £eR™M andevery qe(a,B). (4.4)

Before proving this theorem, let us begin with some remarks.

Remarks 4.2. (a) The assumption (4.1) says that f,(£) behaves at infinity as |£]”
and can be replaced by C,(J¢1” — 1) =f,(§) = C(1 + |€]).

(b) The assumption (4.2) stands for “continuity” of f, with respect to p. This
continuity is stronger than the usual continuity and weaker than the uniform
continuity.

(c) (4.3) is the result of (4.1) and the characterisation of the quasiconvex
envelope. (See [4].)

(d) The idea of the proof of (4.4) is the following: for p fixed, we use (4.3) and
approximate Qf,(£) by 1/|Q| [, f,(£ + Vé,) where ¢, e Wi”(Q)". By Gehring’s
lemma, we deduce that (¢,), is bounded in W2 **(Q)" for £ >0 independent of
p. This will lead to (4.4).

ExampLEs 4.3. (a) Let

(1P for 18%0, | .,
imv;o for |£]=0, feR™
(2) Let
L&) =€ +a|det(E)"?, a>2.

Using Theorem 4.1 we show that in Examples 4.3 (1) and (2) Qf, > Pf, = Cf, for
p near 2.
NotaTiON.
* Let R>0, aeR". We define: Qp(a)={xeR", |x,—a|=R, i=1,...,N},
Bg(a)={xeR", 3,5isn (x; — 0, S R?}, Q = 05(0); (4.5)
o forevery xeR", xp =3 sisn x|’ if 1Sp <o
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and |x|,=max {x],i=1,..., N} (4.6)
e dist(x, y) = |x — y|.. for every x, y eR"; 4.7
1
e $ou= _©|_.F u, ug(a) =9$ou,, u llull;=folul for every r=1, (4.8)
every u € L'(Q), every ae Q, and every R >0 “small”;
o RM*V is the set of the N X N real matrices. (4.9)

LemMa 4.4. Let N =2 be an integer, B €(1, ) and Q<R a bounded open set
with Lipschitz boundary. There exists a constant C > 0 depending only on Q and B

such that:
Plu
._‘ _z_\.MGQ _=_:v (4.10)
Q Q

for every p €[1, B), ue W' (Q) with fqu =0 and for p = max {1, (Np)/(N + p)}.

Remark 4.5. Lemma 4.4 is exactly Poincaré’s inequality and Sobolev’s theorem.
We want to show that Sobolev’s constant C corresponding to the embedding of
W'#(Q) to L(Q) remains bounded when p € K =[1, ] =R. This result is not
surprising and is easily proved.

Proof of Lemma 4.4. We divide the proof into two parts.
Part 1. Suppose that 1=p=N/(N-1)=p. Using Sobolev’s embedding
theorem, we find two constants C,, C, >0 depending only on Q such that:

_ P
% _z_mMG_C‘ (\Vu| + _:_vv for every ueW"'(Q), (4.11)
Q Q

Q

% _=_MW~A% _<=_v for every ueW'"'(Q) verifying | u=0. (4.12)
Q Q
(See [3, p- 168] and [12].) By Holder’s inequality,
Pip
ue W' (Q) implies ‘_‘ wl? = (1 + _b_vQ _%V . (4.13)
Q Q

From (4.11), (4.12) and (4.13) we find a constant C, >0 depending only on Q
such that 1=p =p, ue W'?(Q), [qu =0 imply

b ulP = DA b _S._:VE. (4.14)

Part 2. We now carry out an induction on i, and suppose that there exist
constants C,, ..., C, such that

Np

=——<p, i=1,...,ip W (Q mu% =0
b2+€b~ ip, ue (Q) an b:

imply that

plp
[ wr=c(] mar "
0 Q
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Let
ueW(Q), pell, Bl
such that
Np Np Np
u=90, : <p= s and =ma T,|¥.
h N+ (ip+1)p N N +igp B =S N+ (iy+1)p

We find: u, =(Np)/(N + (ip+1)p)<p, u=(Np)/(N+p). By our induction

hypothesis, we get:
(s
[k =c,([ war)™ @.15)
Q Q

Let P: W'?(Q)— W'”(R") be the extension operator. (See [3, pp. 158-162].)
We obtain

hull, = | Pull @y = B IVPull ;o@vy = mﬁ-,%__z l. + [IVu ) (4.16)

with C; depending only on Q and ||u|[, denoting |[u|,«). Using Holder’s
inequality in (4.15) and adding (4.16), we can conclude that there exists a constant
C,+1>0 depending only on Q,B,i, such that: [olul” = C(JalVuly™.
Assuming that C =max{C,,..., C} with (NB)/(N+iB)<p=N/(N—-1), we
obtain the existence of a constant C >0 depending only on Q and 8 such that:
pell, Bl uecW'(Q) and fqu =0 imply £ lul” = C(fa [Vupy™. O

Lemma 4.6. let acRY, R>0 be real, v>1 be an integer. Assume that
Ao=Qr(a), A;={x e R":dist(x, Qr(a)) < (ir)/v}, i=1,...,v. Then there exist
& e CyA), i=1,..., vsuch that
v+1

R

0=¢(x)=1, xecA, d(x)=1xeA _,, Vo= xeA,. (417)

The proof of Lemma 4.6 is elementary.

LemMMa 4.7. Let b, g >1, r>q, N >0 an integer, 8 <1/(a,(q)) = 1/(30%(g — 1))
(g-1/59)) and g, h: @ ={x eR", |x)|=3,i=1,..., N} [0, ®) be two func-
tions such that g € LY(Q) and h € L'(Q). Suppose that for every x, € Q, every
0< R < ldist(x,, Q)

q
L (VINORS
Qr(x0) o Q

wleof g

2r(X0) 2w(x0) Qax(x0)

Then:

A g' = C(1. g)3)M (2™ __w__; .ﬁ g+ % L for every 1 €lq,q+¢),
W Q Q
(4.18)
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where
— i QIJ a:(q) + ax(q) A 5q vﬁ_
e=minyr —q, . a=al(q,b, 0)= ] _ 9N
(-0 23} a=a@.b.0)=" T2 0 a@=2"(775)
(4.19)
ﬁlu?m__az._a.._Mﬁmnﬁ:..Zr (4.20)
1 ] 1 i=k
anTmiz.w&A&uRBmvaﬂw b»n.,uc_ﬁx k=-1,0,1,.. (4.21)
q-1 a(t—q) w
and C(t, HmeT, : . :
) ag—(a—1)y—-1 ag—(a—-1t—1 (422)

Proof. The proof of the above lemma has been given in [7] by Giaquinta and
Modica. It is based on Gehring’s lemma. O

As an illustration, we give the following lemma in the case N =M. For the
general case (N, M >1) see [10].

LemMa 4.8. Let p e[a, Bl=(1, ), C21, N22,0=7n=1 fiRVN>R be a
Borel measurable function, Q ={x eR", [x,|=3, i=1,...,N}, ue wP(Q)N
such that:

6" = f(£)SC(1+1EP)  for every £ e RV, (4.23)

ﬁA>‘=thA>,cv+:‘_. \Vu — Vu|, (4.24)
A

for every A € Q an open set and every v e u + WiP(AYN with F(A, v) = [a f(Vv).
Then

plp M\i C
% _S__,QML@ _<=_=v Jm :%T
Qrixo) Qar(x0) Q2r(x0) v

for every x,€Q, every 0< R < dist(x,, Q) and every v>1 integer,
where p = max{1,(Np)/(Np + 1)}, h=(+ | Vull2**, b= {27*'D(p)(v+1y +1}X

{r-1*NC+1} and D(p) is  defined (see Lemma 4.4) by
falul” =D(p)Jo IVul*Y™ for every ue W'P(Q) such that Jou =0. Further,
there exist two constants ms, E >0 depending only on a, B, C such that:

[Vul?,
Qar(x0)

(4.25)

S Ns/, k\Ns/, s 5
._.P [Vul = EG)MPQRY)™7 |Vull, :vo Vul? + ﬁ.o (3 + |Vul) \“;. (4.26)

for every k =—1,0,1,... and every s € [p, p + ms).

.m.noo\. The proof of (4.25) has been given in [10] by Marcellini and Sbordone.
It is easy to reproduce their proof assuming that f satisfies (4.23), f depends only
on Vu and f is Borel measurable. We now prove (4.26). Using (4.25), we get:

plu ot 'c
% VulP = L@ _S%V + % ti + (Vul?,
Qr(x0) Q2r(x0) Q2r(x0) v Qr(x0)

(4.27)

ECET——
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for every xoe Q, every 0<R < Ldist(x,, Q) and every v > 1 integer. Let

A, =sup{ai(g), g€, Blh v>2P"2CA,. (4.28)
We obtain
1
§<—, 0<a(q,b, 0)=4A,b. (4.29)
24,
Assuming that
g=vut, q=2, =2,
© ©
1 m T 1 a-1 at W
ms=z: = ]
s=ymmle ™Yy —UN+B
sp
E= mcnﬁ QAI‘ lv’ +1,pela, Blselp,pt Eu;
Ko
and using Lemma 4.7, we find (4.26). O
Remark 4.9. One can see that
s=p* forevery se[p,p+ms) (4.30)
and, by Holder’s inequality, (4.26) implies:
(4.31)

% \Vul = E2° |Q| (3.2 || VeI, [1 + 3F 4+ 2| Vu |8t + IVu 18).
Dy

We now proceed with the proof of Theorem 4.1.

Proof of Theorem 4.1. To illustrate, we give the proof in the case N =M. Fix
m e aﬁZXZ.

Part 1. The Proof of (4.3) is elementary.

Part 2. We prove (4.4). We decompose the proof into six steps.

Step 1. Let

V= S\._,._AQVZ.
1
) - him £V6) it beWIAQY,
F(d)=| i GeV - W) (4.32)

Here, we show that there exists a sequence (%), € V such that:

lim F,(¢) = 0f,(§) (433)

n—=x

[l v =2+ 1g VALY and
Dy

for every s €[p, p + ms] and every k=-1,0,1,..., where Dy, m; are defined in
Lemma 4.7, Lemma 4.8 and J is a constant depending only on Q, 8. Observe that

f is lower semicontinuous = Nw is lower semicontinuous. (4.34)
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By (4.3) and (4.34) we deduce that there exists a sequence

. R 1 1
Wh.eV with F(hSinf{F(4) deV}+ =0f©)+. (439
Using the variational principle of Ekeland (see [5]), we obtain a sequence

(¢2), €V such that FE,(¢%)=F,(45) with g. Vy? —Ve? =1 (4.36)
Q

and
B . 1
F(¢R) = F (o) + " ._. Vo — V@~ forevery ¢eV. (4.37)
Q
Further, for every A an open set, A € Q and every ¢ € ¢/ + W{P(A)Y, we obtain
- — 1
F(A $DSE(A 6)+ [ V6 -Vl (4.38)
o]
where
= 1
F (A, AEH@% HE+Ve) if deW'P(A). (4.39)
A

In the next four steps, we suppose that g € (a, B) is a fixed number.
Step 2. Let n be a fixed integer. We show that for every sequence § < [, q]
there exists a subset § = S, a subsequence (¢,),.sand a ¢, WE9(Q)" such that:

A.“.E ¢, W'?(Q)" forevery peS. (4.40)

r—q
By (4.2), (4.35) and (4.36), for every p € § such that p is near g, we find that:
Ik
Q]

We choose with respect to p a subsequence in the following way. First, we fix
pleS. Using Holder’s inequality in (4.41), we deduce that there there exists a

[t vemr =@ 1sa@ 1+ 2T = HEO.

sequence p} <py<pi<,...,in S such that
¢ ", piw' Q)Y and pl——q. (4.42)
Then assume that p? = p}, p2=p}. Using Holder’s inequality again in (4.41), we
deduce that there exists p2 <pi<p3<,...,in S such that
2 weakly Iw1.03 N 2 | — i}
&n_.ﬂ.slln WHHQ) yPi— 4 and I'=1 (4.43)

Now suppose that we have found the numbers pj<p}<...<p and an
increasing subsequence (pF); .~ such that

x weakly

P WP Q)Y, .., WIPHQ)Y.

Assume that pf*'=p% ..., pkil=px.,. Using Holder’s inequality again in

Continuity of polyconvex envelopes 721

(4.41), we can obtain an increasing subsequence (pf*')zi+2 from (PY)izi+2 such
that

k+1 weakly K+ k+) & +
¢ — S EEWIE(Q)YY and IF=1E

ksl

Assume that ¢, = /251 and § = {p§, k e N}. Using (4.41), it is easy to deduce that
¢, e WEH(Q)" and
weakly

¢ —— s, W'P(Q)N forevery peS. (4.44)

r—q

Step 3. We show that

liminf Of, (€) 2 0/,(6) (4.45)

where lim inf Qf,(£) is defined by lim inf Qf,(£). To show (4.45), we suppose that
pP—q— pP—4q.p<q

lim inf Of,(£) < 0%,(€) (4.46)

and we get a contradiction. Now (4.46) implies that there exists a sequence
(p)i<{a, q] such that lim Qf, (£) < Qf,(£). Let m; and D, be defined as in
Lemma 4.7 and assume that 7y = min T\? Ww By (4.35) and (4.36), we get

1 1
Q5.(8) W@.ﬁm L&+ Vi) + p Assuming that |p —q|<m; (m; is defined in

Lemma 4.8) and using (4.2) and (4.33), we deduce that for every k=—-1,0,1,...
FG

1 1
Of(¢ =10 Ph@+<s..:vlnl<|_©|_€€..lavxm. k,y, &)

and lim Qf,(¢) Zliminf 1/|Q| [p, (£ + Vé7) —1/n. Using the fact that Qf, is
quasiconvex (see [4]), we obtain

. 1 1

lim O ()2 5 | Qh(€+Vén) = . (4.47)

Recalling that ¢,eW{%Q)" and that (4.47) is true for every
k=-1,0,1,..., we conclude that

lim OF, (¢) Z Of,(€) (4.48)

Therefore (4.46) leads to a contradiction. This implies that (4.46) is false and so
(4.45) is proved.
Step 4. We show that

lim inf Qf,(¢) = Qf,(&). (4.49)

p—q-

By (435) and (436), we get Of,(&)= O£(&) ~ (1/IQ1 fo uf) — (1/n), where
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wh = |f, (€ + Vi) — f,(£ + Vo). Using a subsequence of (u%) with respect to p,
we obtain that
u?———O0L'(Q).

p—q-

Thus for every n e N, Qf,(£) Zlim inf Qf,(¢) — (1/n). This leads to (4.49).

p—q-
Step 5. We show that
liminf O (£) 2 Ofi(6) (4.50)
—q
where lim inf Qf,(£) is defined by liminf Qf,(£). By (4.35) and (4.36) we find
p—q+ p—q.p>q

that Of,(£§)= 1/1Q fo f,(¢ + V@) — (1/n) and (¢%), is bounded in whi(Q)y~.
Using a subsequence of (¢%), with respect to p, we deduce that
Bt WO

p—a+

We proceed as in Steps 3 and 4 to conclude that lim inf Qf,(¢) Z Qf,(£), which
proves (4.50). ekl
Step 6. 1t is very easy to prove that

_:w ) Sup 0f,(£) = 0f(6) (4.51)

In conclusion, (4.45), (4.49), (4.50) and (4.51) imply that:
Step 6. It is very easy to prove that

:ﬂhﬁ Of,(§) = 0f(§) (4.51)

In conclusion, (4.45), (4.49), (4.50) and (4.51) imply that:
wuﬁ Qf,(§) = Of(£)-

and Theorem 4.1 is completely proved. U

We now use Theorem 4.1 to find some quasiconvex functions f ;RN s R which
are not polyconvex. We study such functions below.

ExampLe 4.10. Let C,F>0, B>2, f(&)=IE" +ah(det(§)), £&eR¥?

p € [a, B] = (1, ) and a =0 such that h,(x) behaves as _R_EW. This means that:
h,:R— R is lower semicontinuous; (4.52)
hy(x)=h,(x) for p<q and =1, (4.53)
x|P?=h,(x)=C(1+x|"?) forevery xeR andevery pe [a, B); (4.54)
h. is convex and h,(1) > hy(0); (4.55)

F
A, (x) = hg(x) Mm_u — gl (1 + x[9P*7) forevery p<gqela, B] (456)

2
d 0, 1}. Then f >————th ist 1,2
and every v € [0, 3]. Then for every « (1) — i0) ere exists a po e (1,2)

such that
of, > Pf, for po<p<2
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Proof. (We note that h,(x) =|x|”? satisfies the hypotheses above.) First, h;

2
convex and @ =0 imply that £, is polyconvex; a >-————— implies that f; i
imply £, is polyconvex; a (1) — hy(0) implies that f; is

not convex. Using (4.53) and (4.56), we find that:
lim sup Cf, = Cf. (4.57)

p—2

By Theorem 4.1 and (4.56) we find that

lim inf Qf, = Qf, > Cf, Z lim sup Cf, = lim sup Pf,.

p—2 p—2 p—2

Knowing that Pf, = f, and Pf, = Cf, for every p e (1,2), we conclude that there
exists a p, € (1, 2) such that

of,>Pf, for pe(p,2). O

ExampLE 4.11. A particular case of this example has been studied in [8] by
Kohn. Let N >1 be an integer, 8 >2, F, yo, d >0, M Z 1, I the identity matrix of
RYN, p € [e, B]=(1, ) and

(€)= min (i€ + 1|7, 1€ — I|") + h,(ldet(£) = 1), £ e R™Y,  (h, =0 in 8]),
with A,(x) behaving as |x|*". This means that:

h,: R— R is lower semicontinuous; (4.58)
h,(0) =0, sup {lh,(x)|; x| =M} <M}<F forevery pe [a, B); (4.59)
h(x)=h,(x) for p<q and |x|ZM; (4.60)

0=h,(x)=d(1+|x|"™) forevery xeR andevery pe€la, B8], (4.61)
F
lhp(x) = hg(x)l Mm lp— gl (1 +x|“"V*") for every p<gqela,B] (4.62)

and every ¥ € (0, v,). Then there exists a p, € (1, 2) such that

Of,>Pf, and p e (py,2)

Proof. (We first note that h,(x)= Ix|”’V satisfies the hypotheses above.) We
find that PF,(£) =0=> ¢ =1, —I and Cf(t) = 0 for every ¢ € [0, 1]. Therefore

Pf, > Ch. (4.63)

Assuming that g,(£) =£,(¢£)+ N°?, we find that g satisfies the hypotheses of
Theorem 4.1. Thus liminf Qf, = Of. (4.59), (4.61) and (4.60) imply that

p—2

lim mh_v Cf, = Cf,. We then conclude that:
‘l.

lim mnnm Qf, = Qf, = Pf, > Cf, Z lim sup Cf,..
p— p—2

Therefore there exists a p, € (1, 2) such that
Qf, > Pf, forevery p e (po. 2). O
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5. Continuity of Rf, with respect to p
We first start with the main theorem of this section.

THeoreMm 5.1. Let [a, B]=(1, @), F,G, K, y>0, C=1 and N, M >1 be two
integers. Let w: [0, ©)— [0, ©) with limw(t) =w(0) =0, sup{w(),t [0, B} =G

—0
and f,: RV*M > R lower semicontinuous, p € [a, B), such that:
p P

NP EL(E)SC(L+|€)P) forevery pela,B) andevery &eRYVM; (5.1)
F
() — fo§) = p” w(p —q)(1 +1£1777)  for every v e (0, vo), (5.2)
every £ e R¥*™, and every p, q € [a, B] with p >gq;
H(E)=Rf, (&) forevery (€)=K (5.3)
Then
lim Rf,(€) = Rf,(€), forevery £eRM™ andevery qe(a, B). (54)
pP—q
Before proving this theorem, let us begin with some remarks.
Remarks 5.2. (a) In general, we have liminfRf, <Rf,. Indeed, if
p—1-

£(€)= €17, £ e R then O0=lim inf Rf, < Rf, = f,.

p—1-
(b) Theorem 5.1 is still true if we replace the condition (5.1) by

a+b|éf =f,(¢§)=C(1+|£l7), where a € R and b >0 are two constants.
(c) We do not need to use (5.3) to prove that lim sup Rf, = Rf, for q € [a, B).
p—q
The most difficult part in this case is to prove that liminf Rf, = Rf,. We were
P—q

unable to prove this inequality without assuming (5.3).
(d) If we keep only hypotheses (5.1) and (5.2), we can show that

lim R f, = R.f, forevery keN, andevery g ela,p]
P—q

Where Rof = f, Re+1 f(§) =inf{tRif(n) — (1 = ORf (1), t € (0, 1), 1, u € RV*Y,
rank(n — p)=1, £ =1m + (1 — t)u}. One knows that lim R, f = Rf. (See [4,9].)

k—soo

ExampLE 5.3. Let
_[1+]¢7 for
i@!? for |£=0,

Knowing that Cf,(£) =1+ |¢” if |€]=(1/(p —1))'”, we find that (f,), verifies
(5.1), (5.2) and (5.3). Hence Theorem 5.1 leads to lim Rf, = Rf,, for every g > 1.
p—q

To prove Theorem 5.1, let us now begin with the following lemma:

>
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LEMMA 5.4. Let NyM=1 be two integers, C, K>0 two real constants and
[ RY*M R lower semicontinuous such that:

6P =f(E)=C(1 +£17)  for every ¢ e RV*™M; (5.5)
Rf(§) =f(£) for every |£|ZK. (5:6)
Then, for every & e RV™, such that |§|= K, there exist t € [0, 1], &,, & € RV*M
verifying
rang(§,~ £)=1, £=t6,+(1-0&, Rif(€)=tR f(£)
(=R, f(&), 161, 1&I=K. (5.7)
Proof. The proof of Lemma 5.4 is left to the reader. O
We now prove Theorem 5.1.
Proof of Theorem 5.1. Let ¢ e R and q € [«, B]. Using the same arguments

as in Step 1 of the proof of Theorem 3.1, we prove that lim sup Rf,(£) = Rf,(&).
P—q

Let us now prove that lim inf Rf,(£) = Rf,(£). Using (5.1), the result is obvious
p—q
if {|Z K. If [¢§|=K, by (5.1), (5.2), (5.3) and Lemma 5.4, we get that, for every
k €N, for every p € [a, B], there exist A? € (0, 1), &2 e RV*™ i=1,...,2* such
that

A=K, i=1,...,2% RE(E) =2 Mf(E) and Rf ()= Nf(E).

i=1 i=1

We deduce from the previous relations that

F
Rf(6) = Rf(§) - w w(p —q)(1+ M"Y + MP*Y),
and so
liminf Rf,(£) = Rf,(£).

Hence Theorem 5.1 is proved. O

6. Examples of f such that f(£) =g(j&|) and Pf = Qf

THEOREM 6.1. Let f:R**? >R be a Borel measurable function, a, b, c, a >0,
deR and q € (1, 2) such that

a [¢|+ £(0) M\@ for every ¢ e R¥?,  with equality for &' = /\.RM AH oV“

0 1
6.1)
blIEF+d=f(&)=c(1+|£9) forevery ¢eR¥™% (6.2)
there exists t, € (0, 1) for which f(£*) # a |£*| + f(0) with £* =€, (6.3)
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Then
Of (£*) > Pf(£*). (6.4)

Before proceeding to the proof, we make the following remarks.

Remarks 6.2. (a) By (6.1) the graph of f and one of Cf intersect. This plays an
important role in the proof of Theorem 6.1.

(b) Using Theorem 4.1, we can prove Theorem 6.1 only for g near 2. But here
we will conclude for every g € (1, 2). This theorem implies Qf, > Pf, for every
p € (1, 2) where
L+P if [£1##0,
0 if =0,

Note that in [9] Kohn and Strang proved that Pf, = Qf,.

o ={ £eR

LemMa 6.2. Let N =1 be an integer, Q<R a bounded open set, B, y >0 and
r>1. Let (v,), =L (Q) such that v = ||lv,ll, vall, =B for all n e N. Then there
exist k, ! >0 such that |{x € Q: |v,(x)| =k} =!I for every n e N.

Proof. The proof of Lemma 6.3 is elementary. I

LemMA 6.4. Let f:R¥?— R a Borel measurable function, a,b,c, « >0, d € R,
q =1 and Q = R? a bounded open set such that

alé|+fO)=Sf(£) forevery & e R with equality for ¢&,= /\hm Aw Wv,
(6.5)
b|EfF+d=f(£) forevery ¢&eR¥ (6.6)
Then
Cf(t&o) = a |téol + f(0) for every te[0,1]. (6.7)
If for a fixed ¢ e R**?
1
0f(€)=alél +(0) = lim — [ f(£+78,) (68)
n—e Q| Ja
where (¢,),  W§™(Q2Y, then, up to a subsequence, the following hold:
b — OWEIQY, (6.9)
f(E+V,)—alé+ Ve, - f(0)—>OL(Q), (6.10)
1€ + V| + 1€ — 126 + V| = OL'(Q). (6.11)

But note that the following does not hold:
&> OW" Q) if f(&)#a |+ f(0) and f is continuous at ¢&.  (6.12)

Proof. We first establish (6.7). We find using (6.5) that: a || + £(0) = Cf(¢) for
every £ e R*™% Let £ € R¥? be such that £=t£ with re[0,1]. We have
Cf(&) =t (£o) + (1 —0)f(0) = a |¢] + f(0) and we obtain (6.7).
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We now prove (6.9), (6.10). Let £ € R?*? be fixed and (¢,), = W5=()* such

1

that a [£| + f(0) = Of (&) = lim _m_ Jaf(£+Vg¢,). Using (6.6), we find that

1
Jalé+Ve,|9 ch.n [f(¢ +Vd,)—d]) and that (¢,), is bounded in W'9(Q)
Up to a subsequence, we can suppose that

weakly

én i PW4(Q)~ (6.13)
This implies that

0= [ 1f(6+ 8)—alé+ Vo, £O)
Q
- b FE+V,)—ale + Ve, - F(O)

mbxaéié 1€~ £(0)—>0

by (6.8). We therefore conclude that (6.10) is true. Using (6.8) we find
Q[ (@ €]+ f(0)) = lim fq f(§ +Vd,) = lim [olalt + Vo, |+ f(O)]=[alalé +

n—»oc N—scO

Vi + f(0)]. This immediately gives V¢ = 0. Using (6.13), we now find (6.9).
We now establish (6.11): up. to a subsequence we can suppose that

lim [ {2£ + V| exists. (6.9) implies that

n—sco

n—sco

._. 2¢I=lim | 2¢ + V. (6.14)
Q Q

Note that f(n) Za || + f(0) for every € R**? and using (6.10) we obtain:

n—o

im | 1¢-+ V1= [ el 6.15)

using (6.14) and (6.15) we find 0=lim [o||¢é + V,|+ €| — 26 + Vé,|| = lim

Talé+Veé,| + & — 126 + Ve, =0. We therefore obtain (6.11).

We finally prove (6.12): assume that f is continuous at ¢ and f(£) # a |£] + f(0).
Now we suppose that ¢, — 0 strongly in W''(Q) and show that this leads to a
contradiction. Using a subsequence we can find an x € Q such that lim V¢,(x) =0

n—socc

and lim f(£ +Ve,(x)) —alé + Vo, (x)| — f(0) =0. Thus f(£)—alél-f(0)=0,

which is a contradiction to our hypotheses. Thus, ¢, —0W"'(Q) is false. This
completes the proof of Lemma 6.3. O

Proof of Theorem 6.1. The hypotheses on f imply that Pf = Cf. To conclude, it
suffices to show that Qf(£*) > Cf(£*). Recall that by (6.7) Cf(£*) = a |£*) + f(0).
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To obtain a contradiction, we suppose that Qf (£*) = a |£*| + £(0). Assuming that
U, =2(10,87 +18,6%) + 10,07 — 3205, €€(0,g—1) and v, =u,"",

we get v, € L'(Q), where 9,¢, denotes d¢,/dx, and r = g/(1+ g)>1. Two cases
may occur:

Case 1. v,—0 L'(Q). It follows that A¢,—0 W~""4(Q), which implies that
é,—0 W''*5(Q) and then ¢,—0 W"'(Q) (for more details see [13]). But by
Lemma 6.4 ¢, — 0 W''(Q) does not hold. We therefore have a contradiction.

Case 2. v,— L'(Q) does not hold. Using a subsequence, we then find that
there exists a constant y >0 such that, for every neN, [lv, |}, Z y. Since (v,), is
bounded in L’(Q) and r > 1, by Lemma 6.3, there exist two constants k >0 and
>0 such that [{x € Q: v,(x) = k}| = for all n e N. We immediately conclude that
there exist B >0, k >0 such that [{x e Q: u,(x) =k and |V,(x)|> B} =[/2. We
now write:

A, ={xeQ:u,(x) 2k, |V¢,(x)| =B},

K={neR¥%|n|=B,2(nl + [nal) + |1n — 12l Zk},
F(n)=3%1E+nl+11gl - 126+ nin R
K is compact in R>? F is continuous in R¥? and we find

Rt ovmx.w_:
0 7

0< B =min {F(n): n € K} because F(n) =0 implies that n = A
[} . )

JaF(Vo,) = fa, F(VP,)ZB 1A, = % Furthermore, using (6.11) in Lemma 6.4,

we obtain 0 = lim [ F(V¢,), a contradiction. We therefore deduce that v, —0

L'(£2). Since the two cases do not apply, we conclude that

Of (&%) = Cf (&%),

Qf (§*)> Pf(£*).
This finishes the proof of Theorem 6.1. U

which is equivalent to

t (10
COROLLARY 6.5. Let pe(1,2), te(0,a), a =[1/(p - 1)]'", &= qMA v and

_[1+1Erif 160,
1o, q_m_uo_

Pf (&) < Of(£)-

m e zNXN.

Then

Proof. It is easy to see that

TP if €2 e,

che={, € i lb<a,

where a =p"?p''"" and p' = p/(p — 1). Additionally the following relations hold:
(3) Rf,(£) = Qf,(§) = Pf,(§) = Cf,(£) = f(£) for every |£| Z a]
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(b) a |¢| = f(£) with equality if and only if |§[ =0 or «;
(©0<|§l=t<a.
These are the hypotheses of Theorem 6.1. Thus, Corollary 6.5 is proved. O

Remark 6.6. To construct a function f: R**?+ R satisfying the hypotheses ol
Theorem 6.1, it suffices to construct a continuous function g: [0, <[ — R such that:

g(0)=0, glx)=1+x" if xZa ax<gx)<l+x” if xe(0, a),

where

: 1 Qv

I<p<2, a=p"p'7, \inh‘ and «= ﬁlg .
p—1 p—1

Assuming that f(£) = g(]€]), we find that

Of (&) > Pf(£)

t (10
m r Syt A v‘ ’ N
or every & a\o 1 te(0, a)
Acknowledgments

I would like to thank L. Boccardo, G. Buttazo and B. Dacorogna for discussion
and encouragement, and G. Manogg for criticism of the manuscript.

References

1 J.J. Alibert and B. Dacorogna. An example of a quasiconvex function that is not polyconvex in
two dimension. Arch. Rational Mech. Anal. 117 (1992) 155-166.
2 J. M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational
Mech. Anal. 64 (1977), 337-403.
3 H. Brezis. Analyse Fonctionnelle (Paris: Masson, 1983).
4 B. Dacorogna. Direct Methods in the Calculus of Variations (Berlin: 1989).
5 1. Ekeland. Non convex minimization problem. Bull. Amer. Math. Soc. 1 (3) (1979) 443-474.
6 F. Gehring. The L integrability of the partial derivatives of quasiconformal mapping. Acta Math.
130 (1973), 265-277.
7 M. Giaquinta and G. Modica. Regularity results for some classes of higher order non linear
elliptic systems. J. Reine Angew. Math. 311/312 (1979), 145-169.
8 R. V. Kohn. The relaxation of a double-well energy (to appear).
9 R. V. Kohn and G. Strang. Optimal design and relaxation of variational problems I, Il and III.
Comm. Pure Appl. Math. 39 (1986), 113-137; 139-182; 353-377.
10 P. Marcellini and C. Sbordone. On the existence of minima of multiple integrals. J. Math. Pures
Appl. 62 (1983), 1-9.
11 C. B. Morrey. Quasiconvexity and semicontinuity of multiple integrales. Pacific J. Marh. 2 (1952).
25-53.
12 C. B. Morrey. Multiple Integrals in the Calculus of Variations (Berlin: Springer, 1966).
13 C. G. Simader. On Dirichlet's Boundary Value Problem, Lecture Notes in Math. 268 (Berlin:
Springer, 1972).
14 V. Sverak. Quasiconvex functions with subquadratic growth (to appear).

(Issued 11 August 1993)



