On the continuity of the polyconvex, quasiconvex and rank-oneconvex envelopes with respect to growth condition

Wilfrid Gangbo

Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

(MS received 29 April 1991. Revised MS received 24 June 1992)

Synopsis

Let Cf, Pf, Qf and Rf be respectively the convex, polyconvex, quasi-convex and rank-one-convex envelopes of a given function f. If $f_p: \mathbb{R}^{N \times M} \to \mathbb{R}$ and $f_q(\xi)$ behaves as $|\xi|^q$ at infinity $q \in (1, \infty)$, we show that $\lim_{p \to q} Cf_p = Cf_q$, $\lim_{p \to q} Qf_p = Rf_q$. This is the case for $(Pf_p)_p$ provided that $q \neq 1, \ldots, \min(N, M)$, otherwise $\liminf_{p \to q} Pf_p \neq Pf_q$. In the last part of this work, we show that $f(\xi) = g(|\xi|)$ does not imply in general Pf = Qf.

1. Introduction

Let $f_p: \mathbb{R}^{N \times M} \mapsto \mathbb{R}$ be a Borel measurable function which behaves at infinity as $|\xi|^p$, $p \ge 1$. Let Cf_p , Pf_p , Qf_p and Rf_p be, respectively, the convex, polyconvex, quasiconvex and rank-one-convex envelopes of f_p . (For a precise definition, see the end of the introduction.) We want to study the continuity with respect to p of these envelopes. As is well known, they are discontinuous at p = 1. We show that Cf_p , Qf_p and Rf_p are, however, continuous at p > 1. (The result for Cf_p is elementary.) In the case of Pf_p , we prove that it is discontinuous provided that $p = 2, \ldots, \min(N, M)$, and otherwise continuous. We next give two examples, the first one being elementary.

Example 1.1. For 0 , let

$$f_p(\xi) = |\xi|^p, \quad 0 \le p \le 1, \quad \xi \in \mathbb{R}^{N \times N}.$$

We find that

$$\lim_{p \to 1} \inf Cf_p(\xi) = \lim_{p \to 1} \inf Pf_p(\xi) = \lim_{p \to 1} \inf Qf_p(\xi) = \lim_{p \to 1} \inf Rf_p(\xi) = 0$$

$$< Cf_1(\xi) = Pf_1(\xi) = Qf_1(\xi) = Rf_1(\xi) = |\xi|.$$

EXAMPLE 1.2. Recall first that a polyconvex function with a subquadratic growth is necessarily convex. (See Remark 3.5.) For $1 \le p < 2$, $\xi \in \mathbb{R}^{2\times 2}$, let

$$f_p(\xi) = \begin{cases} 1 + |\xi|^p & \text{if } |\xi| \neq 0, \\ 0 & \text{if } |\xi| = 0. \end{cases}$$

In view of the above remark, we find $Pf_p = Cf_p$ for every $1 \le p < 2$. Kohn and Strang in [9] proved that $Rf_2 = Qf_2 = Pf_2$ and $Cf_2(\xi) \ne Pf_2(\xi)$ if and only if

 $0<|\xi|^2+2|det(\xi)|<1$ and $det(\xi)\neq 0$. Computing Cf_p , and using the result of Kohn and Strang:

$$\lim_{p\to 2}\inf Pf_p\neq Pf_2.$$

We now describe the contents of this paper. In Section 2 we show an elementary result: for every $q \in (1, \infty)$, $\lim_{p \to q} Cf_p = Cf_q$. In Section 3 we show that:

- (i) for every $q \in (1, \infty)$, $q \neq 2, \ldots, \min(N, M) \lim_{n \to \infty} Pf_p = Pf_q$;
- (ii) in some examples the result is false provided that $q \in \{2, ..., \min(N, M)\}$.

In Section 4 we prove that for every $q \in (1, \infty)$, $\lim_{p \to q} Qf_p = Qf_q$. To achieve this, we first approximate $Qf_p(\xi)$ by $1/|Q| \int_Q f_p(\xi + \nabla \phi^p)$, where $\phi^p \in W_0^{1,p}(Q)^M$. (See [4].) The proof is based on Gehring's lemma on reverse Hölder inequality in [6] and a result of Giaquinta and Modica in [7]. We deduce, as a byproduct, that there exist quasiconvex functions $f: \mathbb{R}^{N \times M} \to \mathbb{R}$ for every N, M > 1 integers, that are not polyconvex. (See [14,1].) We also obtain a general method of constructing such functions. We conclude this section by studying some examples such as:

$$f_p(\xi) = |\xi|^p + a |det(\xi)|^{p/2}, \quad a > 0,$$

and we prove that $Pf_p \neq Qf_p$ for p near 2.

In Section 5, we show that for every $q \in (1, \infty)$, $\lim_{p \to q} Rf_p = Rf_q$. To achieve this, we make an additional hypothesis on the family of functions $(f_p)_p$ and assume that there exists a constant K > 0 such that $Rf_p(\xi) = f_p(\xi)$ for every $|\xi| \ge K$. In some examples this is satisfied. In Section 6, we turn our attention to the following question: if f is a function such that $f(\xi) = g(|\xi|)$, does this always imply that Pf = Qf? Note that in the example of Kohn and Strang (Example 1.2 above) $Pf_2 = Qf_2$. We show that, in general, if p < 2 then $Pf_p < Qf_p$. Here, we use an interesting method (similar to one of Boccardo and Gallouet in an article in preparation) to obtain strong convergence of a certain weakly convergent sequence.

We conclude this introduction by giving some definitions used above.

Definitions 1.3 (see [4]). Let $f: \mathbb{R}^{N \times M} \to \mathbb{R}$ be a Borel measurable function (a) f is said to be *convex* if $f(\lambda \xi + (1 - \lambda)\eta) \leq \lambda f(\xi) + (1 - \lambda)f(\eta)$ for every $\xi, \eta \in \mathbb{R}^{N \times M}$ and every $\lambda \in (0, 1)$.

(b) f is said to be *polyconvex* if there exists a function $h: \mathbb{R}^{\tau(N,M)} \to \mathbb{R}$, convex such that $f(\xi) = h(T(\xi))$ for every $\xi \in \mathbb{R}^{N \times M}$, where $\tau(N, M) = \sum_{1 \le s \le \min(N,M)} \binom{M}{s} \binom{N}{s}$, $T(\xi) = (adj_1 \xi, \ldots, adj_{\min(N,M)} \xi)$ and $adj_s \xi$ stands for the matrix of all

 $s \times s$ minors of ξ . If N = M = 2 then $T(\xi) = (\xi, det(\xi))$.

(c) f is said to be *quasiconvex* if $\frac{1}{|\Omega|} \int_{\Omega} f(\xi + \nabla \phi) \ge f(\xi)$ for every $\xi \in \mathbb{R}^{N \times M}$, every $\Omega \subset \mathbb{R}^N$ (or equivalently for some $\Omega \subset \mathbb{R}^N$) and every $\phi \in W_0^{1,\infty}(\Omega)^M$.

Continuity of polyconvex envelopes

(d) f is said to be rank-one-convex if $f(\lambda \xi + (1 - \lambda)\eta) \le \lambda f(\xi) + (1 - \lambda)f(\eta)$ for every ξ , $\eta \in \mathbb{R}^{N \times M}$ with $rank(\xi - \eta) \le 1$ and every $\lambda \in (0, 1)$. It is a well-established fact, following the work of Morrey [11, 12] and later of

 $f convex \Rightarrow f polyconvex \Rightarrow f quasiconvex \Rightarrow f rank-one-convex$

Ball [2] that, in general, one has:

The different envelopes are defined as:

 $Cf = \sup \{g, g \le f, g \text{ convex}\},\$ $Pf = \sup \{g, g \le f, g \text{ polyconvex}\},\$ $Qf = \sup \{g, g \le f, g \text{ quasiconvex}\},\$ $Rf = \sup \{g, g \le f, g \text{ rank-one-convex}\}.$

2. Continuity of Cf_p with respect to p

We start with the main result of this section.

THEOREM 2.1. Let $[\alpha, \beta] \subset (1, \infty)$, $F, G, \gamma_0 > 0$, $C \ge 1$ $N, M \ge 1$ be two integers. Let $w: [0, \infty) \mapsto [0, \infty)$ with $\lim_{t \to 0} w(t) = w(0) = 0$, $\sup \{w(t), t \in [0, \beta]\} \le G$ and $f_p: \mathbb{R}^{N \times M} \mapsto \mathbb{R}$ lower semicontinuous, $p \in [\alpha, \beta]$, such that:

$$|\xi|^p \leq f_p(\xi) \leq C(1+|\xi|^p) \quad \text{for every} \quad p \in [\alpha,\,\beta] \quad \text{and every} \quad \xi \in \mathbb{R}^{N \times M}, \ (2.1)$$

$$|f_p(\xi) - f_q(\xi)| \le \frac{F}{\gamma} w(p - q)(1 + |\xi|^{p+\gamma}) \quad \text{for every} \quad \gamma \in (0, \gamma_0),$$
 (2.2)

every $\xi \in \mathbb{R}^{N \times M}$, and every $p, q \in [\alpha, \beta]$ with p > q.

Then

$$\lim_{\rho \to q} Cf_p(\xi) = Cf_q(\xi), \quad \text{for every} \quad \xi \in \mathbb{R}^{N \times M} \quad \text{and every} \quad q \in (\alpha, \beta). \tag{2.3}$$

Before we prove this theorem, let us begin with some remarks.

Remarks 2.2. (a) In general, we have $\lim_{p\to 1} Cf_p < Cf_i$. Indeed, if $f_p(\xi) = \int_0^{\infty} \int_0^{\infty} dx \, dx$

 $|\xi|^p$, $\xi \in \mathbb{R}^{N \times M}$, then $0 \equiv \lim_{p \to 1} Cf_p < Cf_1 = f_1$. (b) Theorem 2.1 is still true if we replace the condition (2.1) by $a + b |\xi|^p \le f_p(\xi) \le C (1 + |\xi|^p)$ where $a \in \mathbb{R}$ b > 0 are two constants.

(c) To prove (2.3), we will show that $|Cf_p(\xi) - Cf_q(\xi)|$ and $|f_p(\xi) - f_q(\xi)|$ have

Examples 2.3. The following examples satisfy the hypotheses of the theorem:

the same modulus of continuity.

$$f_p(\xi) = \begin{cases} 1 + |\xi|^p & \text{for } |\xi| \neq 0, \\ 0 & \text{for } |\xi| = 0, \end{cases} \quad \xi \in \mathbb{R}^{N \times M};$$

$$f_p(\xi) = |\xi|^p + a |det(\xi)|^{p/N}, \quad \xi \in \mathbb{R}^{N \times N}, \quad a > 0.$$

2

 $\lim_{p\to q} Cf_p = Cf_q, \text{ for every } q > 1.$ We get that $(f_p)_p$ verifies (2.1) and (2.2). Hence Theorem 2.1 leads to

To prove Theorem 2.1, we begin with an elementary lemma

LEMMA 2.4. Let $N, M \ge 1$ be two integers, $\alpha, \beta \in (1, \infty)$, C > 0 a constant and $f: \mathbb{R}^{N \times M} \to \mathbb{R}$ lower semicontinuous such that:

$$|\xi|^p \le f_p(\xi) \le C(1+|\xi|^p)$$
 for some $p \in [\alpha, \beta]$ and every $\xi \in \mathbb{R}^{N \times M}$.

Then, there exists a constant D>0 depending only on α , β and C such that, for every ξ , ξ^* , $\eta \in \mathbb{R}^{N \times M}$,

$$Cf(\eta) = \langle \eta, \xi^* \rangle - f^*(\xi^*), \quad Cf(\xi) = \langle \xi, \xi^* \rangle - f^*(\xi^*) \quad implies \quad |\eta| \le D(1 + |\xi|).$$

Proof. Using (2.1), we get that, for every $\xi^* \in \mathbb{R}^{N \times M}$,

$$C \sup \left\{ 0, \frac{p-1}{(Cp)^{\beta}} |\xi^*|^{\beta} - 1 \right\} \le f^*(\xi^*) \le \frac{p-1}{(p)^{\beta}} |\xi|^{\beta}, \text{ where } \beta = \frac{p}{p-1}. \quad (2.5)$$

Adding (2.1) and (2.4), we deduce that there exists a constant E > 0 such that

$$|\xi^*| \le E(1+|\xi|).$$
 (2.6)

Then (2.1) implies that there exists an $s \in [0, 1]$ such that

$$Cf(\eta) = \langle \eta, \, \xi^* \rangle - f^*(\xi^*) = s \, |\eta|^p + (1 - s)(1 + |\eta|^p). \tag{2.7}$$

Hence

$$\left| |\eta|^{p-1} \left(s + (1-s)C - \left\langle \frac{\eta}{|\eta|}; \xi^* \right\rangle \right| \right) \right| \le |(1-s)C + f^*(\xi^*)|^{(p-1)/p}$$

or

 $|\eta| \le |(1-s)C + f^*(\xi^*)|^{1/p}$

Adding (2.5) and (2.6) to these previous inequalities, we conclude the proof.

We now prove Theorem 2.1.

Proof of Theorem 2.1. Let $\xi \in \mathbb{R}^{N \times M}$; (2.1) implies that there exists

$$\lambda_1^p, \dots, \lambda_{NM+1}^p \in [0, 1], \quad \xi_1^p, \dots, \xi_{NM+1}^p \in \mathbb{R}^{N \times M}$$

$$\sum_{i=1}^{NM+1} \lambda_i^p = 1, \quad \sum_{i=1}^{NM+1} \lambda_i^p \xi_i^p = \xi \quad \text{and} \quad \sum_{i=1}^{NM+1} \lambda_i^p f_p(\xi_i^p) = C f_p(\xi).$$

Let $\xi^* \in \mathbb{R}^{N \times M}$ such that $Cf_p(\xi) = \langle \xi, \xi^{*,p} \rangle - f_p^*(\xi^{*,p})$. It is obvious that

$$Cf_p(\xi^p) = f_p(\xi^p)$$
 and $Cf_p(\xi^p) = \langle \xi^p_i, \xi^{*,p} \rangle - f_p^*(\xi^{*,p}), i = 1, ..., NM + 1.$

By Lemma 2.4, we find that there exists a constant D>0 depending only on α,β,C such that

$$|\xi_i^p| \le D(1+|\xi|)i = 1, \dots, NM+1$$
 for every $p \in [\alpha, \beta]$.

Then we conclude that there exists a constant H > 0 depending only on α , β , C

$$|Cf_p(\xi) - Cf_q(\xi)| \le \frac{H}{\gamma} w(p - q)(1 + |\varepsilon|^{p + \gamma}) \quad \text{for every} \quad \gamma \in (0, \gamma_0).$$

Hence Theorem 2.1 is proved. □

3. Continuity and discontinuity of Pf_p with respect to p

We start with the main result of this section

and $f_p: \mathbb{R}^{N \times M} \mapsto \mathbb{R}$ lower semicontinuous, $p \in [\alpha, \beta]$, such that: integers. Let $w: [0, \infty) \mapsto [0, \infty)$ with $\lim_{t \to \infty} w(t) = w(0) = 0$, $\sup_{t \to \infty} \{w(t), t \in [0, \beta]\} \le G$ Theorem 3.1. Let $[\alpha, \beta] \subset (1, \infty)$, $F, G, \gamma_0 > 0$, $C \ge 1$ and N, M > 1 be two

$$|\xi|^p \le f_p(\xi) \le C(1+|\xi|^p)$$
 for every $p \in [\alpha, \beta]$ and every $\xi \in \mathbb{R}^{N \times M}$; (3.1)

$$|f_p(\xi) - f_q(\xi)| \le \frac{r}{\gamma} w(p - q)(1 + |\xi|^{p + \gamma}) \quad \text{for every} \quad \gamma \in (0, \gamma_0). \tag{3.2}$$

every $\xi \in \mathbb{R}^{N \times M}$, and every $p, q \in [\alpha, \beta]$ with p > q. Then

in general
$$\lim_{p \to q} Pf_p < Pf_q$$
, for $q = 2, \dots, \min(N, M)$: (3.3)

 $\lim_{p \to q} Pf_p(\xi) = Pf_q(\xi), \quad for \ every$

$$\xi \in \mathbb{R}^{N \times M}$$
 and every $q \in (\alpha, \beta) \ q \neq 2, \dots, \min(N, M)$. (3.4)

Before proving Theorem 3.1, let us begin with some remarks

Remarks 3.2. (a) In general, we also have $\lim_{p\to 1} Pf_p < Pf_1$. Indeed, if

$$f_p(\xi) = |\xi|^p$$
, $\xi \in \mathbb{R}^{N \times M}$, then $0 \equiv \lim_{\rho \to 1^-} Pf_\rho < Pf_1 = f_1$.
(b) Theorem 3.1 is still true if we change the condition $a + b \ |\xi|^p \le f_p(\xi) \le C(1 + |\xi|^p)$, where $a \in \mathbb{R}$, $b > 0$ are two constants.

(3.1) to

minors of ξ . (3.5) Notation. For $\xi \in \mathbb{R}^{N \times M}$, $q \in \mathbb{N}$, $adj_q(\xi)$ stands for the matrix of all $q \times q$

EXAMPLES 3.3. (1) Let $f_p(\xi) = |\xi|^p + a \, |adj_q(\xi)|^{p/q}$, $\xi \in \mathbb{R}^{N \times N}$, a > 0 and $q \in \{2, 3, 4, \ldots\}$. We get that $(f_p)_p$ verifies (3.1) and (3.2). Hence Theorem 3.1 leads to $\lim_{n \to \infty} Pf_p = Pf_q$, if $q \neq 2, \ldots$, min (N, M). We show (see Step 4 of the proof

of Theorem 3.1) that $\lim_{p\to q} Pf_p < Pf_q$ for suitable values of a.

$$f_p(\xi) = \begin{cases} 1 + |\xi|^p & \text{for} \quad |\xi| \neq 0, \\ 0 & \text{for} \quad |\xi| = 0, \end{cases} \quad \xi \in \mathbb{R}^{2 \times 2}.$$

 $\lim_{n \to \infty} Pf_p = Pf_q$, for every q > 1, $q \ne 2$. We get that $(f_p)_p$ verifies (3.1) and (3.2). Hence Theorem 3.1 leads to

Knowing that $Pf_p = Cf_p$ for every $0 and <math>Cf_2 < Pf_2$ (see [9]), we can deduce that $\lim_{p \to 2^-} Pf_p < Pf_2$. We also get that $\lim_{p \to 1^-} Pf_p \equiv 0 < Pf_1 = f_1$.

To prove Theorem 3.1, let us now begin with the following lemma:

Lemma 3.4. Let $N, M \ge 1$ be two integers, $p \in [1, \min(N, M)]$, C > 0 a constant and $f: \mathbb{R}^{N \times M} \to \mathbb{R}$ lower semicontinuous such that:

$$|\xi|^p \leq f_p(\xi) \leq C(1+|\xi|^p) \quad \text{for every} \quad \xi \in \mathbb{R}^{N \times M}.$$

Then the three following assertions are equivalent:

•
$$\lambda_1, \dots, \lambda_r \in [0, 1], \, \xi_1, \dots, \, \xi_r \in \mathbb{R}^{N \times M} \sum_{i=1}^r \lambda_i = 1, \, \sum_{i=1}^r \lambda_i R(\xi_i) = R\left(\sum_{i=1}^r \lambda_i \xi_i\right)$$
 (3.6)

$$\sum_{i=1}^{r} \lambda_{i} f(\xi_{i}) \ge f\left(\sum_{i=1}^{r} \lambda_{i} \xi_{i}\right), \tag{3.7}$$

$$R(\xi) = (adj_1(\xi), \dots, adj_{[p]}(\xi)), \quad \xi \in \mathbb{R}^{N \times M},$$

$$r=1+\sum_{i=1}^{\lfloor p\rfloor} {N\choose i}{M\choose i}$$
, and $\lfloor p\rfloor$ is the integer part of p ;

$$f(\xi) = h(R(\xi))$$

$$X \in \mathbb{R}^{r-1}, h(X) = \inf \left\{ \sum_{i=1}^{r} \lambda_i f(\xi_i), \ \lambda_i \in [0, 1] \xi_i \in \mathbb{R}^{N \times M} i = 1, \dots, r \sum_{i=1}^{r} \lambda_i = 1, \dots, r \sum_{i=1}^{r} \lambda_i R(\xi_i) = X \right\}.$$

Continuity of polyconvex envelopes

Proof. The proof of Lemma 3.4 is a direct adaptation of the proof of the representation theorem of the polyconvex envelope. (See [4, p. 201, Theorem

(b) An immediate consequence of Lemma 3.4 is that a polyconvex function $f: \mathbb{R}^{N \times M} \to \mathbb{R}$ with subquadratic growth is convex. Remarks 3.4. (a) We can see that $h: \mathbb{R}^{r-1} \mapsto \mathbb{R}$ is convex.

We now start with the proof of Theorem 3.1.

Proof of Theorem 3.1. We divide the proof into four steps. Let $\xi \in \mathbb{R}^{N \times M}$, and

Step 1. We prove here that $\limsup_{n\to\infty} Pf_p(\xi) \leq Pf_q(\xi)$. Let $\varepsilon > 0$. There exist

 $\lambda_1, \ldots, \lambda_{\tau+1} \in [0, 1], \ \xi_1, \ldots, \xi_{\tau+1} \in \mathbb{R}^{N \times M}$, such that

$$\sum_{i=1}^{\tau+1} \lambda_i = 1, \quad \sum_{i=1}^{\tau+1} \lambda_i T(\xi_i) = T(\xi) \quad \text{and} \quad \sum_{i=1}^{\tau+1} \lambda_i f_q(\xi_i) < -\varepsilon + Pf_q(\xi).$$

$$T(\xi) = (adj_1(\xi), \dots, adj_{\min(N,M)}(\xi)), \quad \xi \in \mathbb{I}$$

$$=\sum_{i=1}^{\min(N,M)} \binom{N}{i} \binom{M}{i}$$

(See [4].) Using (3.2), we get

$$Pf_{q}(\xi) > -\varepsilon + Pf_{q}(\xi) - \frac{F}{\gamma}w(p-q) \sum_{i=1}^{\tau+1} \lambda_{i}(1 + |\xi_{i}|^{p+\gamma} + |\xi_{i}|^{q+\gamma})$$

for every $p \in [\alpha, \beta]$. Hence

$$\limsup_{p \to q} Pf_p(\xi) \le Pf_q(\xi).$$

(3.9)

 $\lim \inf Pf_p(\xi) \ge Pf_q(\xi)$. Recalling that f_p is lower semicontinuous and verifies (3.1). we deduce that for every $p > \min(N, M)$ there exist Step 2. We suppose in this step that $q > \min(N, M)$ and prove that

$$\lambda_1^p, \dots, \lambda_{\tau+1}^p \in [0, 1], \quad \xi_1^p, \dots, \xi_{\tau+1}^p \in \mathbb{R}^{N \times M} \sum_{i=1}^{\tau+1} \lambda_i^p = 1,$$

such that

(3.8)

$$\sum_{i=1}^{r+1} \lambda_i^p T(\xi_i^p) = T(\xi) \quad \text{and} \quad \sum_{i=1}^{r+1} \lambda_i^p f_p(\xi_i^p) = Pf_p(\xi).$$

Using the fact that there exists a constant D>0 that depends only on N,M such $|T(\xi_i^p)| \le D |\xi_i^p|^{\min(N,M)}$ for every $i = 1, \dots, \tau + 1$,

adding (3.1) and the fact that $p > \min(N, M)$, we can suppose without restriction

semicontinuous and $(f_p)_p$ verifies (3.2), we find that that the sequence $(|\xi_i^p|)_p$ is bounded with respect to p. By the fact that f_q is lower

$$\liminf_{p \to q} Pf_p(\xi) \ge Pf_q(\xi) \quad \text{for every} \quad p > \min(N, M). \tag{3.10}$$

 $r-1=\sum_{i=1}^{\lfloor p\rfloor} \binom{N}{i} \binom{M}{i}$, min (N,M) by $\lfloor p\rfloor$ in the previous step, where $\lfloor p\rfloor$ is the close to q and replacing $T(\xi)$ by $R(\xi) = (adj_1(\xi), \dots, adj_{[p]}(\xi))$, τ by prove that $\lim \inf Pf_p(\xi) \ge Pf_q(\xi)$. Using Lemma 3.4, knowing that [p] = [q] for pinteger part of p, we obtain by the same arguments as those we used in Step 2 Step 3. We suppose here that $q < \min(N, M), q \neq 2, ..., \min(N, M)$ and

$$\lim_{p \to q} \inf P_{f_p}(\xi) \ge P_{f_q}(\xi) \quad \text{for every} \quad p < \min(N, M), \quad q \neq 2, \dots, \min(N, M).$$
(3.11)

Now (3.9), (3.10) and (3.11) imply that

$$\lim_{p \to q} Pf_p(\xi) = Pf_q(\xi) \quad \text{for every} \quad q \in [\alpha, \beta], \quad q \neq 2, \dots, \min(N, M).$$

 $\lim\inf Pf_p(\xi) < Pf_q(\xi).$ Step 4. We suppose in this step that $q \in \{1, ..., \min(N, M)\}$ and prove that

(i) Let $R(\xi) = (adj_1(\xi), \ldots, adj_{q-1}(\xi))$ and $f_p(\xi) = |\xi|^p + a |adj_q(\xi)|^{p/q} a > 0$. Using the same arguments as in Step 3, knowing that [p] = q - 1 for every $p \in (q-1,q)$ and combining with (3.8) of Lemma 3.4, we get that

$$\liminf_{p \to q^-} Pf_p(\xi) = \gamma_q(\xi),$$

$$\gamma_{q}(\xi) = \inf \left\{ \sum_{i=1}^{s+1} \lambda_{i} f_{q}(\xi_{i}), \ \lambda_{i} \in [0, 1] \xi_{i} \in \mathbb{R}^{N \times M} i = 1, \dots, s+1, \right.$$

$$\sum_{i=1}^{s+1} \lambda_{i} = 1 \sum_{i=1}^{s+1} \lambda_{i} R(\xi_{i}) = R(\xi) \right\},$$

$$s = \sum_{i=1}^{q-1} {N \choose i} {M \choose i}.$$

We can see that the infimum is a minimum

that $|\xi|^p + a |adj_q(\xi)| > \gamma_q(\xi)$. Hence (ii) Applying Lemma 3.4 to f_q , we get that for suitable ξ and a > 0 we obtain

$$\lim_{p \to q} \inf Pf_p(\xi) < Pf_q(\xi).$$

This completes the proof of Theorem 3.1. \square

4. Continuity of Qf_p with respect to p

We start with the main theorem of this section

 $p \in [\alpha, \beta]$, such that: $\sup \{w(t), t \in [0, \beta]\} \leq G$ $Q = \{x \in \mathbb{R}^N; |x_i| \le 3, i = 1, \dots, N\}. \ Let \ w: [0, \infty) \mapsto [0, \infty) \ with \lim_{t \to 0} w(t) = w(0) = 0,$ THEOREM 4.1. Let $[\alpha, \beta] \subset (1, \infty)$, $F, G, \gamma_0 > 0$, $C \ge 1$ N, M > 1 be integers and and $f_p: \mathbb{R}^{N \times M} \to \mathbb{R}$ lower semicontinuous,

$$|\xi|^p \leq f_p(\xi) \leq C(1+|\xi|^p) \quad \text{for every} \quad p \in [\alpha, \beta] \quad \text{and every} \quad \xi \in \mathbb{R}^{N \times M}, \tag{4.1}$$

$$|f_{p}(\xi) - f_{q}(\xi) \leq \frac{F}{\gamma} w(p - q)(1 + |\xi|^{p + \gamma}) \quad \text{for every} \quad \gamma \in (0, \gamma_{0}), \tag{4.2}$$

every $\xi \in \mathbb{R}^{N \times M}$, and every $p, q \in [\alpha, \beta]$ with p > q. Then

$$Qf_{p}(\xi) = \inf \left\{ \frac{1}{|Q|} \int_{Q} f_{p}(\xi + \nabla \phi), \ \phi \in W_{0}^{1,p}(Q)^{M} \right\}$$
 (4.3)

for every $\xi \in \mathbb{R}^{N \times M}$ and every $p \in [\alpha, \beta]$, and

$$\lim_{p \to q} Qf_p(\xi) = Qf_q(\xi), \quad \text{for every} \quad \xi \in \mathbb{R}^{N \times M} \quad \text{and every} \quad q \in (\alpha, \beta). \quad (4.4)$$

Before proving this theorem, let us begin with some remarks

and can be replaced by $C_1(|\xi|^p - 1) \le f_p(\xi) \le C(1 + |\xi|^p)$. **Remarks 4.2.** (a) The assumption (4.1) says that $f_p(\xi)$ behaves at infinity as $|\xi|^p$

(b) The assumption (4.2) stands for "continuity" of f_p with respect to p. This continuity is stronger than the usual continuity and weaker than the uniform continuity.

envelope. (See [4].) (c) (4.3) is the result of (4.1) and the characterisation of the quasiconvex

p. This will lead to (4.4). approximate $Qf_p(\xi)$ by $1/|Q| \int_Q f_p(\xi + \nabla \phi_n)$ where $\phi_n \in W_0^{1,p}(Q)^N$. By Gehring's lemma, we deduce that $(\phi_n)_n$ is bounded in $W_{loc}^{1,p+\epsilon}(Q)^N$ for $\epsilon > 0$ independent of (d) The idea of the proof of (4.4) is the following: for p fixed, we use (4.3) and

Examples 4.3. (a) Let

$$f_p(\xi) = \begin{cases} 1 + |\xi|^p & \text{for } |\xi| \neq 0, \\ 0 & \text{for } |\xi| = 0, \end{cases} \quad \xi \in \mathbb{R}^{2 \times 2}$$

Using Theorem 4.1 we show that in Examples 4.3 (1) and (2) $Qf_p > Pf_p = Cf_p$ for $f_p(\xi) = |\xi|^p + a |det(\xi)|^{p/2}, \quad a > 2.$

p near 2. NOTATION.

• Let R > 0, $a \in \mathbb{R}^N$. We define: $Q_R(a) = \{x \in \mathbb{R}^N, |x_i - a_i| \le R, i = 1, ..., N\},$ $B_R(a) = \{x \in \mathbb{R}^N, \sum_{1 \le i \le N} (x_i - a_i)^2 \le R^2\}, Q = Q_3(0);$ • for every $x \in \mathbb{R}^N, |x|_p^p = \sum_{1 \le i \le N} |x_i|^p$ if $1 \le p < \infty$ (4.5)

and $|x|_{\infty} = \max\{|x_i|, i = 1, ..., N\};$

•
$$dist(x, y) = |x - y|_{\infty}$$
 for every $x, y \in \mathbb{R}^N$;

•
$$\oint_{Q} u = \frac{1}{|Q|} \int_{Q} u, \ u_{R}(a) = \oint_{Q_{R(a)}} u, \ \|u\|_{r}^{r} = \int_{Q} |u|^{r} \text{ for every } r \ge 1,$$
 (4.8)

every $u \in L^r(Q)$, every $a \in Q$, and every R > 0 "small"; $\mathbb{R}^{N \times N}$ is the set of the $N \times N$ real matrices. (4.9)

LEMMA 4.4. Let $N \ge 2$ be an integer, $\beta \in (1, \infty)$ and $\Omega \subset \mathbb{R}^N$ a bounded open set with Lipschitz boundary. There exists a constant C > 0 depending only on Ω and β

$$\int_{\Omega} |u|^{p} \le C \left(\int_{\Omega} |u|^{\mu} \right)^{p/\mu} \tag{4.10}$$

for every $p \in [1, \beta]$, $u \in W^{1,p}(\Omega)$ with $\int_{\Omega} u = 0$ and for $\mu = \max\{1, (Np)/(N+p)\}$

surprising and is easily proved. We want to show that Sobolev's constant C corresponding to the embedding of $W^{1,\mu}(\Omega)$ to $L^p(\Omega)$ remains bounded when $p \in K = [1, \beta] \subset \mathbb{R}$. This result is not Remark 4.5. Lemma 4.4 is exactly Poincaré's inequality and Sobolev's theorem

Proof of Lemma 4.4. We divide the proof into two parts. Part 1. Suppose that $1 \le p \le N/(N-1) = \bar{p}$. Using Sobolev's embedding theorem, we find two constants \bar{C}_1 , $\bar{C}_2 > 0$ depending only on Ω such that:

$$\int_{\Omega} |u|^{\bar{\rho}} \le \bar{C}_1 \left(\int_{\Omega} \left(|\nabla u| + |u| \right) \right)^{\bar{\rho}} \quad \text{for every} \quad u \in W^{1,1}(\Omega), \tag{4.11}$$

$$\int_{\Omega} |u| \le \bar{C}_2 \left(\int_{\Omega} |\nabla u| \right) \quad \text{for every} \quad u \in W^{1,1}(\Omega) \quad \text{verifying} \quad \int_{\Omega} u = 0. \quad (4.12)$$

(See [3, p. 168] and [12].) By Hölder's inequality,

$$u \in W^{1,p}(\Omega)$$
 implies
$$\int_{\Omega} |u|^p \le (1+|\Omega|) \left(\int_{\Omega} |u|^{\bar{p}} \right)^{p/\bar{p}}.$$
 (4.13)

From (4.11), (4.12) and (4.13) we find a constant $C_1 > 0$ depending only on Ω such that $1 \le p \le \tilde{p}$, $u \in W^{1,p}(\Omega)$, $\int_{\Omega} u = 0$ imply

$$\int_{\Omega} |u|^p \le C_1 \left(\int_{\Omega} |\nabla u|^{\mu} \right)^{p/\mu}. \tag{4.14}$$

Part 2. We now carry out an induction on i_0 and suppose that there exist

$$p \le \frac{Np}{N+ip} < \tilde{p}, \quad i = 1, \dots, i_0, \quad u \in W^{1,p}(\Omega) \quad \text{and} \quad \int_{\Omega} u = 0$$

imply that

$$\int_{\Omega} |u|^p \le C_i \left(\int_{\Omega} |\nabla u|^{\mu} \right)^{p/\mu}$$

(4.6) (4.7)

Let

$$u \in W^{1,p}(\Omega), p \in [1, \beta]$$

such that

$$\int_{\Omega} u = 0, \quad \frac{Np}{N + (i_0 + 1)p} < \tilde{p} \le \frac{Np}{N + i_0 p} \quad \text{and} \quad \mu_1 = \max \left\{ 1, \frac{Np}{N + (i_0 + 1)p} \right\}.$$

We find: $\mu_1 = (Np)/(N + (i_0 + 1)p) < \bar{p}$, $\mu = (Np)/(N + p)$. By our induction

$$\int_{\Omega} |u|^{\mu} \le C_{i_0} \left(\int_{\Omega} |\nabla u|^{\mu_1} \right)^{\mu/\mu_1}. \tag{4.}$$

Let $P: W^{1,p}(\Omega) \mapsto W^{1,p}(\mathbb{R}^N)$ be the extension operator. (See [3, pp. 158–162].)

$$\|u\|_{p} \le \|Pu\|_{L^{p}(\mathbb{R}^{N})} \le \beta \|\nabla Pu\|_{L^{\mu}(\mathbb{R}^{N})} \le \beta \overline{C}_{3}(\|u\|_{\mu} + \|\nabla u\|_{\mu}), \tag{4.16}$$

obtain the existence of a constant C > 0 depending only on Ω and β such that: $p \in [1, \beta], u \in W^{1,p}(\Omega)$ and $\int_{\Omega} u = 0$ imply $\xi_{\Omega} |u|^p \le C(\int_{\Omega} |\nabla u|^{\mu})^{p/\mu}$. \square $C_{i_0+1}>0$ depending only on Ω , β , i_0 such that: $\int_{\Omega} |u|^p \le C_{i_0+1}(\int_{\Omega} |\nabla u|^{\mu})^{p/\mu}$. **Assuming that** $C = \max\{C_1, \ldots, C_i\}$ with $(N\beta)/(N+i\beta) < \tilde{p} = N/(N-1)$, we inequality in (4.15) and adding (4.16), we can conclude that there exists a constant with \tilde{C}_3 depending only on Ω and $||u||_{\mu}$ denoting $||u||_{L^{\mu}(Q)}$. Using Hölder's

Lemma 4.6. let $a \in \mathbb{R}^N$, R > 0 be real, v > 1 be an integer. Assume that $A_0 = Q_R(a)$, $A_i = \{x \in \mathbb{R}^N : dist(x, Q_R(a)) < (ir)/v\}$, $i = 1, \ldots, v$. Then there exist $\phi_i \in C_0^1(A_i)$, $i = 1, \ldots, v$ such that

$$0 \le \phi_i(x) \le 1, \quad x \in A_i, \quad \phi_i(x) = 1, \ x \in A_{i-1}, \quad |\nabla \phi_i(x)| \le \frac{\nu+1}{R}, \quad x \in A_i. \quad (4.17)$$

The proof of Lemma 4.6 is elementary.

Lemma 4.7. Let b, q > 1, r > q, N > 0 an integer, $\theta < 1/(a_1(q)) = 1/(30^N(q-1))$ $((q-1)(5q))^q$ and $g, h: Q = \{x \in \mathbb{R}^N, |x_i| \le 3, i = 1, ..., N\} \mapsto [0, \infty)$ be two functions such that $g \in L^q(Q)$ and $h \in L^r(Q)$. Suppose that for every $x_0 \in Q$, every

$$\oint_{Q_R(x_0)} g^q \leq b \left\{ \left(\oint_{Q_{2R}(x_0)} g \right)^q + \oint_{Q_{2R}(x_0)} h^q \right\} + \theta \oint_{Q_{2R}(x_0)} g^q.$$

Then:

$$\int_{\mathbf{D}_{k}} g' \leq C(t, q)(3)^{N t/q} (2^{k})^{N t/q} \|g\|_{q}^{t} \left[\int_{Q} g^{q} + \int_{Q} h' \right] \text{ for every } t \in [q, q + \varepsilon),$$
(4.18)

$$\varepsilon = \min\left\{r - q, \frac{q - 1}{a - 1}\right\}, \quad a \equiv a(q, b, \theta) = \frac{a_1(q) + a_2(q)}{1 - \theta a_1(q)}b, \quad a_2(q) = 2^{N}\left(\frac{5q}{q - 1}\right)^{q - 1},$$
(4.19)

$$C_{-1} = \{x \in \mathbb{R}^N, |x_i| \le 1, i = 1, \dots, N\},$$
 (4.20)

$$C_k = \left\{ x \in \mathbb{R}^N, \frac{1}{2^k} < dist(x, \partial Q) \le \frac{1}{2^{k-1}} \right\} \quad D_k = \bigcup_{i=-1}^{i=k} C_k \quad k = -1, 0, 1, \dots$$
 (4.21)

and
$$C(t, q) = \max\left\{1, \frac{q-1}{aq-(a-1)t-1}, \frac{a(t-q)}{aq-(a-1)t-1}\right\}.$$
 (4.22)

Proof. The proof of the above lemma has been given in [7] by Giaquinta and Modica. It is based on Gehring's lemma. \Box

As an illustration, we give the following lemma in the case N=M. For the general case $(N,\,M>1)$ see [10].

Lemma 4.8. Let $p \in [\alpha, \beta] \subset (1, \infty)$, $C \ge 1$, $N \ge 2$, $0 \le \eta \le 1$ $f: \mathbb{R}^{N \times N} \mapsto \mathbb{R}$ be a Borel measurable function, $Q = \{x \in \mathbb{R}^N, |x_i| \le 3, i = 1, \dots, N\}$, $u \in W^{1,p}(Q)^N$

$$|\xi|^p \le f(\xi) \le C(1+|\xi|^p)$$
 for every $\xi \in \mathbb{R}^{N \times N}$, (4.23)

$$F(A, u) \le F(A, v) + \eta \int_{A} |\nabla u - \nabla v|, \tag{4.24}$$

for every $A \subseteq Q$ an open set and every $v \in u + W_0^{1,p}(A)^N$ with $F(A, v) = \int_A f(\nabla v)$.

$$\oint_{Q_R(x_0)} |\nabla u|^p \le b \left\{ \left(\oint_{Q_{2R}(x_0)} |\nabla u|^{\mu} \right)^{p/\mu} + \oint_{Q_{2R}(x_0)} h^{p/\mu} \right\} + \frac{2^{p+1}C}{\nu} \oint_{Q_{2R}(x_0)} |\nabla u|^p, \quad (4.25)$$

for every $x_0 \in Q$, every $0 < R < \frac{1}{2} dist(x_0, \partial Q)$ and every v > 1 integer, where $\mu = \max\{1, (Np)/(Np+1)\}$, $h = (3 + \|\nabla u\|_2)^{\mu/p}$, $b = \{2^{p+1}D(p)(v+1)^p+1\} \times \{2^{p-1+N}C+1\}$ and D(p) is defined (see Lemma 4.4) by $\int_{\Omega} |u|^p \leq D(p)(\int_{Q} |\nabla u|^{\mu})^{p/\mu}$ for every $u \in W^{1,p}(Q)$ such that $\int_{Q} u = 0$. Further, there exist two constants m_3 , E > 0 depending only on α , β , C such that:

$$\int_{D_k} |\nabla u|^s \le E(3)^{Ns/p} (2^k)^{Ns/p} \|\nabla u\|_p^s \left[\int_Q |\nabla u|^p + \int_Q (3 + |\nabla u|)^{s/p} \right], \tag{4.26}$$

for every $k = -1, 0, 1, \ldots$ and every $s \in [p, p + m_3]$

Proof. The proof of (4.25) has been given in [10] by Marcellini and Sbordone. It is easy to reproduce their proof assuming that f satisfies (4.23), f depends only on ∇u and f is Borel measurable. We now prove (4.26). Using (4.25), we get:

$$\oint_{Q_R(x_0)} |\nabla u|^p \le b \left\{ \left(\oint_{Q_{2R}(x_0)} |\nabla u|^{\mu} \right)^{p/\mu} + \oint_{Q_{2R}(x_0)} h^{p/\mu} \right\} + \frac{2^{p+1}C}{\nu} \oint_{Q_{2R}(x_0)} |\nabla u|^p, \quad (4.27)$$

for every $x_0 \in Q$, every $0 < R < \frac{1}{2} dist(x_0, \partial Q)$ and every $\nu > 1$ integer. Let

$$A_1 = \sup \{a_1(q), q \in (1, \beta]\}, \quad v > 2^{\beta + 2}CA_1,$$

(4.28)

We obtain

$$\theta < \frac{1}{2A_1}, \quad 0 < a(q, b, \theta) \le 4A_1b.$$
 (4.29)

Assuming that

$$g = |\nabla u|^{\mu}, \quad q = \frac{p}{\mu}, \quad t = \frac{s}{\mu},$$

$$m_3 = \frac{1}{2} \min \left\{ (\alpha - 1), \frac{\alpha - 1}{A_1 - 1}, \frac{\alpha^2}{N + \beta} \right\},$$

$$E = \sup \left\{ \left| c\left(\frac{s}{\mu}, \frac{p}{\mu}\right) \right| + 1, p \in [\alpha, \beta], s \in [p, p + m_3] \right\}$$

and using Lemma 4.7, we find (4.26). \Box

Remark 4.9. One can see that

$$s \leq p^2$$
 for every $s \in [p, p + m_3)$ (4.30)

and, by Hölder's inequality, (4.26) implies:

$$\int_{D_{s}} |\nabla u|^{s} \le E 2^{\beta} |Q| (3.2^{k})^{N_{s/p}} ||\nabla u||_{p}^{s} [1 + 3^{\beta} + 2 ||\nabla u||_{p}^{\beta}] [1 + ||\nabla u||_{p}^{\beta}]. \quad (4.31)$$

We now proceed with the proof of Theorem 4.1.

Proof of Theorem 4.1. To illustrate, we give the proof in the case N=M. Fix

Part 1. The Proof of (4.3) is elementary

Part 2. We prove (4.4). We decompose the proof into six steps.

$$V=W_0^{1,1}(Q)^N,$$

$$V = W_0^{1,p}(Q)^{r},$$

$$\bar{F}_{p}(\phi) = \begin{cases} 1 & \int_{Q} f_{p}(\xi + \nabla \phi) & \text{if } \phi \in W_0^{1,p}(Q)^{N}, \\ |Q| & \text{if } \phi \in V - W_0^{1,p}(Q)^{N}. \end{cases}$$
(4.3)

Here, we show that there exists a sequence $(\phi''_n)_n \in V$ such that

$$\int_{D_{\nu}} |\xi + \nabla \phi_{n}^{p}|^{s} \le J2^{Nk\beta} \left[1 + \|\xi + \nabla \phi_{n}^{p}\|_{p}^{2\beta} \right] \quad \text{and} \quad \lim_{n \to \infty} \bar{F}_{p}(\phi_{n}^{p}) = Qf_{p}(\xi) \quad (4.33)$$

for every $s \in [p, p+m_3]$ and every $k=-1, 0, 1, \ldots$, where D_k, m_3 are defined in Lemma 4.7, Lemma 4.8 and J is a constant depending only on Q, β . Observe that

 f_p is lower semicontinuous $\Rightarrow \bar{F}_p$ is lower semicontinuous.

By (4.3) and (4.34) we deduce that there exists a sequence

$$(\psi_n^p)_n \in V \quad \text{with} \quad F_p(\psi_n^p) \le \inf\{\bar{F}_p(\phi), \ \phi \in V\} + \frac{1}{n} = Qf_p(\xi) + \frac{1}{n}.$$
 (4.35)

Using the variational principle of Ekeland (see [5]), we obtain a sequence

$$(\phi_n^P)_n \in V$$
 such that $\bar{F}_p(\phi_n^P) \le \bar{F}_p(\psi_n^P)$ with $\int_Q |\nabla \psi_n^P - \nabla \phi_n^P| \le 1$ (4.36)

and

$$\bar{F}_p(\phi_n^p) \le \bar{F}_p(\phi) + \frac{1}{n} \int_Q |\nabla \phi - \nabla \phi_n^p| \quad \text{for every} \quad \phi \in V.$$
 (4.37)

Further, for every A an open set, $A \subseteq Q$ and every $\phi \in \phi_n^p + W_0^{1,p}(A)^N$, we obtain

$$\bar{F}_p(A, \, \phi_n^p) \leq \bar{F}_p(A, \, \phi) + \frac{1}{n} \int_{\mathcal{Q}} |\nabla \phi - \nabla \phi_n^p|, \tag{4.38}$$

$$\bar{F}_p(A, \phi) = \frac{1}{|Q|} \int_A f_p(\xi + \nabla \phi) \quad \text{if} \quad \phi \in W^{1, p}(A)^{\mathcal{N}}. \tag{4.39}$$

In the next four steps, we suppose that $q \in (\alpha, \beta)$ is a fixed number. Step 2. Let n be a fixed integer. We show that for every sequence $S \subset [\alpha, q]$ there exists a subset $\bar{S} \subset S$, a subsequence $(\phi_n^*)_{r \in \bar{S}}$ and a $\phi_n \in W_0^{1,q}(Q)^N$ such that:

$$\phi_n^r \xrightarrow[r \to q]{\text{weakly}} \phi_n W^{1,p}(Q)^N \text{ for every } p \in \overline{S}.$$
(4.40)

By (4.2), (4.35) and (4.36), for every $p \in S$ such that p is near q, we find that:

$$\frac{1}{|Q|} \int_{Q} |\xi + \nabla \phi_{n}^{p}|^{p} \le f_{p}(\xi) + 1 \le f_{q}(\xi) + 1 + \frac{FG}{\gamma_{0}} (1 + |\xi|^{q + \gamma_{0}}) = H(\xi). \tag{4.41}$$

We choose with respect to p a subsequence in the following way. First, we fix $p_1^1 \in S$. Using Hölder's inequality in (4.41), we deduce that there there exists a sequence $p_1^1 < p_2^1 < p_3^1 < \ldots$, in S such that

$$\phi_n^{p_i^1} \xrightarrow[i \to \infty]{\text{weakly}} l_n^{p_i^1} W^{1,p_i^1}(Q)^N \text{ and } p_i^1 \xrightarrow[i \to \infty]{\text{weakly}} q.$$
 (4.42)

Then assume that $p_1^2 = p_1^1$, $p_2^2 = p_2^1$. Using Hölder's inequality again in (4.41), we deduce that there exists $p_1^2 < p_2^2 < p_3^2 < \dots$, in S such that

$$\phi_n^{p_i^2} \xrightarrow[i \to \infty]{\text{weakly}} l_n^{p_i^2} W^{1,p_i^2}(Q)^N, p_i^2 \xrightarrow[i \to \infty]{} q \text{ and } l_n^{p_i^1} = l_n^{p_i^2}.$$
 (4.43)

Now suppose that we have found the numbers $p_1^1 < p_2^2 < \ldots < p_k^k$ and an increasing subsequence $(p_i^k)_{i \in \mathbb{N}}$ such that

$$\phi_n^{p_k^k} \xrightarrow[i\to\infty]{} l_n^{p_k^k} W^{1,p}(Q)^N, \ldots, W^{1,p_k^k}(Q)^N.$$

Assume that $p_1^{k+1} = p_1^k, \dots, p_{k+1}^{k+1} = p_{k+1}^k$. Using Hölder's inequality again in

(4.41), we can obtain an increasing subsequence $(p_i^{k+1})_{i \ge k+2}$ from $(p_i^k)_{i \ge k+2}$ such

$$\phi_n^{p_k^{k+1}} \xrightarrow[i \to \infty]{\text{meakly}} l_n^{p_k^{k+1}} W^{1,p_k^{k+1}}(Q)^N \quad \text{and} \quad l_n^{p_k^k} = l_n^{p_k^{k+1}}.$$

Assume that $\phi_n=l_n^{p_k^{k,\dagger}}$ and $\bar{S}=\{p_k^k, k\in\mathbb{N}\}$. Using (4.41), it is easy to deduce that $\phi_n\in W^{1,q}_0(Q)^N$ and

$$\phi_n^r \xrightarrow[r \to q]{\text{weakly}} \phi_n W^{1,p}(Q)^N \text{ for every } p \in \overline{S}.$$
 (4.44)

Step 3. We show that

$$\lim_{\rho \to q^-} \inf Qf_{\rho}(\xi) \ge Qf_{q}(\xi), \tag{4.45}$$

where $\lim_{p\to q^-}\inf Qf_p(\xi)$ is defined by $\lim\inf Qf_p(\xi)$. To show (4.45), we suppose that

$$\lim_{p \to q^-} \inf Qf_p(\xi) < Qf_q(\xi) \tag{4.46}$$

and we get a contradiction. Now (4.46) implies that there exists a sequence $(p_i)_i \subset [\alpha, q]$ such that $\lim_{i \to \infty} Qf_{p_i}(\xi) < Qf_q(\xi)$. Let m_3 and D_k be defined as in

Lemma 4.7 and assume that $\gamma = \min \left\{ \gamma_0, \frac{m_3}{8} \right\}$. By (4.35) and (4.36), we get

 $Qf_p(\xi) \ge \frac{1}{|Q|} \int_Q f_p(\xi + \nabla \phi_n^p) + \frac{1}{n}$. Assuming that $|p - q| < m_3$ (m_3) is defined in Lemma 4.8) and using (4.2) and (4.33), we deduce that for every $k = -1, 0, 1, \dots$

$$Qf_{p_i}(\xi) \ge \frac{1}{|Q|} \int_{D_k} f_q(\xi + \nabla \phi_i^p n) - \frac{1}{n} - \frac{FG}{\gamma |Q|} w(p_i - q) J(\beta, k, \gamma, \xi)$$

quasiconvex (see [4]), we obtain and $\lim_{t\to\infty} Qf_p(\xi) \ge \liminf_{t\to\infty} 1/|Q| \int_{D_k} f_q(\xi + \nabla \phi_n^p) - 1/n$. Using the fact that Qf_q is

$$\lim_{i\to\infty} Qf_{p_i}(\xi) \ge \frac{1}{|Q|} \int_{D_k} Qf_q(\xi + \nabla \phi_n) - \frac{1}{n}.$$

(4.47)

Recalling that $\phi_n \in W_0^{1,q}(Q)^N$ and that (4.47) is $k = -1, 0, 1, \ldots$, we conclude that true for every

$$\lim_{t \to \infty} Qf_p(\xi) \ge Qf_q(\xi). \tag{4.48}$$

(4.45) is proved. Therefore (4.46) leads to a contradiction. This implies that (4.46) is false and so

Step 4. We show that

$$\lim_{p \to q^-} \inf Qf_p(\xi) \le Qf_q(\xi). \tag{4.49}$$

By (4.35) and (4.36), we get $Qf_q(\xi) \ge Qf_p(\xi) - (1/|Q| \int_Q u_n^p) - (1/n)$, where

we obtain that $u_n^p = |f_q(\xi + \nabla \phi_n^q) - f_p(\xi + \nabla \phi_n^q)|$. Using a subsequence of (u_n^p) with respect to p,

$$u_n^p \xrightarrow[p \to q^-]{} 0L^1(Q).$$

Thus for every $n \in \mathbb{N}$, $Qf_q(\xi) \ge \liminf_{p \to q^-} Qf_p(\xi) - (1/n)$. This leads to (4.49).

Step 5. We show that

$$\lim_{p \to q^+} \inf Q f_p(\xi) \ge Q f_1(\xi), \tag{4.50}$$

where $\liminf_{p\to q^+} Qf_p(\xi)$ is defined by $\liminf_{p\to q,p>q} Qf_p(\xi)$. By (4.35) and (4.36) we find Using a subsequence of $(\phi_n^p)_p$ with respect to p, we deduce that that $Qf_p(\xi) \ge 1/|Q| \int_Q f_p(\xi + \nabla \phi_n^p) - (1/n)$ and $(\phi_n^p)_p$ is bounded in $W^{1,q}(Q)^N$

$$\phi_n^P \xrightarrow[P \to q^+]{\text{weakly}} \psi_n W^{1,q}(Q)^N.$$

proves (4.50). We proceed as in Steps 3 and 4 to conclude that $\liminf_{p\to q^+} Qf_p(\xi) \ge Qf_q(\xi)$, which

Step 6. It is very easy to prove that

$$\limsup_{p \to q} Qf_p(\xi) \le Qf_q(\xi) \tag{4.51}$$

In conclusion, (4.45), (4.49), (4.50) and (4.51) imply that

Step 6. It is very easy to prove that

$$\limsup_{p \to q} Qf_p(\xi) \le Qf_q(\xi) \quad (4.51)$$

In conclusion, (4.45), (4.49), (4.50) and (4.51) imply that:

$$\lim_{p \to q} Qf_p(\xi) = Qf_q(\xi).$$

and Theorem 4.1 is completely proved.

are not polyconvex. We study such functions below. We now use Theorem 4.1 to find some quasiconvex functions $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ which

EXAMPLE 4.10. Let C, F > 0, $\beta > 2$, $f_p(\xi) = |\xi|^p + ah_p(det(\xi))$, $\xi \in \mathbb{R}^{2\times 2}$, $p \in [\alpha, \beta] \subset (1, \infty)$ and $a \ge 0$ such that $h_p(x)$ behaves as $|x|^{p/2}$. This means that:

$$h_p: \mathbb{R} \to \mathbb{R}$$
 is lower semicontinuous; (4.52)

$$h_p(x) \le h_q(x)$$
 for $p < q$ and $|x| \ge 1$; (4.53)

$$|x|^{\rho/2} \le h_p(x) \le C(1+|x|^{\rho/2})$$
 for every $x \in \mathbb{R}$ and every $p \in [\alpha, \beta]$; (4.54)

$$h_2$$
 is convex and $h_2(1) > h_2(0)$; (4.55)

$$|h_p(x) - h_q(x)| \le \frac{F}{\gamma} |p - q| (1 + |x|^{(q/2) + \gamma})$$
 for every $p < q \in [\alpha, \beta]$ (4.56)

such that and every $\gamma \in [0, \frac{1}{2}]$. Then for every $\alpha > \frac{1}{h_2(1) - h_2(0)}$ there exists a $p_0 \in (1, 2)$

$$Qf_p > Pf_p$$
 for $p_0 .$

Continuity of polyconvex envelopes

convex and $a \ge 0$ imply that f_2 is polyconvex; $a > \frac{1}{h}$ not convex. Using (4.53) and (4.56), we find that: *Proof.* (We note that $h_p(x) = |x|^{\rho/2}$ satisfies the hypotheses above.) First, h_2 $h_2(1) - h_2(0)$ implies that f_2 is

$$\lim_{p \to 2} \sup Cf_p \le Cf_2.$$
(4.57)

By Theorem 4.1 and (4.56) we find that

$$\liminf_{\rho \to 2} Qf_{\rho} = Qf_{2} > Cf_{2} \ge \limsup_{\rho \to 2} Cf_{\rho} = \limsup_{\rho \to 2} Pf_{\rho}.$$

Knowing that $Pf_2 = f_2$ and $Pf_p = Cf_p$ for every $p \in (1, 2)$, we conclude that there exists a $p_0 \in (1, 2)$ such that

$$Qf_p > Pf_p$$
 for $p \in (p_0, 2)$. \square

EXAMPLE 4.11. A particular case of this example has been studied in [8] by **Kohn.** Let N > 1 be an integer, $\beta > 2$, F, γ_0 , d > 0, $M \ge 1$, I the identity matrix of $\mathbb{R}^{N\times N}$, $p\in[\alpha,\beta]\subset(1,\infty)$ and

$$f_{p}(\xi) = \min (|\xi + I|^{p}, |\xi - I|^{p}) + h_{p}(|det(\xi)| - 1), \quad \xi \in \mathbb{R}^{N \times N}, \quad (h_{p} = 0 \text{ in } [8]),$$

with $h_p(x)$ behaving as $|x|^{p/N}$. This means that:

$$h_p: \mathbb{R} \to \mathbb{R}$$
 is lower semicontinuous;

(4.58)

$$h_p(0) = 0$$
, sup $\{|h_p(x)|; |x| \le M\} < M\} < F$ for every $p \in [\alpha, \beta];$ (4.59)

$$h_p(x) \le h_q(x)$$
 for $p < q$ and $|x| \ge M$;

(4.60)

$$0 \le h_p(x) \le d(1+|x|^{p/N})$$
 for every $x \in \mathbb{R}$ and every $p \in [\alpha, \beta]$; (4.61)

$$|h_p(x) - h_q(x)| \le \frac{r}{\gamma} |p - q| (1 + |x|^{(q/N) + \gamma})$$
 for every $p < q \in [\alpha, \beta]$ (4.62)

and every $\gamma \in (0, \gamma_0]$. Then there exists a $p_0 \in (1, 2)$ such that

$$Qf_p > Pf_p$$
 and $p \in (p_0, 2)$

Proof. (We first note that $h_p(x) = |x|^{p/N}$ satisfies the hypotheses above.) We find that $PF_2(\xi) = 0 \Rightarrow \xi = I$, -I and $Cf_2(tI) = 0$ for every $t \in [0, 1]$. Therefore

$$Pf_2 > Cf_2. \tag{4.63}$$

Theorem 4.1. Thus $\liminf_{p\to 2} Qf_p = Qf_2$. (4.59), (4.61) and (4.60) imply that **Assuming** that $g_p(\xi) = f_p(\xi) + N^{\beta/2}$, we find that g satisfies the hypotheses of

 $\limsup_{\rho \to 2} Cf_{\rho} \leq Cf_{2}$. We then conclude that:

$$\liminf_{p\to 2} Qf_p = Qf_2 \ge Pf_2 > Cf_2 \ge \limsup_{p\to 2} Cf_p.$$

Therefore there exists a $p_0 \in (1, 2)$ such that

$$Qf_p > Pf_p$$
 for every $p \in (p_0, 2)$. \square

5. Continuity of Rf_p with respect to p

We first start with the main theorem of this section.

THEOREM 5.1. Let $[\alpha, \beta] \subset (1, \infty)$, $F, G, K, \gamma_0 > 0$, $C \ge 1$ and N, M > 1 be two integers. Let $w: [0, \infty) \mapsto [0, \infty)$ with $\lim_{t \to 0} w(t) = w(0) = 0$, $\sup_{t \to 0} \{w(t), t \in [0, \beta]\} \le G$ and $f_p: \mathbb{R}^{N \times M} \mapsto \mathbb{R}$ lower semicontinuous, $p \in [\alpha, \beta]$, such that:

$$|\xi|^{p} \leq f_{p}(\xi) \leq C(1+|\xi|^{p}) \quad \text{for every} \quad p \in [\alpha, \beta] \quad \text{and every} \quad \xi \in \mathbb{R}^{N \times M}; \quad (5.1)$$

$$|f_p(\xi) - f_q(\xi)| \le \frac{F}{\gamma} w(p-q)(1+|\xi|^{p+\gamma}) \quad \text{for every} \quad \gamma \in (0, \gamma_0),$$
 (5.2)

every $\xi \in \mathbb{R}^{N \times M}$, and every $p, q \in [\alpha, \beta]$ with p > q;

$$f_p(\xi) = Rf_p(\xi)$$
 for every $|\xi| \ge K$. (5.3)

Then

$$\lim_{p \to q} Rf_p(\xi) = Rf_q(\xi), \quad \text{for every} \quad \xi \in \mathbb{R}^{N \times M} \quad \text{and every} \quad q \in (\alpha, \beta). \quad (5.4)$$

Before proving this theorem, let us begin with some remarks.

Remarks 5.2. (a) In general, we have $\liminf_{p \to 1^-} Rf_p < Rf_1$. Indeed, if $f_p(\xi) = |\xi|^p$, $\xi \in \mathbb{R}^{N \times M}$ then $0 = \liminf_{p \to 1^-} Rf_p < Rf_1 = f_1$.

(b) Theorem 5.1 is still true if we replace the condition (5.1) by $a+b\,|\xi|^p \le f_p(\xi) \le C(1+|\xi|^p)$, where $a \in \mathbb{R}$ and b>0 are two constants.

(c) We do not need to use (5.3) to prove that $\limsup_{p\to q} Rf_p \le Rf_q$ for $q \in [\alpha, \beta]$. The most difficult part in this case is to prove that $\liminf_{p\to q} Rf_p \ge Rf_q$. We were unable to prove this inequality without assuming (5.3).

(d) If we keep only hypotheses (5.1) and (5.2), we can show that

$$\lim_{\substack{p\to q\\p\to q}}R_kf_p=R_kf_q\quad\text{for every}\quad k\in\mathbb{N},\quad\text{and every}\quad q\in[\alpha,\,\beta].$$

Where $R_0 f = f$, $R_{k+1} f(\xi) = \inf \{ t R_k f(\eta) - (1-t) R_k f(\mu), t \in (0,1), \eta, \mu \in \mathbb{R}^{N \times M},$ $rank(\eta - \mu) \le 1, \ \xi = t \eta + (1-t) \mu \}$. One knows that $\lim_{k \to \infty} R_k f = R f$. (See [4, 9].)

Example 5.3. Let

$$f_p(\xi) = \begin{cases} 1 + |\xi|^p & \text{for } |\xi| \neq 0, \\ 0 & \text{for } |\xi| = 0, \end{cases} \quad \xi \in \mathbb{R}^{N \times M}.$$

Knowing that $Cf_p(\xi) = 1 + |\xi|^p$ if $|\xi| \ge (1/(p-1))^{1/p}$, we find that $(f_p)_p$ verifies (5.1), (5.2) and (5.3). Hence Theorem 5.1 leads to $\lim_{p \to q} Rf_p = Rf_q$, for every q > 1.

To prove Theorem 5.1, let us now begin with the following lemma:

Lemma 5.4. Let $N, M \ge 1$ be two integers, C, K > 0 two real constants and $f: \mathbb{R}^{N \times M} \mapsto \mathbb{R}$ lower semicontinuous such that:

$$|\xi|^p \le f_p(\xi) \le C(1+|\xi|^p)$$
 for every $\xi \in \mathbb{R}^{N \times M}$; (5.5)

$$Rf(\xi) = f(\xi)$$
 for every $|\xi| \ge K$.

(5.6)

Then, for every $\xi \in \mathbb{R}^{N \times M}$, such that $|\xi| \leq K$, there exist $t \in [0, 1], \xi_1, \xi_2 \in \mathbb{R}^{N \times M}$ verifying

$$rang(\xi_1 - \xi_2) \le 1, \quad \xi = t\xi_1 + (1 - t)\xi_2, \quad R_1 f(\xi) = tR_1 f(\xi_1)$$

$$+ (1 - t)R_1 f(\xi_2), \ |\xi_1|, \ |\xi_2| \le K. \quad (5.7)$$

Proof. The proof of Lemma 5.4 is left to the reader.
$$\square$$

We now prove Theorem 5.1.

Proof of Theorem 5.1. Let $\xi \in \mathbb{R}^{N \times M}$ and $q \in [\alpha, \beta]$. Using the same arguments as in Step 1 of the proof of Theorem 3.1, we prove that $\limsup Rf_p(\xi) \leq Rf_q(\xi)$.

Let us now prove that $\liminf_{p\to q} Rf_p(\xi) \supseteq Rf_q(\xi)$. Using (5.1), the result is obvious if $|\xi| \supseteq K$. If $|\xi| \subseteq K$, by (5.1), (5.2), (5.3) and Lemma 5.4, we get that, for every $k \in \mathbb{N}$, for every $p \in [\alpha, \beta]$, there exist $\lambda_i^p \in (0, 1)$, $\xi_i^p \in \mathbb{R}^{N \times M}$, $i = 1, \ldots, 2^k$ such that

$$|\xi_i^p| \le K$$
, $i = 1, \dots, 2^k$, $Rf_p(\xi) = \sum_{i=1}^{2^k} \lambda_i^p f_p(\xi_i^p)$ and $Rf_q(\xi) \le \sum_{i=1}^{2^k} \lambda_i^p f_q(\xi_i^p)$.

We deduce from the previous relations that

$$Rf_p(\xi) \ge Rf_q(\xi) - \frac{F}{\gamma}w(p-q)(1+M^{p+\gamma}+M^{p+\gamma}),$$

and so

$$\lim\inf_{n\to a} Rf_p(\xi) \geqq Rf_q(\xi).$$

Hence Theorem 5.1 is proved. □

6. Examples of f such that $f(\xi) = g(|\xi|)$ and $Pf \neq Qf$

THEOREM 6.1. Let $f: \mathbb{R}^{2 \times 2} \mapsto \mathbb{R}$ be a Borel measurable function, $a, b, c, \alpha > 0$, $d \in \mathbb{R}$ and $q \in (1, 2)$ such that

$$a \mid \xi \mid + f(0) \le f(\xi)$$
 for every $\xi \in \mathbb{R}^{2 \times 2}$, with equality for $\xi' = \frac{\alpha}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$;

$$b |\xi|^q + d \le f(\xi) \le c(1 + |\xi|^q)$$
 for every $\xi \in \mathbb{R}^{2 \times 2}$,

(6.1) (6.2)

there exists
$$t_0 \in (0, 1)$$
 for which $f(\xi^*) \neq a |\xi^*| + f(0)$ with $\xi^* = t_0 \xi'$. (6.3)

Then

$$Qf(\xi^*) > Pf(\xi^*). \tag{6.4}$$

Before proceeding to the proof, we make the following remarks

important role in the proof of Theorem 6.1. Remarks 6.2. (a) By (6.1) the graph of f and one of Cf intersect. This plays an

 $p \in (1, 2)$ where (b) Using Theorem 4.1, we can prove Theorem 6.1 only for q near 2. But here we will conclude for every $q \in (1, 2)$. This theorem implies $Qf_p > Pf_p$ for every

$$f_p(\xi) = \begin{cases} 1 + |\xi|^p & \text{if} \quad |\xi| \neq 0, \\ 0 & \text{if} \quad |\xi| = 0, \end{cases} \quad \xi \in \mathbb{R}^{2 \times 2}.$$

Note that in [9] Kohn and Strang proved that $Pf_2 = Qf_2$

Lemma 6.2. Let $N \ge 1$ be an integer, $\Omega \subset \mathbb{R}^N$ a bounded open set, $\beta, \gamma > 0$ and r > 1. Let $(\nu_n)_n \subset L'(\Omega)$ such that $\gamma \le \|\nu_n\|_1$, $\|\nu_n\|_1 \le \beta$ for all $n \in \mathbb{N}$. Then there exist k, l > 0 such that $|\{x \in \Omega: |\nu_n(x)| \ge k\}| \ge l$ for every $n \in \mathbb{N}$.

Proof. The proof of Lemma 6.3 is elementary. \square

 $q \ge 1$ and $\Omega \subset \mathbb{R}^2$ a bounded open set such that LEMMA 6.4. Let $f: \mathbb{R}^{2\times 2} \to \mathbb{R}$ a Borel measurable function, $a, b, c, \alpha > 0, d \in \mathbb{R}$,

$$a \mid \xi \mid + f(0) \leq f(\xi)$$
 for every $\xi \in \mathbb{R}^{2 \times 2}$ with equality for $\xi_0 = \frac{\alpha}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$;

(6.6)

Then

$$Cf(t\xi_0) = a |t\xi_0| + f(0)$$
 for every $t \in [0, 1].$ (6.7)

 $b |\xi|^q + d \le f(\xi)$ for every $\xi \in \mathbb{R}^{2\times 2}$.

If for a fixed $\xi \in \mathbb{R}^{2 \times 2}$

$$Qf(\xi) = a |\xi| + f(0) = \lim_{n \to \infty} \frac{1}{|\Omega|} \int_{\Omega} f(\xi + \nabla \phi_n), \tag{6.8}$$

where $(\phi_n)_n \subset W_0^{1,\infty}(\Omega)^2$, then, up to a subsequence, the following hold

$$\phi_n \to 0W_0^{1,q}(\Omega)^2, \tag{6.9}$$

$$f(\xi + \nabla \phi_n) - a |\xi + \nabla \phi_n| - f(0) \rightarrow 0L^1(\Omega), \tag{6.10}$$

$$|\xi + \nabla \phi_n| + |\xi| - |2\xi + \nabla \phi_n| \to 0L^1(\Omega).$$
 (6.11)

But note that the following does not hold:

$$\phi_n \to 0W^{1,1}(\Omega)$$
 if $f(\xi) \neq a |\xi| + f(0)$ and f is continuous at ξ . (6.12)

Proof. We first establish (6.7). We find using (6.5) that: $a |\xi| + f(0) \le Cf(\xi)$ for every $\xi \in \mathbb{R}^{2\times 2}$. Let $\xi \in \mathbb{R}^{2\times 2}$ be such that $\xi = i\xi_0$ with $i \in [0, 1]$. We have $Cf(\xi) \le tf(\xi_0) + (1-t)f(0) = a |\xi| + f(0)$ and we obtain (6.7).

Up to a subsequence, we can suppose that that $a |\xi| + f(0) = Qf(\xi) = \lim_{n \to \infty} \frac{1}{|\Omega|} \int_{\Omega} f(\xi + \nabla \phi_n)$. Using (6.6), we find that $\int_{\Omega} |\xi + \nabla \phi_n|^q \le \frac{1}{b} (\int_{\Omega} [f(\xi + \nabla \phi_n) - d]) \text{ and that } (\phi_n)_n \text{ is bounded in } W^{1,q}(\Omega)^2.$ We now prove (6.9), (6.10). Let $\xi \in \mathbb{R}^{2\times 2}$ be fixed and $(\phi_n)_n \subset W_0^{1,\infty}(\Omega)^2$ such

$$\phi_n \xrightarrow[n \to \infty]{\text{weakly}} \phi W_0^{1,q}(\Omega)^2.$$
 (6.13)

This implies that

$$0 \le \int_{\Omega} |f(\xi + \phi_n) - a| |\xi + \nabla \phi_n| - f(0)$$
$$= \int_{\Omega} f(\xi + \nabla \phi_n) - a| |\xi + \nabla \phi_n| - f(0)$$
$$\le \int_{\Omega} f(\xi + \nabla \phi_n) - a| |\xi| - f(0) \to 0$$

 $|\Omega|(a|\xi|+f(0)) = \lim_{n\to\infty} \int_{\Omega} f(\xi+\nabla\phi_n) = \lim_{n\to\infty} \int_{\Omega} [a|\xi+\nabla\phi_n|+f(0)] \ge \int_{\Omega} [a|\xi+\nabla\phi_n|+f(0)].$ This immediately gives $\nabla\phi=0$. Using (6.13), we now find (6.9). by (6.8). We therefore conclude that (6.10) is true. Using (6.8) we find

 $\lim_{n\to\infty} \int_{\Omega} |2\xi + \nabla \phi|$ exists. (6.9) implies that We now establish (6.11): up to a subsequence we can suppose that

$$\int_{\Omega} |2\xi| \le \lim_{n \to \infty} \int_{\Omega} |2\xi + \nabla \phi|. \tag{6.14}$$

Note that $f(\eta) \ge a |\eta| + f(0)$ for every $\eta \in \mathbb{R}^{2 \times 2}$ and using (6.10) we obtain:

$$\lim_{n \to \infty} \int_{\Omega} |\xi + \nabla \phi_n| = \int_{\Omega} |\xi|. \tag{6.15}$$

 $\int_{\Omega} |\xi + \nabla \phi_n| + |\xi| - |2\xi + \nabla \phi_n| \le 0$. We therefore obtain (6.11). using (6.14) and (6.15) we find $0 \le \lim_{n \to \infty} |f_{\Omega}| |\xi + \nabla \phi_n| + |\xi| - |2\xi + \nabla \phi_n| = \lim_{n \to \infty} |f_{\Omega}| |\xi| + |f_{\Omega}| |\xi| = 1$

and $\lim_{n\to\infty} f(\xi + \nabla \phi_n(x)) - a |\xi + \nabla \phi_n(x)| - f(0) = 0$. Thus $f(\xi) - a |\xi| - f(0) = 0$, which is a contradiction to our hypotheses. Thus, $\phi_n \to 0W^{1,1}(\Omega)$ is false. This completes the proof of Lemma 6.3. \square contradiction. Using a subsequence we can find an $x \in \Omega$ such that $\lim \nabla \phi_n(x) = 0$ Now we suppose that $\phi_n \to 0$ strongly in $W^{1,1}(\Omega)$ and show that this leads to a We finally prove (6.12): assume that f is continuous at ξ and $f(\xi) \neq a |\xi| + f(0)$

Proof of Theorem 6.1. The hypotheses on f imply that Pf = Cf. To conclude, it suffices to show that $Qf(\xi^*) > Cf(\xi^*)$. Recall that by (6.7) $Cf(\xi^*) = a |\xi^*| + f(0)$.

completes the proof of Lemma 6.3.

To obtain a contradiction, we suppose that $Qf(\xi^*) = a |\xi^*| + f(0)$. Assuming that

$$u_n = 2(|\partial_2 \phi_1^n| + |\partial_1 \phi_2^n|) + |\partial_1 \phi_1^n - \partial_2 \phi_2^n|, \quad \varepsilon \in (0, q - 1) \text{ and } v_n = u_n^{1+\varepsilon},$$

we get $v_n \in L'(\Omega)$, where $\partial_1 \phi_1$ denotes $\partial \phi_1 / \partial x_1$ and $r = q/(1+\varepsilon) > 1$. Two cases

 $\phi_n \to 0$ $W^{1,1+\epsilon}(\Omega)$ and then $\phi_n \to 0$ $W^{1,1}(\Omega)$ (for more details see [13]). But by Lemma 6.4 $\phi_n \to 0$ $W^{1,1}(\Omega)$ does not hold. We therefore have a contradiction. Case 1. $\nu_n \to 0$ $L^1(\Omega)$. It follows that $\Delta \phi_n \to 0$ $W^{-1.1/\epsilon}(\Omega)$, which implies that

l>0 such that $|\{x\in\Omega: \nu_n(x)\geqq \vec{k}\}|\geqq l$ for all $n\in\mathbb{N}$. We immediately conclude that bounded in $L'(\Omega)$ and r > 1, by Lemma 6.3, there exist two constants k > 0 and now write: there exist B > 0, k > 0 such that $|\{x \in \Omega: u_n(x) \ge k \text{ and } |\nabla \phi_n(x)| > B\}| \ge l/2$. We there exists a constant $\gamma > 0$ such that, for every $n \in \mathbb{N}$, $\|\nu_n\|_1 \ge \gamma$. Since $(\nu_n)_n$ is Case 2. $v_n \rightarrow L^1(\Omega)$ does not hold. Using a subsequence, we then find that

$$A_n = \{x \in \Omega : u_n(x) \ge k, |\nabla \phi_n(x)| \le B\}$$

$$K = \{ \eta \in \mathbb{R}^{2 \times 2}, |\eta| \le B, 2(|\eta_{12}| + |\eta_{21}|) + |\eta_{11} - \eta_{22}| \ge k \},$$

$$F(\eta) = \frac{1}{2} |\xi + \eta| + \frac{1}{2} |\xi| - \frac{1}{2} |2\xi + \eta| \eta \in \mathbb{R}^{2 \times 2}.$$

 $0 < \beta = \min \{F(\eta): \eta \in K\}$ because $F(\eta) \le 0$ implies that $\eta = \begin{pmatrix} \eta_{11} & 0 \\ 0 & \eta_{22} \end{pmatrix} \notin K$. But compact in $\mathbb{R}^{2\times 2}$, F is continuous in $\mathbb{R}^{2\times 2}$ and we find

we obtain $0 = \lim_{n \to \infty} \int_{\Omega} F(\nabla \phi_n)$, a contradiction. We therefore deduce that $\nu_n \to 0$ $\int_{\Omega} F(\nabla \phi_n) \ge \int_{A_n} F(\nabla \phi_n) \ge \beta |A_n| \ge \frac{l\beta}{2}$. Furthermore, using (6.11) in Lemma 6.4,

 $L^{1}(\Omega)$. Since the two cases do not apply, we conclude that

$$Qf(\xi^*) \neq Cf(\xi^*),$$

which is equivalent to

$$Qf(\xi^*) > Pf(\xi^*).$$

This finishes the proof of Theorem 6.1. \Box

COROLLARY 6.5. Let $p \in (1, 2)$, $t \in (0, \alpha)$, $\alpha = [1/(p-1)]^{1/p}$, $\xi_t = \frac{t}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and

$$f_p(\xi) = \begin{cases} 1 + |\xi|^p & \text{if } |\xi| \neq 0, \\ 0 & \text{if } |\xi| = 0, \end{cases} \quad \xi \in \mathbb{R}^{2 \times 2}.$$

Then

$$Pf_p(\xi_i) < Qf_p(\xi_i)$$

Proof. It is easy to see that

$$Cf_p(\xi) = \begin{cases} 1 + |\xi|^p & \text{if} \quad |\xi| \ge \alpha, \\ \alpha \, |\xi| & \text{if} \quad |\xi| < \alpha, \end{cases}$$

where $a = p^{1/p}p'^{1/p'}$ and p' = p/(p-1). Additionally the following relations hold: (a) $Rf_p(\xi) = Qf_p(\xi) = Pf_p(\xi) = Cf_p(\xi) = f(\xi)$ for every $|\xi| \ge \alpha$;

Continuity of polyconvex envelopes

(b) $a |\xi| \le f(\xi)$ with equality if and only if $|\xi| = 0$ or α :

These are the hypotheses of Theorem 6.1. Thus, Corollary 6.5 is proved.

Remark 6.6. To construct a function $f: \mathbb{R}^{2\times 2} \to \mathbb{R}$ satisfying the hypotheses of Theorem 6.1, it suffices to construct a continuous function $g: [0, \infty[\to \mathbb{R}$ such that:

$$g(0) = 0$$
, $g(x) = 1 + x^p$ if $x \ge \alpha$ $ax < g(x) < 1 + x^p$ if $x \in (0, \alpha)$,

$$1 , $a = p^{1/p} p'^{1/p'}$, $p' = \frac{p}{p-1}$, and $\alpha = \left[\frac{1}{p-1}\right]^{1/p}$$$

Assuming that $f(\xi) = g(|\xi|)$, we find that

$$Qf(\xi_i) > Pf(\xi_i)$$

for every
$$\xi_t = \frac{t}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $t \in (0, \alpha)$

Acknowledgments

and encouragement, and G. Manogg for criticism of the manuscript I would like to thank L. Boccardo, G. Buttazo and B. Dacorogna for discussion

- 1 J. J. Alibert and B. Dacorogna. An example of a quasiconvex function that is not polyconvex in two dimension. Arch. Rational Mech. Anal. 117 (1992) 155-166.
 J. M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational
- Mech. Anal. 64 (1977), 337-403.
- H. Brezis. Analyse Fonctionnelle (Paris: Masson, 1983).
- B. Dacorogna. Direct Methods in the Calculus of Variations (Berlin: 1989).

 1. Ekeland. Non convex minimization problem. Bull. Amer. Math. Soc. 1 (3) (1979) 443-474.
- F. Gehring. The L^p integrability of the partial derivatives of quasiconformal mapping. Acta Math. 130 (1973), 265-277
- M. Giaquinta and G. Modica. Regularity results for some classes of higher order non linear elliptic systems. *J. Reine Angew. Math.* **311/312** (1979), 145–169.
- R. V. Kohn. The relaxation of a double-well energy (to appear).

 R. V. Kohn and G. Strang. Optimal design and relaxation of variational problems I, II and III. Comm. Pure Appl. Math. 39 (1986), 113–137; 139–182; 353–377.

 P. Marcellini and C. Sbordone. On the existence of minima of multiple integrals. J. Math. Pures
- Appl. 62 (1983), 1-9.

 C. B. Morrey. Quasiconvexity and semicontinuity of multiple integrales. Pacific J. Math. 2 (1952).
- C. G. Simader. On Dirichlet's Boundary Value Problem, Lecture Notes in Math. 268 (Berlin. C. B. Morrey. Multiple Integrals in the Calculus of Variations (Berlin: Springer, 1966)

V. Sverak. Quasiconvex functions with subquadratic growth (to appear).

4

(Issued 11 August 1993)