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Abstract

In this paper we treat the two-variable positive extension problem for trigonometric
polynomials where the extension is required to be the reciprocal of the absolute value
squared of a stable polynomial. This problem may also be interpreted as an autoregres-
sive filter design problem for bivariate stochastic processes. We show that the existence
of a solution is equivalent to solving a finite positive definite matrix completion prob-
lem where the completion is required to satisfy an additional low rank condition. As a
corollary of the main result a necessary and sufficient condition for the existence of a
spectral Fejér-Riesz factorization of a strictly positive two-variable trigonometric poly-
nomial is given in terms of the Fourier coefficients of its reciprocal. Tools in the proofs
include a specific two-variable Kronecker theorem based on certain elements from al-
gebraic geometry, as well as a two-variable Christoffel-Darboux like formula. The key
ingredient is a matrix valued polynomial that appears in a parameterized version of
the Schur-Cohn test for stability. The results also have consequences in the theory of
two-variable orthogonal polynomials where a spectral matching result is obtained, as
well as in the study of inverse formulas for doubly-indexed Toeplitz matrices. Finally,
numerical results are presented for both the autoregressive filter problem and the fac-
torization problem.

Key Words: autoregressive filter, bivariate stochastic processes, two-variable positive
extension, structured matrix completions, doubly-indexed Toeplitz matrix, two-variable
orthogonal polynomials, two-variable minimizing pseudopolynomials, stability, Fejér-
Riesz factorization
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Chapter 1

Introduction

The trigonometric moment problem, orthogonal polynomials on the unit circle, pre-
dictor polynomials, stable factorizations, etc., have led to a rich and exciting area of
mathematics. These problems were considered early in 20th century in the works of
Carathéodory, Fejér, Kolomogorov, Riesz, Schur, Szegö, and Toeplitz, and wonderful
accounts of this theory may be found in classical books, such as [44], [35], [2], and [1].
The theory is not only rich in its mathematics but also in its applications, most no-
tably in signal processing [36], systems theory [31], [30], prediction theory [23, Chapter
XII], and wavelets [16, Chapter 6]. More recently, these problems have been studied in
the context of unifying frameworks from which the classical results appear as special
cases. We mention here the commutant lifting approach [31], the reproducing kernel
Hilbert space approach [25], the Schur parameter approach [15], and the band method
approach [28], [40], [66].

About halfway through the 20th century multivariable variations started to appear.
Several questions lead to extensive multivariable generalizations (e.g, [47, 48], [18, 19,
21]), while others lead to counterexamples ([10], [58], [33], [22], [54], [53]). In this
paper we solve some of the two-variable problems that heretofore remained unresolved.
In particular, we solve the positive extension problem that appears in the design of
causal bivariate autoregressive filters. As a result we also solve the spectral matching
problem for orthogonal polynomials and the spectral Fejér-Riesz factorization problem
for strictly positive trigonometric polynomials of two variables. In the next section we
will present these three main results. It may be helpful to first read Section 1.3 in
which some terminology and some notational conventions are introduced.

1.1 The main results

1.1.1 The positive extension problem

A polynomial p(z) is called stable if p(z) 6= 0 for z ∈ D := {z ∈ C : |z| ≤ 1}. For such a
polynomial define its spectral density function by f(z) = 1

p(z)p(1/z)
. Recall the following
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classical extension problem: given are complex numbers ci, i = 0,±1,±2, . . . ,±n, find
a stable polynomial of degree n so that its spectral density function f has Fourier
coefficients f̂(k) = ck, k = −n, . . . , n. The solution of this problem goes back to the
works of Carathéodory, Toeplitz and Szegö, and is as follows: A solution exists if and
only if the Toeplitz matrix C := (ci−j)

n
i,j=0 is positive definite (notation: C > 0). In

that case, the stable polynomial p(z) = p0 + . . .+pnz
n (which is unique when we require

p0 > 0) may be found via the Yule-Walker equation
c0 c̄1 · · · c̄n

c1 c0
. . .

...
...

. . . . . . c̄1

cn · · · c1 c0




p0

p1
...

pn

 =


1
p0

0
...
0

 .

This result was later generalized to the matrix valued case in [17] and [26] and in the
operator valued case in [41]. The spectral density function f of p has in fact a so-called
maximum entropy property (see [9]), which states that among all positive functions on
the unit circle with the prescribed Fourier coefficients ck, k = −n, . . . , n, this particular
solution maximizes the entropy integral

1

2π

∫ π

−π

log(f(eiθ))dθ.

The elegant proofs of these results in [26] have lead to the band method, which is
a general framework for solving positive and contractive extension problems. It was
initiated in [28], and pursued in [40], [66], [56], and other papers (see also [37, Chapter
XXXV] and references therein).

In this paper we generalize the above result to the two-variable case. Unlike the
one-variable case, it does not suffice to write down a single matrix and check whether
it is positive definite. In fact, one needs to solve a positive definite completion problem
where the to be completed matrix is also required to have a certain low rank submatrix.
The precise statement is the following.

Theorem 1.1.1 Given are complex numbers ck,l, (k, l) ∈ {0, . . . , n} × {0, . . . , m}.
There exists a stable (no roots in D2

) polynomial p(z, w) =
∑n

k=0

∑m
l=0 pklz

kwl with

p00 > 0 so that its spectral density function f(z, w) := (p(z, w)p(1/z, 1/w))−1 has

Fourier coefficients f̂(k, l) = ckl, (k, l) ∈ {0, . . . , n} × {0, . . . , m}, if and only if there
exist complex numbers ck,l, (k, l) ∈ {1, . . . , n}×{−m, . . . ,−1}, so that the (n+1)(m+
1)× (n + 1)(m + 1) doubly indexed Toeplitz matrix

Γ =

C0 · · · C−n
...

. . .
...

Cn · · · C0

 ,
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where

Cj =

 cj0 · · · cj,−m
...

. . .
...

cjm · · · cj0

 , j = −n, . . . , n,

and c−k,−l = c̄k,l, has the following two properties:

(1) Γ is positive definite;

(2) the (n + 1)m × (m + 1)n submatrix of Γ obtained by removing scalar rows 1 +
j(m + 1), j = 0, . . . , n, and scalar columns 1, 2, . . . ,m + 1, has rank nm.

In this case one finds the column vector

[p2
00 p00p01 · · · p00p0m p00p10 · · · p00p1m p00p20 · · · · · · p00pnm]T

as the first column of the inverse of Γ. Here T denotes a transpose.

A more general version will appear in Section 2.4. The main motivation for this
problem is the bivariate autoregressive filter problem, which we shall discuss in Sec-
tion 3.2.

1.1.2 Two-variable orthogonal polynomials

The theory of one-variable orthogonal polynomials is well-established, beginning with
the results of Szegö [61, 62]. The following is well known.

Given is a positive Borel measure ρ with support on the unit circle containing
at least n + 1 points. Let {φi(z)}, i = 0, . . . , n, be the unique sequence of poly-
nomials such that φi(z) is a polynomial of degree i in z with positive leading coeffi-

cient and
∫ π

−π
φi(e

iθ)φj(eiθ)dρ(θ) = δi−j. Then pn(z) :=
←−
φ n(z) = znφn(1

z
) is stable

and has spectral matching, i.e., 1
|pn(eiθ)|2 has the same Fourier coefficients ci as ρ for

i = 0,±1,±2· · · ,±n.
In this paper we explore the two variable case. In the papers by Delsarte, Genin

and Kamp [18, 19] the first steps were made towards a general multivariable theory.
We add to this the following spectral matching result.

Theorem 1.1.2 Given is a positive Borel measure ρ with support on the bitorus T2.
Denote the Fourier coefficients of ρ by cu, u ∈ Z2, and suppose that

det(cu−v)u,v∈{0,... ,n}×{0,... ,m} > 0.

Let φ(z, w) =
∑n

k=0

∑m
l=0 φklz

kwl be the polynomial so that φnm > 0,∫ π

−π

∫ π

−π

φ(eiθ, eiη)e−ikθ−ilηdρ(θ, η) = 0, (n,m) 6= (k, l) ∈ {0, . . . , n} × {0, . . . , m},
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and ∫ π

−π

∫ π

−π

φ(eiθ, eiη)φ(eiθ, eiη)dρ(θ, η) = 1.

Then p(z, w) = znwmφ(1/z, 1/w) is stable (no roots inside D2) and the Fourier co-
efficients c̃u of 1

|p(eiθ,eiη)|2 satisfy c̃u = cu, u ∈ {0, . . . , n} × {0, . . . , m}, if and only
if

rank(cu−v)u∈{1,... ,n}×{0,... ,m}
v∈{0,... ,n}×{1,... ,m}

= nm. (1.1.1)

In that case, we have in fact that c̃u = cu, u ∈ {−n, . . . , n} × {−m, . . . ,m}.

One of the main tools in proving this result is the establishment of a two-variable
Christoffel-Darboux like formula (see Proposition 2.3.3).

1.1.3 Fejér-Riesz factorization

The well-known Fejér-Riesz lemma states that a trigonometric polynomial f(z) =
f−nz

−n + · · ·+ fnz
n that takes on nonnegative values on the unit circle (i.e., f(z) ≥ 0

for |z| = 1) can be written as the modulus squared of a polynomial of the same degree.
That is, there exists a polynomial p(z) = p0 + · · ·+ pnz

n such that

f(z) = |p(z)|2, |z| = 1.

In fact, one may choose p(z) to be outer, i.e., p(z) 6= 0, |z| < 1. In the nonsingular case
when f(z) > 0, |z| = 1, one may choose p(z) to be stable. This factorization result has
many applications, among others in H∞-control (see, e.g., [32]) and in the construction
of compactly supported wavelets (see [16, Chapter 6]). A natural question is whether
analogs of the Fejér-Riesz lemma exist for functions of several variables. One such
variation is the following: let

f(z, w) =
m∑

l=−m

n∑
k=−n

fklz
kwl, |z| = |w| = 1,

be so that f(z, w) > 0 for all |z| = |w| = 1, does there exist a stable polynomial
p(z, w) =

∑m
l=0

∑n
k=0 pklz

kwl so that

f(z, w) = |p(z, w)|2, |z| = |w| = 1? (1.1.2)

In general, this question has a negative answer, as f(z, w) may not even be written as
a sum of square magnitudes of polynomials of the same degree ([10], [58]), let alone as
a sum with one term, which necessarily has the same degree. As as aside, we mention
that a strictly positive trigonometric polynomial may always be written as a sum of
square magnitudes of polynomials that typically will be of higher degree [24, Corollary
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5.2]. From a “degree of freedom” argument the general failure of factorization (1.1.2)
is not too surprising. Indeed, if f(z, w) is positive on the bitorus, one may perturb the
(n+1)(m+1)+nm coefficients fkl = f ∗−k,−l, (k, l) ∈ {0, . . . , n}×{0, . . . ,m}∪{1, . . . , n}×
{−m, . . . ,−1}, independently while remaining positive. If one wants to perturb p(z, w)
while maintaining equality in (1.1.2), one only has (n + 1)(m + 1) coefficients pkl,
(k, l) ∈ {0, . . . , n} × {0, . . . ,m} to perturb, leading to a generic impossibility. (Note
that one may always assume that p00 ∈ R and that necessarily f00 ∈ R, so that the
difference in count is indeed nm complex variables.)

As a consequence of the positive extension result, we arrive at the following char-
acterization for when a stable factorization (1.1.2) exists.

Theorem 1.1.3 Suppose that f(z, w) =
∑n

k=−n

∑m
l=−m fklz

kwl is positive for |z| =
|w| = 1. Then there exists a polynomial p(z, w) =

∑n
k=0

∑m
l=0 pklz

kwl with p(z, w) 6= 0
for |z|, |w| ≤ 1, and f(z, w) = |p(z, w)|2 if and only if the matrix Γ as in Theorem 1.1.1

built from the Fourier coefficients ck,l := 1̂
f

(k, l) of the reciprocal of f , satisfies condition

(2) of Theorem 1.1.1. In that case, the polynomial p is unique up to multiplication with
a complex number of modulus 1.

A more general version will appear in Section 3.3.

1.2 Overall strategy and organization

There exist many different proofs for the classical one-variable problem described in
Subsection 1.1.1. Several of these methods may be generalized to deal with the following
two-variable variation: given are ckl = c−k,−l, k ∈ Z, l = −m, . . . ,m, find a stable
function p(z, w) =

∑∞
k=0 pk0z

k +
∑∞

k=−∞
∑m

l=1 pklz
kwl whose spectral density function

f has Fourier coefficients f̂(k, l) = ckl, k ∈ Z, l = −m, . . . ,m. We shall refer to this
two-variable problem as the “strip” case, because of the shape of the region Sm :=
Z × {−m, . . . ,m} ⊂ Z2. Papers where this case appears include [19], [55] (reflection
coefficient approach), [6], [56] (band method approach). In this paper we deal with
a finite index set in Z2 where the Fourier coefficients of the sought spectral density
function are specified. A standard case we will consider is the set Λ+ ∪ (−Λ+) with
Λ+ = {0, . . . , n} × {0, . . . , m}. As it is known how to deal with the strip case one
would like to determine the Fourier coefficients in a strip containing Λ+ ∪ (−Λ+), and
then solve the problem from there. The main question is how to do this. The answer
we have found lies in a parameterized version of the Gohberg-Semencul formula [43].
The following simple observation turns out to be crucial.

Observation 1: Let p(z, w) =
∑n

k=0

∑m
l=0 pklz

kwl be a stable polynomial, and let
f(z, w) := 1

p(z,w)p(1/z,1/w)
be its spectral density function. Write p(z, w) =

∑m
l=0 pl(z)wl

7



and f(z, w) =
∑∞

i=−∞
∑∞

j=−∞ fijz
iwj =

∑∞
j=−∞ fj(z)wj. Then

[(fi−j(z))m
i,j=0]

−1 =

p0(z) ©
...

. . .

pm(z) · · · p0(z)


p̄0(1/z) · · · p̄m(1/z)

. . .
...

© p̄0(1/z)


−

p̄m+1(1/z) ©
...

. . .

p̄1(1/z) · · · p̄m+1(1/z)


pm+1(z) · · · p1(z)

. . .
...

© pm+1(z)

 := Em(z),

where pm+1(z) ≡ 0. Moreover, Em(z) is a matrix valued trigonometric polynomial in z
of degree n.

This last observation implies that Em(z) is uniquely determined by the Fourier coef-
ficients Fi = (fi,k−l)

m
k,l=0, i = −n, . . . , n, of the matrix valued function (fi−j(z))m

i,j=0.
Moreover, it is known exactly [26, Section 6] how to construct Em(z) from F−n, . . . , Fn.
For this construction we need to know fik, (i, k) ∈ {−n, . . . , n} × {−m, . . . ,m} =
Λ+ − Λ+. Since Λ+ − Λ+ 6= Λ+ ∪ (−Λ+) we first need to solve for the unknowns
fik = f−i,−k, (i, k) ∈ {1, . . . , n} × {−m, . . . ,−1}. It turns out that for the resolution
of this step the particular structure of Em(z) plays an important role. The crucial
observation here is again a simple one, namely:
Observation 2: If Mm−1(z) is a stable matrix polynomial so that Em−1(z) =
Mm−1(z)Mm−1(z)∗, z ∈ T, then

Mm(z) :=

(
p0(z) 0

col(pi(z))m
i=1 Mm−1(z)

)
is a stable matrix polynomial satisfying Em(z) = Mm(z)Mm(z)∗, z ∈ T.

With the help of this observation we are able to find the conditions the unknowns in fjk,
(j, k) ∈ Λ+−Λ+, need to satisfy in order to lead to a solution. These main observations
will appear in Chapter 2 which contains the solution of the positive extension problem.

We now describe the organization of the paper in detail. Chapter 2 contains the
main positive extension result and is organized as follows. In Section 2.1 we study
matrix polynomials of the form Em(z) as above, and extract the crucial structure they
contain. As a by-product we formulate a test for stability of two-variable polynomials
that only uses one-variable root tests. In Section 2.2 we study the Fourier coefficients
of the spectral density function corresponding to a stable polynomial, and exhibit their
low rank behavior. This low rank behavior ultimately leads to the solution of the
positive extension problem. In Section 2.3 we show that the polynomial constructed
from the completed data has the desired properties (stability and “spectral matching”
= the matching of the Fourier coefficients of its spectral density function). In Section
2.4 we formulate and solve the general positive extension problem for arbitrary given
finite data.

Chapter 3 contains several consequences of the main result. The positive extension
problem is recast in the settings of two-variable orthogonal polynomials and of bivariate
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autoregressive filter design. These interpretations of the main results appear in Sections
3.1 and 3.2, respectively. In Section 3.3 we state and prove the spectral Fejér-Riesz
factorization result for strictly positive trigonometric polynomials. In Section 3.4 we
present what our result means for a possible generalization of the Gohberg-Semencul
formula to doubly indexed Toeplitz matrices.

In the appendix, finally, we provide an alternative way to prove one direction of the
positive extension result. The method here uses minimal rank completions within the
class of doubly indexed Toeplitz matrices.

1.3 Conventions and notations

For purposes of easy reference we mention in this section the most important notational
conventions used in this paper.

Notation for several frequently used sets are N, N0, Z, T, D, R, C, and C∞, which
stand for the sets of positive integers, nonnegative integers, integers, complex numbers
of modulus one, complex numbers of modulus less than one, real numbers, complex
numbers, and complex numbers including infinity, respectively.

In this paper we shall deal with subsets of Z2 and with orderings on them. The
most frequently used ordering is the lexicographical ordering which is defined by

(k, l) <lex (k1, l1)⇐⇒ k < k1 or (k = k1 and l < l1).

We shall also use the reverse lexicographical ordering which is defined by

(k, l) <revlex (k1, l1)⇐⇒ (l, k) <lex (l1, k1).

Both these orderings are linear orders and in addition they satisfy

(k, l) < (m, n) =⇒ (k + p, l + q) < (m + p, n + q). (1.3.1)

In such a case, one may associate a halfspace with the ordering which is defined by
{(k, l) : (0, 0) < (k, l)}. In the case of the lexicographical ordering we shall denote the
associated halfspace by H and refer to it as the standard halfspace. In the case of the
reverse lexicographical ordering we shall denote the associated halfspace by H̃. Instead
of starting with the ordering, one may also start with a halfspace Ĥ of Z2 (i.e., a set
Ĥ satisfying Ĥ + Ĥ ⊂ Ĥ, Ĥ ∩ (−Ĥ) = ∅, Ĥ ∪ (−Ĥ) ∪ {(0, 0)} = Z2) and define an
ordering via

(k, l) <Ĥ (k1, l1)⇐⇒ (k1 − k, l1 − l) ∈ Ĥ.

We shall refer to the order <Ĥ as the order associated with Ĥ.
Throughout the paper we shall use matrices whose rows and columns are indexed by

subsets of Z2. For example, if I = {(0, 0), (1, 0), (0, 1)} and J = {(2, 1), (2, 2), (2, 3)},
then

C = (cu−v)u∈I,v∈J

9



is the 3× 3 matrix

C =

c−2,−1 c−2,−2 c−2,−3

c−1,−1 c−1,−2 c−1,−3

c−2,0 c−2,−1 c−2,−2


The matrix C may be referred to as a I×J matrix. The first row in this matrix will be
referred to as the (0, 0)th, while, for instance, the second column will be referred to as
the (2, 2)th. The entries are referred to according to the row and column index. Thus
for example, in this particular matrix, the ((1, 0), (2, 3)) entry contains the element
c−1,−3. The inverse of this matrix has rows and columns that are indexed by J and I,
respectively. In other words, C−1 is a J × I matrix. In the case when C is invertible,
we may for example have statements of the form: (C−1)(2,2),(0,1) = 0 if and only if

rank

(
c−2,−1 c−2,−3

c−1,−1 c−1,−3

)
≤ 1,

which is a true statement by Kramer’s rule. In parts of the paper the index sets I
and J may be given without an order (e.g., I = {1, . . . , n} × {. . . , m − 2, m − 1, m}),
in which case any order may be chosen. Clearly, in that case the statements made
about the matrices will be independent of the chosen order, such as statements about
rank and zeroes in the inverse. When I = J we will always choose the same order
for the rows and columns, as in this case we may want to make statements about self-
adjointness and positive definiteness. In algebraic manipulations with matrices indexed
by subsets of Z2 common sense rules apply. E.g., if C is a I ×J matrix and D a J ×K
matrix, then CD is a I×K matrix whose (i, k)th entry equals

∑
j∈J cijdjk. Quite often

we will encounter matrices whose rows and columns are indexed by the particular set
Λ+ = {0, . . . , n}×{0, . . . , m}. It is a useful observation that when we order Λ+ in the
lexicographical ordering, the corresponding matrix is a (n + 1)× (n + 1) block Toeplitz
matrix whose block entries are themselves (m + 1) × (m + 1) Toeplitz matrices. In
the reverse lexicographical order we also get such a doubly-indexed Toeplitz matrix,
but now the matrix is a (m + 1) × (m + 1) block matrix whose blocks are of size
(n + 1)× (n + 1).

Row and column vectors may be indexed by subsets of Z2. The notations

row(ck)k∈K , col(ck)k∈K

stand for a row and column vector containing the entries ck, k ∈ K, in some order,
respectively. We shall also use the more conventional notations

row(Fi)
n
i=1 =

(
F1 · · · Fn

)
, col(Fi)

n
i=1 =

F1
...

Fn

 .

Polynomials and pseudopolynomials (negative powers are allowed) in one and two
variables will appear. For a one variable polynomial p(z) =

∑n
i=0 piz

i, we have the
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notations

p(z) :=
n∑

i=0

piz
n,←−p (z) := znp(

1

z
) =

n∑
i=0

pn−iz
i.

The polynomial ←−p (z) is called the reverse of p(z). In this definition it is important
to know how many terms (of which some may be zero) p(z) has. We shall use the
term “degree” here, so that the polynomial p(z) above has degree n. It is a slight
deviation from the standard way of using the term degree as its use usually implies
that the coefficient of the highest degree monomial is nonzero. For our two variables

we shall use z and w. The monomial ziwj will in shorthand be denoted by
(

z
w

)k
where

k = (i, j). When K ⊂ Z2 is a finite set and pk, k ∈ K, are complex numbers, then

p(z, w) =
∑

k∈K pk

(
z
w

)k
is called a pseudopolynomial. For this pseudopolynomial we

define

p(z, w) =
∑
k∈K

pk

(
z

w

)k

.

In addition, we have a notion of “reverse” for a two-variable pseudopolynomial, but in
this case the index set K needs to be ordered, say K = {k0, . . . , km}. In that case,

←−p (z, w) =

(
z

w

)km

p(
1

z
,

1

w
).

It is a slight abuse of notation not to include the ordering of K in the notation of
←−p (z, w), but in all instances we will make clear what order on K applies (or, at least
indicate which element of K appears last in the ordering).

For polynomials of one or two variables we shall allow∞ as a root. In one variable,
we say that a(z) =

∑n
i=0 anz

n has a root at infinity when an = 0. Equivalently, ∞ is a
root of a(z) if and only if 0 is a root of ←−a (z). As a consequence, we get the following
interpretation of ∞ as a root for polynomials of two variables. Let

p(z, w) =
n∑

i=0

m∑
j=0

pijz
iwj =

m∑
j=0

pj(z)wj =
n∑

i=0

p̃i(w)zi

be a polynomial of degree (n, m). Then p(z,∞) = 0 corresponds to the statement
pm(z) = 0, while p(∞, w) = 0 corresponds to the statement p̃n(w) = 0. The statement
p(∞,∞) = 0 corresponds to pnm = 0. Finally, for a r × r matrix polynomial G(z) =∑n

i=0 Giz
i of degree n, we say that ∞ is in the spectrum of G if det Gn = 0. This is

equivalent to the statement that the polynomial det(G(z)) of degree rn has a root at
∞.

We will need the notions of left and right stable factorizations of matrix-valued
trigonometric polynomials. We say that a polynomial a(z) is stable if a(z) 6= 0, z ∈ D.
A square matrix polynomial G(z) is called stable if det G(z) is stable. Let A(z) =∑n

i=−n Aiz
i be a matrix-valued trigonometric polynomial that is positive definite on T,
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i.e., A(z) > 0 for |z| = 1. In particular, since the values of A(z) on the unit circle are
Hermitian, we have Ai = A∗−i, i = 0, . . . , n. The positive matrix function A(z) allows
a left stable factorization, that is, we may write

A(z) = M(z)M(1/z)∗, z ∈ C \ {0},

with M(z) a stable matrix polynomial of degree n. In the scalar case, this is the well-
known Fejér-Riesz factorization and goes back to the early 1900’s. For the matrix case
the result goes back to [57] and [46]. When we require that M(0) is lower triangular
with positive diagonal entries, the stable factorization is unique. We shall refer to this
unique factor M(z) as the left stable factor of A(z). Similarly, we define right variations
of the above notions. In particular, if N(z) is so that A(z) = N(1/z)∗N(z), z ∈ C\{0},
N(z) is stable and N(0) is lower triangular with positive diagonal elements, then N(z)
is called the right stable factor of A(z). For scalar functions f of two variables stability
is defined as f(z, w) 6= 0 for (z, w) ∈ D× T ∪ {0} × D. As we shall see in Proposition

2.1.1, when f is a polynomial stability is equivalent to f(z, w) 6= 0, (z, w) ∈ D2
.

Cholesky factorizations of positive definite matrices will play an important role as
well. Given a positive definite matrix M , we say that L is its lower Cholesky factor
when L is lower triangular, has positive entries on the diagonal and satisfies M = LL∗.
We say that U is the upper Cholesky factor of M when U is upper triangular, has
positive entries on the diagonal and satisfies M = UU∗.

We also mention the notation f̂(k) which stands for the kth Fourier coefficient of
f . In the case when k ∈ Z we are considering a function on T, while in the case when
k ∈ Z2 we are considering a function on T2. The support of f̂ is the set {k : f̂(k) 6= 0}.
Finally, we will use the Kronecker delta frequently, which is defined as δu = 1 when
u = 0 and δu = 0 otherwise. Here u typically ranges in a subset of Z or Z2.
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Chapter 2

Stable polynomials and positive
extensions

In this chapter we treat the positive extension problem where, given a finite number
of Fourier coefficients, a stable polynomial is sought whose spectral density function
has the prescribed Fourier coefficients. We will show that the required positive exten-
sion exists if and only if a structured partial matrix has a positive definite structured
completion satisfying a certain low rank condition. In order to show the necessity we
shall study stable polynomials and their density functions. In particular, we shall find
expressions for the Fourier coefficients of the corresponding spectral density function
in terms of realizations of a one-variable matrix polynomial that we associate with the
stable polynomial. This matrix polynomial may be viewed as a parameterized Schur-
Cohn expression. The sufficiency proof is achieved by showing that a completed matrix
as described above has an associated predictor polynomial that is stable and that has
the spectral matching property. For this latter part, we first prove a useful formula
that may be interpreted as a two-variable Christoffel-Darboux like formula. Along the
way we will also obtain a stability test for two variable polynomials that consists of two
one-variable root tests and a single matrix positive definiteness test.

2.1 Stability via one-variable root tests

The classical Schur-Cohn test states that a polynomial a(z) = a0 + · · ·+ anz
n is stable

if and only if a0 ©
...

. . .

an−1 · · · a0


ā0 · · · ān−1

. . .
...

© ā0

−
ān ©

...
. . .

ā1 · · · ān


an · · · a1

. . .
...

© an

 > 0.
(2.1.1)

In this section we study two-variable stable polynomials. By definition p(z, w) is stable
if p(z, w) 6= 0 for (z, w) ∈ D × T ∪ {0} × D. Consequently, one may write p(z, w) =
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∑n
i=0 ai(w)zi and require that (2.1.1) holds for ai = ai(w) for all w ∈ T. It is therefore

natural in this context to study matrix valued trigonometric polynomials of the type
(2.1.1) where ai are polynomials. We will do this in this section and obtain a stability
test for two variable polynomials that only requires one variable root tests. More
importantly, we develop the basic results needed to solve the positive extension problem.
We start with some preliminary material.

Let f be a complex valued continuous function of two variables whose domain
includes D×T∪{0}×D. We say that f is stable if f(z, w) 6= 0 for (z, w) ∈ D×T∪{0}×D.
Note that stability of f implies that f is invertible as a function on the bitorus T2. We
have the following equivalent statements for the stability of polynomials p of degree
(n,m), that is polynomials of the form

p(z, w) =
n∑

i=0

m∑
j=0

pijz
iwj. (2.1.2)

Note that we do not have any nonzero requirements on the coefficients of p, so that the
degree has to be specified along with the polynomial. The (k, l)’th Fourier coefficient
of a function q(z, w) is denoted by q̂(k, l).

Proposition 2.1.1 Let p(z, w) be a polynomial of degree (n,m). The following are
equivalent:

(i) p is stable

(ii) p̂−1(k, l) = 0 for all (k, l) ∈ {(k, l) : k < 0 or (k = 0 and l < 0)}

(iii) p̂−1(k, l) = 0 for all (k, l) ∈ {(k, l) : k < 0 or l < 0}

(iv) p(z, w) 6= 0 for all |z| ≤ 1 and |w| ≤ 1.

The equivalence of (i) and (ii) holds for all stable functions and actually provides
the motivation for its definition.

Proof. For (i) ⇒ (ii) use [29] to see that stability implies that p̂−1(k, l) = 0 for

k < 0. In addition, it follows from p(0, w) 6= 0 for |w| ≤ 1 that p̂−1(0, l) = 0 for l < 0.
For (iii) ⇒ (iv) use that (iii) implies that p−1 has an absolutely summable Fourier
expansion of the form

p−1(z, w) =
∑
k,l≥0

p̂−1(k, l)zkwl, |z| = |w| = 1.

Thus p−1 can be extended for values of z and w inside the unit disk, proving (iv). The
implication (iv) ⇒ (i) is trivial.
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It remains to show (ii) ⇒ (iii). For this write

p(z, w) =
n∑

j=0

p̃j(w)zj,

and

p−1(z, w) =
∞∑

k=0

qk(w)zk.

Thus q̂k(l) = p̂−1(k, l). Note that q̂0(l) = 0, l < 0. Since p(z, w)p−1(z, w) ≡ 1,

p̃0(w)q0(w) ≡ 1

and
j∑

l=0

p̃j−l(w)ql(w) ≡ 0, j ≥ 1.

We proceed by induction. Suppose that for j ≤ k, with k ≥ 0, we have shown that
q̂j(s) = 0, s < 0. Then

qk+1(w) = −1
p̃0(w)

(∑k
l=0 p̃k+1−l(w)ql(w)

)
= −q0(w)

(∑k
l=0 p̃k+1−l(w)ql(w)

)
contains only nonnegative powers of w. Thus q̂k+1(s) = 0, s < 0. 2

We introduce the notion of intersecting zeros. We will allow for roots to be at∞ as
explained in Section 1.3. Given is a polynomial p(z, w) of degree (n, m). We say that
a pair (z, w) ∈ C2

∞ is an intersecting zero of p if

p(z, w) = 0 =←−p (z, w). (2.1.3)

In general a polynomial could have continua of intersecting zeros. We will see that
when p is stable, it only has a finite number of them. In fact, the intersecting roots
will play a crucial role in the stability test we develop. This is because they appear in
the description of the spectrum of matrix trigonometric polynomials constructed from
a parameterized Schur-Cohn type test. This is part of the content of the following
proposition.

For a stable polynomial p(z, w) we define its spectral density function by

f(z, w) = 1/(p(z, w)p(z−1, w−1)),

where for p as in (2.1.2) we let p(z, w) =
∑n

i=0

∑m
j=0 pijz

iwj. Note that when p(z0, w0) 6=
0 for some |z0| = |w0| = 1, then f(z0, w0) > 0. In particular, if p is stable, then f > 0
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on T2. In addition, for a square matrix valued function G(z) we define its spectrum by
Σ(G) = {z : det G(z) = 0}. In case G(z) is a matrix polynomial we allow for ∞ to
be in the spectrum of G as explained in Section 1.3. So in this case Σ(G) ⊂ C∞. We
remind the reader that the definition of left stable factor may be found in Section 1.3.

Proposition 2.1.2 Let p(z, w) be a stable polynomial of degree (n, m) with p(0, 0) > 0,
and let f(z, w) be its spectral density function. Write

p(z, w) =
m∑

i=0

pi(z)wi, f(z, w) =
∞∑

i=−∞

fi(z)wi.

Put pi(z) ≡ 0 for i > m. Then the following hold:

(i) Tk(z) := (fi−j(z))k
i,j=0 > 0 for all k ∈ N0 and all z ∈ T.

(ii) for all k ≥ m− 1 and for all z in the domain of Tk with z 6∈ Σ(Tk):

Tk(z)−1 =

p0(z) ©
...

. . .

pk(z) · · · p0(z)


p̄0(1/z) · · · p̄k(1/z)

. . .
...

© p̄0(1/z)

−
−

p̄k+1(1/z) ©
...

. . .

p̄1(1/z) · · · p̄k+1(1/z)


pk+1(z) · · · p1(z)

. . .
...

© pk+1(z)

 =: Ek(z)
(2.1.4)

(iii) for k ≥ m− 1, the left stable factors Mk(z) and Mk+1(z) of the positive trigono-
metric matrix polynomials Ek(z) and Ek+1(z), respectively, satisfy

Mk+1(z) =

[
p0(z) 0

col(pl(z))k+1
l=1 Mk(z)

]
. (2.1.5)

(iv) The spectra of Mm−1,
←−
Mm−1 and znEm−1 are given by

Σ(Mm−1) = {z ∈ C∞ \ D : ∃w such that (z, w) is an intersecting zero of p},
Σ(
←−
Mm−1) = {z ∈ D : ∃w such that (z, w) is an intersecting zero of p},

Σ(znEm−1) = {z ∈ C∞ : ∃w such that (z, w) is an intersecting zero of p} ⊂ C∞ \ T.

In particular, p has only a finite number of intersecting zeros. In addition, for
k ≥ m, Σ(Mk) = Σ(Mm−1) ∪ {z ∈ C∞ : p0(z) = 0}, Σ(

←−
M k) = Σ(

←−
Mm−1) ∪ {z ∈

C∞ :←−p0 (z) = 0}, Σ(znEk) = Σ(Mk) ∪ Σ(
←−
M k).

Note that the statement above shows that Ek(z) > 0, z ∈ T, as Ek(z) = Tk(z)−1.
One may also see this by using the Schur-Cohn test for stability.

We shall use the following lemma.
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Lemma 2.1.3 Let p(z, w) =
∑m

i=0 pi(z)wi be a polynomial of degree (n,m), and let
Em−1(z) be defined by (2.1.4). Then

Σ(znEm−1) = {z ∈ C∞ : ∃w such that (z, w) is an intersecting zero of p}

The ideas in the proof below have appeared earlier in the context of Bezoutians
(see, e.g., the proof of Theorem 1 in Section 13.3 of [52]).

Proof. Write ←−p (z, w) =
∑m

i=0 qi(z)wi, or equivalently, set qj(z) = znpm−j(1/z).
First suppose that pm(z) ≡ 0 and qm(z) ≡ 0. Then (z,∞) is an intersecting root for
every z ∈ C∞. Moreover, it is easy to see that the first column of znEm−1(z) is the
constant zero column, and consequently Σ(znEm−1) = C∞. Thus the result follows in
this case.

Suppose now that qm(z) 6≡ 0. Consider the Sylvester matrix

S(z) =



p0(z) © q0(z) ©
...

. . .
...

. . .

pm−1(z) · · · p0(z) qm−1(z) . . . q0(z)
pm(z) . . . p1(z) qm(z) . . . q1(z)

. . .
...

. . .
...

© pm(z) © qm(z)


(2.1.6)

corresponding to p(z, w) and ←−p (z, w) viewed as polynomials in w. Since the determi-
nant of S(z) is the resultant of these two polynomials, we obtain that there exists a w
so that (2.1.3) holds if and only if S(z) is singular. Notice that if we write S(z) as

S(z) =

(
α(z) znβ(z)
γ(z) znδ(z)

)
, (2.1.7)

with all blocks of size m × m, then α(z) and β(z) are lower triangular Toeplitz, and
therefore they commute. The matrices γ(z) and δ(z) are upper triangular Toeplitz
and commute as well. Moreover, by (2.1.4), Em−1(z) = α(z)δ(z)− β(z)γ(z). By using
Schur complements we have for z 6∈ Σ(δ) that

det S(z) = det(α(z)− β(z)δ(z)−1γ(z)) det(znδ(z)) = det(znEm−1(z)),

where in the last step we used the product rule for determinants and the fact that γ(z)
and δ(z) commute. Since Σ(δ) is finite (due to qm(z) 6≡ 0) , det S(z) = det(znEm−1(z))
for all z, and thus it follows that z is a zero of det(znEm−1(z)) if and only if S(z) is
singular. This yields the description of Σ(znEm−1).

The case when pm(z) 6≡ 0 is similar. 2

Proof of Proposition 2.1.2. (i). Fix |z| = 1. Since f(z, w) > 0 for all |w| = 1,
the multiplication operator g(w) → f(z, w)g(w) is a positive definite operator on the
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Lebesgue space L2(T). But then so is its restriction to the linear span of {1, w, . . . , wk}.
This yields (i).

(ii). Fix |z| = 1. Since f(z, w)p(z, w) = 1/p(z, 1/w) is analytic for w ∈ C∞ \
D, the 0, . . . , k Fourier coefficients of f(z, w)p(z, w) viewed as a function of w are
1/p0(z), 0, . . . , 0. In other words,

Tk(z)


p0(z)
p1(z)

...
pk(z)

 =


1/p0(z)

0
...
0

 , k ≥ m.

Equation (2.1.4) for |z| = 1 now follows directly from the celebrated Gohberg-Semencul
formulas [43]. Since both sides of (2.1.4) are rational, we get that (2.1.4) holds for all
z in the domain of Tk with z 6∈ Σ(Tk).

(iii). Let Mk(z) be the stable factor of Ek(z). Define Mk+1(z) via (2.1.5). Writing
out the product Mk+1(z)Mk+1(1/z̄)∗ and comparing it to Ek+1(z), it is straightforward
to see that Mk+1(z)Mk+1(1/z̄)∗ = Ek+1(z). Since both p0(z) and Mk(z) are stable,
Mk+1(z) is stable as well. Moreover, since p0(0) > 0 and Mk(0) is lower triangular
with positive diagonal entries, the same holds for Mk+1(0). Thus Mk+1(z) must be the
stable factor of Ek+1(z).

(iv). By Lemma 2.1.3 the description of Σ(znEm−1) follows. But then it also follows
that z is a zero of the stable factor Mm−1(z) of Em−1(z) if and only if z ∈ C∞ \D and
(z, w) is an intersecting zero of p for some w. The description of Σ(

←−
Mm−1) follows by

symmetry. The expressions for Σ(
←−
M k), Σ(Mk), and Σ(znEk), k ≥ m, follow directly

from (iii). 2

One can state several variations of the above result. We state the following one. It
may be proven by using the above result (with the roles of z and w reversed) together
with the observation that if A is a Toeplitz matrix then JAT J = A where J is the matrix
with 1’s on the anti-diagonal and zeros elsewhere. The latter implies, for instance,
that the right and left spectral factors Nk and Mk, respectively, of Ek are related by
Nk = JMT

k J . The proposition may also be proven directly. The details are omitted.

Proposition 2.1.4 Let p(z, w) be a stable polynomial of degree (n, m) with p(0, 0) > 0,
and let f(z, w) be its spectral density function. Write

p(z, w) =
n∑

i=0

p̃i(w)zi, f(z, w) =
∞∑

i=−∞

f̃i(w)zi.

Put p̃i(w) ≡ 0 for i > n. Then the following hold:

(i) T̃k(w) := (f̃i−j(w))k
i,j=0 > 0 for all k ∈ N0 and all w ∈ T.
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(ii) for all k ≥ n− 1 and for all w in the domain of T̃K with w 6∈ Σ(T̃k):

T̃k(w)−1 =

p̃0(1/w) · · · p̃k(1/w)
. . .

...
© p̃0(1/w)


p̃0(w) ©

...
. . .

p̃k(w) · · · p̃0(w)

−
−

p̃k+1(w) · · · p̃1(w)
. . .

...
© p̃k+1(w)


p̃k+1(1/w) ©

...
. . .

p̃1(1/w) · · · p̃k+1(1/w)

 =: Ẽk(w)
(2.1.8)

(iii) for k ≥ n−1, the right stable factors M̃k(w) and M̃k+1(w) of the positive trigono-
metric matrix polynomials Ẽk(w) and Ẽk+1(w), respectively, satisfy

M̃k+1(w) =

[
M̃k(w) 0

row(p̃k+1−l(w))k
l=0 p̃0(w)

]
. (2.1.9)

(iv) The spectra of M̃n−1,
←−̃
M n−1 and wmẼn−1 are given by

Σ(M̃n−1) = {w ∈ C∞ \ D : ∃z such that (z, w) is an intersecting zero of p},
Σ(
←−̃
M n−1) = {w ∈ D : ∃z such that (z, w) is an intersecting zero of p},

Σ(wmẼn−1) = {w ∈ C∞ : ∃z such that (z, w) is an intersecting zero of p} ⊂ C∞ \ T.

In particular, p has only a finite number of intersecting zeros. In addition, for

k ≥ n, Σ(M̃k) = Σ(M̃n−1) ∪ {w ∈ C∞ : p̃0(w) = 0}, Σ(
←−̃
M k) = Σ(

←−̃
M n−1) ∪ {w ∈

C∞ :
←−̃
p0 (w) = 0}, Σ(wmẼk) = Σ(M̃k) ∪ Σ(

←−̃
M k).

We now obtain a criterion for stability in terms of intersecting zeros.

Theorem 2.1.5 Let p(z, w) be a polynomial of degree (n, m) of two variables. The
following conditions are equivalent:

(i) p(z, w) is stable,

(ii) p(z, a) 6= 0 for all |z| ≤ 1 and some |a| = 1, p(b, w) 6= 0 for all |w| ≤ 1 and some
|b| ≤ 1, and the intersecting zeros of p lie in D× (C∞ \ D) ∪ (C∞ \ D)× D.

(iii) p(z, a) 6= 0 for all |z| ≤ 1 and some |a| = 1, p(b, w) 6= 0 for all |w| ≤ 1 and some
|b| ≤ 1, and every intersecting zero (z, w) of p satisfies |z| 6= 1 or |w| 6= 1.

(iv) p(b, w) 6= 0 for all |w| ≤ 1 and some |b| ≤ 1, Ẽn−1(a) > 0 for some |a| = 1, and
det Ẽn−1(w) 6= 0 for all |w| = 1.
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Clearly, one may reverse the roles of z and w, and obtain additional equivalences.
Proof. That (i) implies (ii) follows directly from Proposition 2.1.1(iv). For (ii)

→ (iv) note that the stability of p(z, a) is equivalent to Ẽn−1(a) > 0. Moreover,
Σ(wmẼn−1) = {w : ∃z such that (z, w) is an intersecting zero of p} does not contain
any elements from T.

For (iv) → (iii) notice that Ẽn−1(a) > 0 is equivalent to p(z, a) being stable. In
addition, since Σ(wmẼn−1)∩T = ∅, we have by the variation of Lemma 2.1.3 with the
roles of z and w interchanged, that all intersecting zeros of p(z, w) satisfy |w| 6= 1.

Finally, in order to see that (iii) implies (i) suppose that (iii) is satisfied. We
claim that p(z, w) 6= 0 for |z| = |w| = 1. Indeed, suppose by contradiction that
p(z0, w0) = 0, for some |z0| = |w0| = 1. Then, by taking complex conjugates, we

get 0 =
∑n

i=0

∑m
j=0 pij

1
zi
0

1

wj
0

=
←−p (z0,w0)

zn
0 wm

0
, and thus ←−p (z0, w0) = 0 as well. This contra-

dicts (iii). The result now follows from Theorem 2 in [60] (see also Theorem 3 in [20]). 2

It should be observed that checking stability via Theorem 2.1.5(iv) may be done
by two single variable polynomial root tests (e.g., check that p(0, w) is stable and that
det Ẽn−1(w) 6= 0, |w| = 1) and a positive definiteness test (e.g., Ẽn−1(1) > 0). We note
that in [8] a test of this type has been alluded to, but a proof is not present there.

2.2 Fourier coefficients of spectral density functions

In the following we show that the spectral density function of a stable polynomial of
degree (n,m) has an associated Hankel operator of rank nm. This is done by developing
formulas for the Fourier coefficients appearing in the Hankel operator. The spectrum
(= the set of eigenvalues) of a constant square matrix A is denoted by σ(A). Further,
denote δu = 0 for u 6= (0, 0) and δ(0,0) = 1.

Theorem 2.2.1 Let p(z, w) =
∑n

i=0

∑m
j=0 pijz

iwj be a stable polynomial of degree
(n,m), and let f(z, w) be its spectral density function. Then there exists a row vec-
tor x ∈ Cnm, a column vector y ∈ Cnm and commuting matrices S, S̃ ∈ Cnm×nm such
that

σ(S) = {z ∈ D : ∃w such that (z, w) is an intersecting zero of p},
σ(S̃) = {w ∈ D : ∃z such that (z, w) is an intersecting zero of p},

(2.2.1)

and

f̂(k, j) = xS̃m+j−1Sn−1−ky, k ≤ n− 1, j ≥ −m + 1. (2.2.2)

We may choose x, y, S and S̃ as follows

x = row(f̂((n− 1, 0)− u))u∈∆, y = col(δu+(0,−m+1))u∈∆, S = Φ−1Φ1, S̃ = Φ−1Φ2,
(2.2.3)
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where

Φ = (f̂(u− v))u,v∈∆, Φ1 = (f̂(u− v − (1, 0)))u,v∈∆, Φ2 = (f̂(u− v + (0, 1))u,v∈∆

and ∆ = {0, . . . , n− 1} × {0, . . . , m− 1}. In particular the matrix

(f̂(u− v))u∈{...,n−2,n−1}×{0,1,... }
v∈{0,1,... }×{...,m−2,m−1}

(2.2.4)

has rank equal to nm.

In case n = m = 2 and the lexicographical ordering is used, equation (2.2.3) yields
the choice

x =
(
f̂(1, 0) f̂(1,−1) f̂(0, 0) f̂(0,−1)

)
, y =

(
0 1 0 0

)T
,

Φ =


f̂(0, 0) f̂(0,−1) f̂(−1, 0) f̂(−1,−1)

f̂(0, 1) f̂(0, 0) f̂(−1, 1) f̂(−1, 0)

f̂(1, 0) f̂(1,−1) f̂(0, 0) f̂(0,−1)

f̂(1, 1) f̂(1, 0) f̂(0, 1) f̂(0, 0)

 ,

Φ1 =


f̂(−1, 0) f̂(−1,−1) f̂(−2, 0) f̂(−2,−1)

f̂(−1, 1) f̂(−1, 0) f̂(−2, 1) f̂(−2, 0)

f̂(0, 0) f̂(0,−1) f̂(−1, 0) f̂(−1,−1)

f̂(0, 1) f̂(0, 0) f̂(−1, 1) f̂(−1, 0)


and

Φ2 =


f̂(0, 1) f̂(0, 0) f̂(−1, 1) f̂(−1, 0)

f̂(0, 2) f̂(0, 1) f̂(−1, 2) f̂(−1, 1)

f̂(1, 1) f̂(1, 0) f̂(0, 1) f̂(0, 0)

f̂(1, 2) f̂(1, 1) f̂(0, 2) f̂(0, 1)

 .

Notice that the above result is reminiscent of (one direction of) the classical Kro-
necker Theorem (see, e.g., [69]) which relates functions with a finite number of poles in
D with a low rank Hankel operator. In addition, the choice of the matrices (2.2.3) has
the flavor of a two-variable version of Silverman’s algorithm [59, Proof of Theorem 11]
for finding realizations.

Clearly, the matrix (2.2.4) may be interpreted as a restriction of the multiplication
operator Mf on the Lebesgue space L2(T2) with symbol f . Indeed, if for Λ ⊆ Z2 we
denote by PΛ the orthogonal projector on L2(T2) given by

PΛ

 ∑
(k,l)∈Z2

cklz
kwl

 =
∑

(k,l)∈Λ

cklz
kwl, (2.2.5)
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then PIMfPJ : ImPJ → ImPI has a matrix representation (with respect to the canonical
basis {zkwl}k,l)

(f̂(u− v))u∈I,v∈J .

Proof of Theorem 2.2.1. We shall use the notation of Propositions 2.1.2 and
2.1.4. The strategy of the proof is as follows. The matrix valued functions T̃l(w)
and Tk(z) both have inverses that are matrix valued trigonometric polynomials (use
part (ii) of Propositions 2.1.2 and 2.1.4). Therefore, their Fourier coefficients may be
represented as CAiB, i ≥ 0, for appropriately chosen finite matrices A, B, and C. Since
the matrix valued functions T̃l(w) and Tk(z) are closely related, the representations of
their Fourier coefficients are closely related as well. Using this the desired representation
of the Fourier coefficients of f are found. Let us start.

For k ≥ m − 1, consider the equality Tk(z) = Mk(1/z)∗−1Mk(z)−1. Notice that
Mk(z) is a (k+1)× (k+1) matrix polynomial of degree n, and that Mk(0) is invertible.
Thus

←−
Mk(z) = znMk(1/z)∗ is a polynomial of degree n with an invertible leading term

Mk(0)
∗. As Mk is stable and

←−
M k is anti-stable (all spectrum inside the unit circle),

they do not have common spectrum. Since, in addition
←−
M k has an invertible leading

term, there exist by Theorem 3.5 in [39] matrix polynomials Pk(z) and Qk(z) of degree
at most n− 1 so that

←−
Mk(z)Pk(z) + Qk(z)Mk(z) ≡ Ik+1.

Moreover, Qk(z) is given by

Qk(z) = − 1

2πi

∫
T

←−
Mk(z)−←−Mk(λ)

z − λ

←−
Mk(λ)−1Mk(λ)−1dλ.

Notice that by the particular structure of Mk(z), as described in Proposition 2.1.2(iii),

Qk(z) =

(
∗ ∗
∗ Qk−1(z)

)
, k ≥ m,

and also

Mk(0)∗−1Qk(z) =

(
∗ ∗
∗ Mk−1(0)∗−1Qk−1(z)

)
, k ≥ m. (2.2.6)

Now
Tk(z) = Mk(1/z)∗−1(

←−
Mk(z)Pk(z) + Qk(z)Mk(z))Mk(z)−1

= znPk(z)Mk(z)−1 + zn←−Mk(z)−1Qk(z).

As Pk(z)Mk(z)−1 is analytic in D,

Tk(z) = zn←−Mk(z)−1Qk(z) + O(zn). (2.2.7)
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Next, we write
←−
Mk(z)−1Qk(z) in realization form, as follows. Write

Mk(0)
∗−1←−Mk(z) = znI +L

(k)
n−1z

n−1 + . . . +L
(k)
0 , Mk(0)∗−1Qk(z) = Q

(k)
n−1z

n−1 + . . . + Q
(k)
0 .

Note that by Proposition 2.1.2(iii) ,

L
(k)
j =

(
(

pn−j,0

p00
) ∗

0 L
(k−1)
j

)
, k ≥ m, j = 0, . . . , n. (2.2.8)

By repeatedly using (2.2.8) we obtain,

L
(k)
j =


(

pn−j,0

p00
) ∗

. . .

(
pn−j,0

p00
)

© L
(m−1)
j

 , k ≥ m, j = 0, . . . , n,
(2.2.9)

where (
pn−j,0

p00
) appears k −m + 1 times. By [7, Theorem II.2.3] (take transposes twice

to apply the result directly),we have

←−
Mk(z)−1Qk(z) = Ĉ(zI − Â)−1B̂, z 6∈ Σ(

←−
Mk), (2.2.10)

where

Ĉ =
(
0 · · · 0 Ik+1

)
, B̂ = col(Q

(k)
j )n−1

j=0 , Â =


0 · · · 0 −L

(k)
0

I 0 −L
(k)
1

...
. . .

...
...

0 · · · I −L
(k)
n−1

 ,

which are of size (k + 1) × n(k + 1), n(k + 1) × (k + 1) and n(k + 1) × n(k + 1),
respectively. The representation (2.2.10) is called a realization of the rational matrix
function

←−
Mk
−1Qk (see, e.g., [7]). Due to (2.2.9) we may apply a permutation π̂k to Â

so that we obtain the following block upper triangular form

A := π̂kÂπ̂−1
k =


T ∗

. . .

T
© S ′

 ,

where

T =


0 · · · 0 −(pn0

p00
)

1 0 −(pn−1,0

p00
)

...
. . .

...
...

0 · · · 1 −(p1,0

p00
)

 , S ′ =


0 · · · 0 −L

(m−1)
0

I 0 −L
(m−1)
1

...
. . .

...
...

0 · · · I −L
(m−1)
n−1

 ,
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and the matrix T appears k −m + 1 times in A. Notice that σ(S ′) = Σ(
←−
Mm−1) ⊂ D.

The permutation π̂k transforms Ĉ and B̂ into

C := Ĉπ̂−1
k =


E1 ©

. . .

E1

© Em

 , B := π̂kB̂ =


∗
...
∗

W ′
k

 ,

where
El =

(
0 · · · 0 Il

)
is of size l × nl and W ′

k = col(PQ
(k)
j )n−1

j=0 with P the m × (k + 1) matrix P = [0 Im].
With the help of (2.2.6) it is straightforward to check that

W ′
k =

(
∗ W ′

k−1

)
, k ≥ m. (2.2.11)

Expanding (2.2.10), we now obtain from (2.2.7) and the definition of Tk(z) that

(fi−l(z))k
i,l=0 =

∞∑
i=0

zn−i−1CAiB + O(zn).

By taking the jth Fourier coefficient on both sides, and writing only the last m rows,
we get

Hjk :=

fj,k−m+1 · · · fj0 · · · fj,−m+1
...

...
. . .

...
fjk · · · fj,m−1 · · · fj0

 = Em(S ′)n−j−1W ′
k, j ≤ n− 1, k ≥ m− 1.

(2.2.12)

In a similar way, but now using Proposition 2.1.4, we obtain

H̃lj :=

 f0j · · · f−n+1,j · · · f−l,j
...

. . .
...

...
fn−1,j · · · f0j · · · f−l+n−1,j

 = Fn(Ŝ∗)m+j−1Ŵl, j ≥ −m + 1, l ≥ n− 1,
(2.2.13)

where σ(Ŝ) = Σ(
←−̃
M n−1) ⊂ D,

Fn =
(
0 · · · 0 In

)
is of size n× nm, and Ŵl is a matrix of size nm× l with the property that

Ŵl =
(
Ŵl−1 ∗

)
, l ≥ n.

Notice that Hjk defined in (2.2.12) and H̃lj defined in (2.2.13) are related in the
following way

(Hi−j,k)
n−1 l
i=0, j=0 = π1[(H̃l,i−j)

0
i=−m+1,

0
j=−l]π2,
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where π1 and π−1
2 are appropriately chosen permutations (that convert reverse lexico-

graphical ordering to lexicographical ordering). Notice that π2 depends on k and l, but
we will suppress this dependency. Combining (2.2.12) and (2.2.13) we therefore get

col(Em(S ′)n−1−j)n−1
j=0 row((S ′)jW ′

k)
l
j=0 = π1col(Fn(Ŝ∗)j)m−1

j=0 row((Ŝ∗)k−jŴl)
k
j=0π2.

(2.2.14)

When k = m − 1 and l = n − 1, (2.2.14) equals the invertible nm × nm matrix
Φ = (fu−v)u,v∈{0,... ,n−1}×{0,... ,m−1}, i.e.,

Φ = col(Em(S ′)n−1−j)n−1
j=0 row((S ′)jW ′

m−1)
n−1
j=0 =

= π1col(Fn(Ŝ∗)j)m−1
j=0 row((Ŝ∗)m−1−jŴn−1)

m−1
j=0 π2.

(2.2.15)

Thus the nm×nm matrices col(Em(S ′)n−1−j)n−1
j=0 , col(Fn(Ŝ∗)j)m−1

j=0 , row((S ′)jW ′
m−1)

n−1
j=0

and row((Ŝ∗)m−1−jŴn−1)
m−1
j=0 are all invertible. We now let

K = row((S ′)jW ′
m−1)

n−1
j=0 , L = row((Ŝ∗)m−1−jŴn−1)

m−1
j=0 π2,

and put
E = EmK , S = K−1S ′K , F̃ = FnL , S̃ = L−1Ŝ∗L.

Then (2.2.15) yields

Φ = col(ESn−1−j)n−1
j=0 = π1col(F̃ S̃j)m−1

j=0 . (2.2.16)

Let x denote the first row of E, which by (2.2.16) equals the ((n − 1)m + 1)th row of
Φ. As π1 picks out the jth scalar row from each block to make the jth block, we have
by (2.2.16) that x equals the last row of F̃ . In fact, we obtain from (2.2.16) that

F̃ = col(xSn−1−j)n−1
j=0 , E = col(xS̃j)m−1

j=0 , (2.2.17)

and, more generally,

F̃ S̃i = col(xS̃iSn−1−j)n−1
j=0 , ESr = col(xSrS̃j)m−1

j=0 , i = 0, . . . , m− 1; r = 0, . . . , n− 1.

Let now also
Wk = K−1W ′

k , W̃l = L−1Ŵl.

Then the definitions of K and L yield

Inm = row(SjWm−1)
n−1
j=0 = row(S̃m−1−jW̃n−1)

m−1
j=0 π2, (2.2.18)

and, by (2.2.14) and (2.2.16),

row(SjWk)
l
j=0 = row(S̃k−jW̃l)

k
j=0π2, k ≥ m− 1, l ≥ n− 1.

(2.2.19)
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Denoting the last column of Wk by y (which by (2.2.11) is independent of k), we get
from (2.2.18) that y is the mth column of Inm and also equals the first column of W̃l.
In addition, from (2.2.19) ,

SjWk = row(S̃k−rSjy)k
r=0, S̃

iW̃l = row(SrS̃iy)l
r=0, k ≥ m− 1, l ≥ n− 1.

(2.2.20)

In particular, W̃l = [y · · · Sly], and thus S̃iW̃l = [S̃iy · · · S̃iSly]. Comparing this with
the representation of S̃iW̃l in (2.2.20) we obtain

SjS̃ky = S̃kSjy, k ≥ 0, j ≥ 0. (2.2.21)

Since

Inm = row(SjWm−1)
n−1
j=0 = row(Sjrow(S̃m−1−ry)m−1

r=0 )n−1
j=0

= row(S̃m−1−jW̃n−1)
m−1
j=0 π2 = row(S̃m−1−jrow(Sry)n−1

r=0 )m−1
j=0 π2, (2.2.22)

we have by (2.2.21) that SS̃ = S̃S, and thus S and S̃ commute. It follows now from
(2.2.12) that

Hjk = ESn−j−1Wk = col(xS̃j)m−1
j=0 Sn−j−1row(S̃k−ry)k

r=0.

By inspection (2.2.2) follows directly.
Moreover, using equation (2.2.16) we obtain

ΦS = (col(ESn−j−1)n−1
j=0 )S = col(EmSn−j−1)n−2

j=−1 =
= col(EmSn−j−1)n−2

j=−1row(SjWm−1)
n−1
j=0 = (Hi−j,m−1)

n−2
i=−1,

n−1
j=0 = Φ1.

Thus S is as in (2.2.3). Similarly, we obtain that S̃ is given by (2.2.3).
Finally, that the infinite matrix (2.2.4) has rank nm follows from the observation

that
(f̂(u− v))u∈{...,n−2,n−1}×{0,1,... }

v∈{0,1,... }×{...,m−2,m−1}
=

col(xSn−1−kS̃j)(k,j)∈{...,n−2,n−1}×{0,1,... } × row(SkS̃m−1−jy)(k,j)∈{0,1,... }×{...,m−2,m−1}.

2

It should be noticed that the proof of Theorem 2.2.1 also gives a way to derive
formulas for the other Fourier coefficients of f . These now also involve the matrices

T =


0 · · · 0 −(pn0

p00
)

1 0 −(pn−1,0

p00
)

...
. . .

...
...

0 · · · 1 −(p1,0

p00
)

 and


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−(p0m

p00
) −(p0,m−1

p00
) · · · −(p01

p00
)

 .

As those formulas do not play a critical role in the positive extension result, we do not
pursue this here.

26



2.3 Stability and spectral matching of a predictor

polynomial

Before we come to the positive extension result, we would first like to address the
following question. Let Λ+ = {0, . . . , n} × {0, . . . ,m} and let complex numbers cu,
u ∈ Λ+ − Λ+ = {−n, . . . , n} × {−m, . . . ,m} be given so that (cu−v)u,v∈Λ+ > 0. Then
we can define an inner product on the finite dimensional space {

(
z
w

)v
: v ∈ Λ+} by

setting

〈
(

z

w

)v

,

(
z

w

)u

〉c = cv−u.

When we perform a Gram-Schmidt orthogonalization procedure on the basis {
(

z
w

)v
:

v ∈ Λ+}, we obtain polynomials φv(z, w), v ∈ {0, . . . , n}×{0, . . . ,m}. It is well known
that in the one-variable case the reverses of these polynomials are stable and have
a spectral matching property (see also Subsection 1.1.2). The following result states
that under an additional condition on the numbers cu the polynomial φnm has similar
properties. As we shall see in the next section, the polynomial

←−
φ nm(z, w) yields exactly

the solution to the positive extension result.
If (cv,w)v∈M,w∈N is a matrix whose entries are indexed by the sets M and N (⊂ Z2,

in our case), then
[(cv,w)v∈M,w∈N ]−1

A
B

denotes the submatrix in its inverse that corresponds to the rows indexed by A ⊂ N and
columns indexed by B ⊂ M . When no specific statement is made about the ordering
of the elements of M and N , one may choose any ordering. When M = N we give the
rows and the columns the same ordering.

Theorem 2.3.1 Let Λ+ = {0, . . . , n} × {0, . . . ,m} and cu, u ∈ Λ+ − Λ+, be given so
that (cu−v)u,v∈Λ+ > 0. Put

q(z, w) = row

((
z

w

)u)
u∈Λ+

[
(cu−v)u,v∈Λ+

]−1
col(δu)u∈Λ+ , (2.3.1)

and let p(z, w) = q(z, w)/
√

q(0, 0). The predictor polynomial p(z, w) is stable and
satisfies

cu =
1

(2πi)2

∫ ∫
T2

(
z

w

)−u
1

|p(z, w)|2
dz

z

dw

w
, u ∈ Λ+ − Λ+, (2.3.2)

if and only if [
(cu−v)u,v∈Λ+\{(0,0)}

]−1
{1,...,n}×{0}
{0}×{1,...,m}

= 0. (2.3.3)
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It should be noted that it may happen that p(z, w) is stable without condition
(2.3.3) being satisfied (after all, the set of stable pseudopolynomials is open). However,
in that case (2.3.2) does not hold. The following example illustrates this.

Example 2.3.2 Let Λ+ = {0, 1} × {0, 1}, and c00 = 1, c01 = 1
4

= c1,−1, c10 = 0 = c11.
Then (cu−v)u,v∈Λ+ > 0 and,

p(z, w) = (224− 60w − 16z − 4zw)/
√

46816.

It is easy to see that p(z, w) is stable. Computing the Fourier coefficients of f(z, w) =
1/(p(z, w)p(1/z, 1/w) yields

f̂(0, 0) ≈ 1.0104, f̂(0, 1) ≈ 0.2702, f̂(1, 0) ≈ −0.0725,

f̂(1, 1) ≈ −0.2007, f̂(1,−1) ≈ −0.0194.

The proof of the above theorem depends heavily on the theory of matrix poly-
nomials orthogonal on the unit circle, therefore we recall some results from [17]. As
usual, we denote the halfspaces associated with the lexicographical ordering and reverse
lexicographical ordering by H and H̃, respectively. Let

Γk
n =


Ck

0 Ck
−1 · · · Ck

−n

Ck
1 Ck

0 · · · Ck
1−n

...
...

. . .
...

Ck
n Ck

n−1 · · · Ck
0

 ,

where Ck
−i = (Ck

i )∗ is the (k + 1)× (k + 1) Toeplitz matrix given by

Ck
i =

ci,0 · · · ci,−k
...

. . .
...

ci,k · · · ci,0

 , i = −n, . . . , n.

Likewise, in reverse lexicographic order, set

Γ̃k
m =


C̃k

0 C̃k
−1 · · · C̃k

−m

C̃k
1 C̃k

0 · · · C̃k
1−m

...
...

. . .
...

C̃k
m C̃k

m−1 · · · C̃k
0

 ,

where C̃k
−i = (C̃k

i )∗ is the (k + 1)× (k + 1) Toeplitz matrix given by

C̃k
i =

c0,i · · · c−k,i
...

. . .
...

ck,i · · · c0,i

 , i = −m, . . . , m.
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Observe that in the lexicographical ordering (cu−v)u,v∈Λ+ = Γm
n while in the reverse

lexicographical ordering (cu−v)u,v∈Λ+ = Γ̃n
m.

Given Γs = (Ci−j)
s
i,j=0 > 0 with Cl being matrices of size r × r, we set

As(x) = [Ir xIr · · · xs Ir]Γ
−1
s [Ir 0 · · · 0]T

and
Bs(x) = [0 · · · 0 Ir]Γ

−1
s [xsIr · · ·xIr Ir]

T ,

where Ir is the r×r identity matrix. Then one of the versions of the matrix Christoffel-
Darboux formula (formula (66) of Theorem 13 in [17]) yields

(1− xx1)[Ir xIr · · ·xsIr]Γ
−1
s [Ir x1Ir · · ·xs

1Ir]
∗

= As(x)As(0)−1As(x1)
∗ − (xx1)

s+1Bs

(
1
x

)∗
Bs(0)−1Bs

(
1
x1

)
.

(2.3.4)

If we let Us denote the upper Cholesky factor of Γ−1
s , then

Us =

(
Us−1 ∗

0 Xss

)
for some matrix Xss, and

Bs(x) = Xss[0 · · · 0 Ir]U
∗
s [xsIr · · ·xIr Ir]

T .

Using this it is not hard to see that

[Ir xIr · · ·xsIr]Γ
−1
s [Ir x1Ir · · ·xs

1Ir]
∗

= [Ir xIr · · ·xs−1Ir]Γ
−1
s−1[Ir x1Ir · · ·xs−1

1 Ir]
∗ + (xx̄1)

sBs(
1
x̄
)∗Bs(0)

−1Bs(
1
x̄1

).
(2.3.5)

But then (2.3.4) and (2.3.5) give the useful variation of the matrix Christoffel-Darboux
formula:

(1− xx1)[Ir xIr · · ·xs−1Ir]Γ
−1
s−1[Ir x1Ir · · ·xs−1

1 Ir]
∗

= As(x)As(0)
−1As(x1)

∗ − (xx1)
sBs

(
1
x

)∗
Bs(0)−1Bs

(
1
x1

) (2.3.6)

An important property given by [17, Theorem 6] is that if Γk is positive then A(x) is sta-
ble. If the matrices Cl are themselves Toeplitz matrices, they satisfy Cl = Jr−1C

T
l Jr−1,

where Jr = (δi+j−r)
r
i,j=0. This yields that B(x) = Jr−1A(x)T Jr−1, as was also observed

in [18, after Theorem 9] . We will apply the above result to the cases when Cl = Cm
l

and when Cl = Cm−1
l . Equivalently, these are the cases when Γs = Γm

n and when
Γs = Γm−1

n , respectively. We therefore define for i = m− 1, m,

Ai
n(z) = [Ii+1 zIi+1 · · · znIi+1](Γ

i
n)−1[Ii+1 0 · · · 0]T ,

Bi
n(z) = [0 · · · 0 Ii+1](Γ

i
n)−1[znIi+1 zn−1Ii+1 · · · Ii+1]

T .
(2.3.7)

29



Likewise, for the reverse lexicographical order, we define for i = n− 1, n,

Ãi
m(w) = [Ii+1 wIi+1 · · · wmIi+1](Γ̃

i
m)−1[Ii+1 0 · · · 0]T ,

B̃i
m(w) = [0 · · · 0 Ii+1](Γ̃

i
m)−1[wmIi+1 wn−1Ii+1 · · · Ii+1]

T .
(2.3.8)

The matrices Bi
n(z) and B̃i

m(w) satisfy Bi
n(z) = JiA

i
n(z)T Ji and B̃i

m(w) = JiÃ
i
m(w)T Ji.

Let Li
n be the lower Cholesky factor of (Γi

n)−1, i = m− 1, m. We then define

P i(z, w) := [1 w · · · wi][Ii+1 zIi+1 · · · znIi+1]L
i
n[Ii+1 0 · · · 0]T

= [1 w · · · wi][Ii+1 zIi+1 · · · znIi+1](Γ
i
n)−1[((Y i

n)−1)T 0 · · · 0]T

= [1 w · · ·wi]Ai
n(z)(Y i

n)−1, (2.3.9)

where Ai
n(z) is given by (2.3.7) and (Y i

n)∗ is the lower Cholesky factor of Ai
n(0). From

the relation between Ai
n(z) and Bi

n(z), and from Bi
n(z) = JiA

i
n(z)T Ji we see that for

i = m− 1, m,

[
←−
P i(z, w)]T := znwi[P i(1/z̄, 1/w̄)∗]T = [1 w · · · wi]znBi

n(1/z̄)∗(X i
n)∗−1Ji,

(2.3.10)

where X i
n(= Ji(Y

i
n)T Ji) is the upper Cholesky factor of Bi

n(0). It follows from the
definition of p(z, w) in Theorem 2.3.1 that the first column of Pm is p(z, w). Thus we
shall write

Pm(z, w) = [p(z, w) wP (1)(z, w)], (2.3.11)

where P (1)(z, w) is some row valued polynomial in z and w. From the definition for
Pm we find

[
←−
P m(z, w)]T = znwm[p(

1

z
,

1

w
)

1

w
(P (1)(

1

z
,

1

w
)∗)T ] = [←−p (z, w)

←−−
P (1)(z, w)T ].

(2.3.12)

Likewise for i = n− 1, n set

P̃ i(z, w) := [1 z · · · zi][Ii+1 wIi+1 · · · wm Ii+1]L̃
i
m[Ii+1 0 · · · 0]T

= [1 z · · · zi][Ii+1 wIi+1 · · · wm Ii+1](Γ̃
i
m)−1[((Ỹ i

m)−1)T 0 · · · 0]T

= [1 z · · · zi]Ãi
m(w)(Ỹ i

m)−1, (2.3.13)

where L̃i
m is the lower Cholesky factor of (Γ̃i

m)−1 and (Ỹ i
m)∗ is the lower Cholesky factor

of Ãi
m(0). Also

[
←−̃
P i(z, w)]T := ziwm[P̃ i(1/z̄, 1/w̄)∗]T = [1 z · · · zi]wmB̃i

m(1/w̄)∗(X̃ i
w)∗−1J̃i.

(2.3.14)

Similarly as above,

P̃ n(z, w) = [p(z, w) wP̃ (1)(z, w)], (2.3.15)

for some row valued polynomial P̃ (1)(z, w).
We now state a Christoffel-Darboux like formula.
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Proposition 2.3.3 Let Λ+ = {0, . . . , n} × {0, . . . ,m} and cv, v ∈ Λ+ − Λ+, be given
so that (cu−t)u,t∈Λ+ > 0 and[

(cu−v)u,v∈Λ+\{(0,0)}
]−1
{1,...,n}×{0}
{0}×{1,...,m}

= 0. (2.3.16)

holds. Then

p(z, w)p(z1, w1)−←−p (z, w)←−p (z1, w1)
= (1− ww1)P

m−1(z, w)Pm−1(z1, w1)
∗

+(1− zz1)
←−−
P̃ n−1(z, w)T

←−−
P̃ n−1(z1, w1)

∗T
(2.3.17)

We need the following observation regarding Cholesky factors.

Lemma 2.3.4 Let A be a positive definite r × r matrix and suppose that for some
1 ≤ j < k ≤ r (A−1)kl = 0, l = 1, . . . , j. Then the lower Cholesky factor L of A−1

satisfies Lkl = 0, l = 1, . . . , j. Moreover, if Ã is the (r − 1)× (r − 1) matrix obtained
from A by removing the kth row and column, and L̃ is the lower Cholesky factor of
Ã−1, then

Lil = L̃il, i = 1, . . . , k − 1; l = 1, . . . , j, (2.3.18)

and

Li+1,l = L̃il, i = k, . . . , r − 1; l = 1, . . . , j. (2.3.19)

In other words, the first j columns of L and L̃ coincide after the kth row (which contains
zeroes in columns 1, . . . , j) in L has been removed.

Proof. Since the first j columns of a lower Cholesky factor of a matrix M are linear
combinations of the first j columns of M , the first statement follows. The second part
follows from the above observation and the following general rule: if M = (Mij)

3
i,j=1

is an invertible block matrix with square diagonal entries, (Mij)
2
i,j=1 is invertible, and

(Nij)
3
i,j=1 = M−1 satisfies N13 = 0, then(

M11 M12

M21 M22

)−1

=

(
N11 ∗
N21 ∗

)
.

To see this, write out the first two rows of the product MN = I to see that(
M11 M12

M21 M22

)(
N11

N21

)
=

(
I
0

)
.

2
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Proof of Proposition 2.3.3. We use the notations introduced in this section.
We first show that condition (2.3.16) and a repeated use of Lemma 2.3.4 imply the
following equalities:

P (1)(z, w) = Pm−1(z, w), P̃ (1)(z, w) = P̃ n−1(z, w), (2.3.20)

where P (1) and P̃ (1) were introduced in (2.3.11) and (2.3.15), and Pm−1 and P̃m−1 were
defined in (2.3.9) and (2.3.13), respectively. Indeed, for the first equality in (2.3.20)
observe that (2.3.11) and (2.3.9) yield

Pm(z, w) = [p(z, w) wP (1)(z, w)] = [1 · · · wm][Im+1 zIm+1 · · · znIm+1]L
m
n [Im+1 0 · · · 0]T .

Denoting by L̂ the matrix obtained from Lm
n by removing its first row and column, we

find that

P (1)(z, w) = [1 · · · wm−1 z

w
· · · zwm−1 · · · · · · zn

w
· · · znwm−1]L̂[Im 0 · · · 0]T .

By (2.3.16) the matrix L̂ contains zeros in the first m columns at rows mj + 1, j =
1, . . . , n. A repeated use of Lemma 2.3.4 now gives that

P (1)(z, w) = [1 · · · wm−1][Im zIm · · · znIm]Lm−1
n [Im 0 · · · 0]T = Pm−1(z, w).

This yields the first equality in (2.3.20). The second equality follows analogously.
We now prove (2.3.17). Apply (2.3.6) with Γs−1 = Γm

n−1 and multiply (2.3.6) with
[1 w · · · wm] on the left and [1 w1 · · · wm

1 ]∗ on the right to obtain

(1− zz1)[1 w · · · wm][Im+1 · · · zn−1Im+1](Γ
m
n−1)

−1[Im+1 · · · zn−1
1 Im+1]

∗[1 w1 · · · wm
1 ]∗ =

[1 w · · · wm](Am
n (z)(Y m

n )−1(Y m∗
n )−1Am

n (z1)
∗

−(zz1)
nBm

n (1
z
)∗(Xm∗

n )−1(Xm
n )−1Bm

n ( 1
z1

))[1 w1 · · · wm
1 ]∗.

Next, use (2.3.9), (2.3.10), (2.3.11), (2.3.12) and (2.3.20) to obtain

(1− zz1)[1 · · ·wm][Im+1 · · · zn−1Im+1](Γ
m
n−1)

−1[Im+1 · · · zn−1
1 Im+1]

∗[1 · · ·wm
1 ]∗

= Pm(z, w)Pm(z1, w1)
∗ − [
←−
Pm(z, w)]T [

←−
Pm(z1, w1)

∗]T

= p(z, w)p(z1, w1) + ww1P
m−1(z, w)Pm−1(z1, w1)

∗

−←−p (z, w))←−p (z, w)−←−P m−1(z, w)
T←−

P m−1(z1, w1)
∗T .

(2.3.21)

Applying now (2.3.6) with Γs−1 = Γm−1
n−1 , multiplying with [1 w · · · wm−1] on the right

and [1 w1 · · · wm−1
1 ]∗ on the left gives

Pm−1(z, w)Pm−1(z1, w1)
∗ −←−P m−1(z, w)

T←−
P m−1(z1, w1)

∗T

= (1− zz1)[1 · · ·wm−1][Im · · · zn−1Im](Γm−1
n−1 )−1[Im · · · zn−1

1 Im]∗[1 · · ·wm−1
1 ]∗.(2.3.22)
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Subtracting (2.3.22) from (2.3.21) yields

p(z, w)p(z, w)−←−p (z, w))←−p (z, w) = (1− ww1)P
m−1(z, w)Pm−1(z1, w1)

∗

+(1− zz1)([1 w · · · wm][Im+1 · · · zn−1Im+1](Γ
m
n−1)

−1[Im+1 · · · zn−1
1 Im+1]

∗[1 · · ·wm
1 ]∗

−[1 · · ·wm−1][Im · · · zn−1Im](Γm−1
n−1 )−1[Im · · · zn−1

1 Im]∗[1 · · ·wm−1
1 ]∗). (2.3.23)

Next we put the rows and columns of Γm
n−1 in reverse lexicographical order and note

that Γm
n−1 becomes Γ̃n−1

m . Thus

[1 w · · · wm][Im+1 · · · zn−1Im+1](Γ
m
n−1)

−1[Im+1 · · · zn−1
1 Im+1]

∗[1 · · ·wm
1 ]∗

= [1 z · · · zn−1][In · · ·wmIn](Γ̃n−1
m )−1[In · · ·wm

1 In]∗[1 · · · zn−1
1 ]∗

=
←−−
P̃ n−1(z, w)T

←−−
P̃ n−1(z, w)∗T

+[1 z · · · zn−1][In · · ·wm−1In](Γ̃n−1
m−1)

−1[In · · ·wm−1
1 In]∗[1 · · · zn−1

1 ]∗,
(2.3.24)

where in the last equality we use an observation as in (2.3.5). Since Γ̃n−1
m−1 and Γm−1

n−1

are just reorderings of each other we finally obtain by combining (2.3.23) and (2.3.24)

p(z, w)p(z, w)−←−p (z, w)←−p (z, w)

= (1− ww1)P
m−1(z, w)Pm−1(z1, w1)

∗
+ (1− zz1)

←−−
P̃ n−1(z, w)T

←−−
P̃ n−1(z1, w1)

∗T ,(2.3.25)

which is the desired result equation. 2

With the above result we can now prove Theorem 2.3.1. First we remind the reader
of the following useful well known fact (see [45]; see also Theorem 2.5 in [67]).

Lemma 2.3.5 Let A be a matrix of size p×q and D be a matrix of size (n−p)×(n−q)
and let B, C, P, Q, R, S be matrices of appropriate sizes so that[

A B
C D

]−1

=

[
P Q
R S

]
.

Then
q − rankC = p− rankR.

In particular, R = 0 if and only if rankC = q − p.

For the sake of completeness we shall provide a proof for this lemma.
Proof. Since CP = −DR , P [kerR] ⊆ kerC. Likewise, since RA = −SC, we get

A[kerC] ⊆ kerR. Consequently,

AP [kerR] ⊆ A[kerC] ⊆ kerR.

Since AP + BR = I , AP [kerR] = kerR, thus

A[kerC] = kerR.
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This yields dim kerC ≥ dim kerR. By reversing the roles of C and R one obtains also
that dim kerR ≥ dim kerC. This gives dim kerR = dim kerC, yielding the lemma. 2

Proof of Theorem 2.3.1. Let Λ+ = {0, . . . , n}×{0, . . . ,m} and cu, u ∈ Λ+−Λ+,
be given so that (cu−v)u,v∈Λ+ > 0 and (2.3.3) holds. First we show that p(z, w) is stable.
Set z1 = z and w1 = w, |w| = 1 in (2.3.17), to obtain

|p(z, w)|2 − |←−p (z, w)|2 = (1− |z|2)
←−−
P̃ n−1(z, w)

←−−
P̃ n−1(z, w)∗.

If p(z0, w0) = 0 in the region |z| < 1 and |w| = 1 then the above equation and
equation (2.3.14) imply that B̃n−1

m (w0)
∗ must have a left eigenvector with eigenvalue

zero. However, this leads to a contradiction since det(B̃n−1
m (w0)

∗) 6= 0 for |w| = 1 .
A similar argument also applies for the region |w| < 1, |z| = 1. If p(z0, w0) = 0 with
|z0| = 1 = |w0| then so is ←−p (z0, w0). From (2.3.17) with z1 = z0 we find that this
would imply that Pm−1(z0, w0)P

m−1(z0, w1)
∗ = 0 for arbitrary |w1| < 1. However from

(2.3.9) with z = z0 we see this cannot happen since det(Am−1
n (z0)) 6= 0. It now follows

from Theorem 2.1.5(iii) that p(z, w) is stable.
Next we show that p(z, w) satisfies equation (2.3.2). We begin by writing p(z, w) =∑m

i=0 pi(z)wi. Then straightforward algebraic manipulations (or, alternatively, see [51,
Section 4]) show that

p(z,w)p(1/z̄,w1)−ww̄1
←−p (z,w)←−p (1/z̄,w1)

1−ww̄1

= (1, . . . , wm)

(p0(z) ©
...

. . .

pm(z) · · · p0(z)


p̄0(1/z) · · · p̄m(1/z)

. . .
...

© p̄0(1/z)


−

p̄m+1(1/z) ©
...

. . .

p̄1(1/z) · · · p̄m+1(1/z)


pm+1(z) · · · p1(z)

. . .
...

© pm+1(z)

)
 1

...
w̄m

1

 ,

(2.3.26)

where pm+1(z) ≡ 0. Furthermore, by (2.3.17) with z1 = 1/z̄,

p(z, w)p(1/z̄, w1)−←−p (z, w)←−p (1/z̄, w1)

1− ww̄1

= Pm−1(z, w)Pm−1(1/z̄, w1)
∗.

Multiplying both sides by ww̄1 and adding p(z, w)p(1/z̄, w1) to both sides yields

p(z, w)p(1/z̄, w1)− ww̄1
←−p (z, w)←−p (1/z̄, w1)

1− ww̄1

= Pm(z, w)Pm(1/z̄, w1)
∗,

(2.3.27)

where we used that
Pm(z, w) = [p(z, w) wPm−1(z, w)].
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Combining (2.3.26), (2.3.27), and (2.3.9) we find

Em(z) =

p0(z) ©
...

. . .

pm(z) · · · p0(z)


p̄0(1/z) · · · p̄m(1/z)

. . .
...

© p̄0(1/z)


−

p̄m+1(1/z) ©
...

. . .

p̄1(1/z) · · · p̄m+1(1/z)


pm+1(z) · · · p1(z)

. . .
...

© pm+1(z)


= Am

n (z)Am
n (0)−1Am

n (1/z̄)∗.

(2.3.28)

Recall that Am
n (z) is stable [17, Theorem 6]. Therefore, on the unit circle we find that

Em(z) > 0. Let F (z) = Em(z)−1 and write

F (z) =
∞∑
−∞

Fnz
n.

Note that by the Gohberg-Semencul formula F (z) is Toeplitz for every z. Furthermore,
we get, using the stability of Am

n (z) that

F (z)Am
n (z) = Am

n (1/z̄)∗−1Am
n (0) = I + O(1/z).

Comparing the 0, . . . , n Fourier coefficients on both sides yields the equationF0 · · · F−n
...

. . .
...

Fn · · · F0


A0

...
An

 =

I
...
0

 , (2.3.29)

where Am
n (z) =

∑n
i=0 Aiz

i. On the other hand, by the definition (2.3.7) of Am
n (z)Cm

0 · · · Cm
−n

...
. . .

...
Cm

n · · · Cm
0


A0

...
An

 =

I
...
0

 . (2.3.30)

By the matrix version of the Gohberg-Semencul formula (see [38]) a positive definite
block Toeplitz matrix is uniquely determined by the first block column of its inverse.
It therefore follows that the equations (2.3.29) and (2.3.30) are the same, or in other
words,

Cm
l = Fl, l = −n, . . . , n. (2.3.31)

Since F (z) is Toeplitz we may write F (z) = (fi−j(z))m
i,j=0. Fix z ∈ T. By (2.3.28) we

may view p(z, w) =
∑m

i=0 pi(z)wi as the polynomial in w formed from taking the first
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column of the lower Cholesky factor of F (z)−1(= Em(z)). But then the one-variable
theory (see subsection 1.1.2) gives that

fl(z) =
1

2π

∫ 2π

0

e−ilθ

|p(z, eiθ)|2
dθ, l = −m, . . . ,m.

Now (2.3.31) yields that for l = −m, . . . ,m,

ckl = f̂l(k) =
1

2π

∫ 2π

0

fl(e
iη)e−ikηdη =

1

(2π)2

∫ 2π

0

∫ 2π

0

e−ilθ−ikη

|p(eiη, eiθ)|2
dθdη, k = −n, . . . , n.

This proves (2.3.2)
For the converse, let p(z, w) be stable. Observe that cu defined in (2.3.2) is the uth

Fourier coefficient of the spectral density function associated with p(z, w). But then it
follows directly from Theorem 2.2.1 that

nm = rankΦ ≤ rank(cu−v)u∈{1,... ,n}×{0,... ,m}
v∈{0,... ,n}×{1,... ,m}

= rank(cv−u) v∈{−1,... ,n−1}×{0,... ,m−1}
u∈{0,... ,n−1}×{−1,... ,m−1}

≤ nm.

Now, by Lemma 2.3.5 we obtain (2.3.3). 2

2.4 Positive extensions

Let H = {(n,m) : n > 0 or (n = 0 and m > 0)} be the standard halfspace in Z2,
and let Λ+ be a finite set in H ∪ {(0, 0)} containing (0, 0). We consider the following
problem which arises in the design of autoregressive filters. For given complex numbers
ckl, (k, l) ∈ Λ+, find if possible a pseudopolynomial

p(z, w) =
∑

(k,l)∈Λ+

cklz
kwl, |z| = |w| = 1,

so that

(i) p(z, w) is stable

(ii) 1
|p(z,w)|2 has Fourier coefficients ck,l for (k, l) ∈ Λ+.

In the one-variable case where Λ+ = {0, 1, 2, . . . , n} the necessary and sufficient
condition is that the finite Toeplitz matrix

C =

c0 · · · c−n
...

. . .
...

cn · · · c0


36



is positive definite, where c−k = c̄k for k ∈ {1, . . . , n}. In that case, the desired
polynomial equals

p(z) = p
−1/2
0 (p0 + p1z + · · ·+ pnz

n), |z| = 1,

where p0
...

pn

 = C−1


1
0
...
0

 .

In this section we shall give necessary and sufficient conditions for the two-variable
problem in terms of positive definite matrix completions. We start with the case when

Λ+ = {0, . . . , n} × {0, . . . ,m}.

As usual, we denote by δu the Kronecker delta on Z2, i.e., δu = 0 for u 6= (0, 0) and
δ(0,0) = 1.

Theorem 2.4.1 Let Λ+ = {0, . . . , n} × {0, . . . ,m}, and let cu, u ∈ Λ+, be given
complex numbers. Put c−u = c̄u, u ∈ Λ+. The following are equivalent:

(i) there exists a stable polynomial p with support (p̂) ⊆ Λ+ such that 1
|p|2 has Fourier

coefficients 1̂
|p|2 (u) = cu, u ∈ Λ+;

(ii) there exist complex numbers cu, u ∈ (Λ+ − Λ+)\(Λ+ ∪ −Λ+) so that

(cu−v)u,v∈Λ+ > 0

and

rank(cu−v)u∈{1,...,n}×{0,...,m}
v∈{0,...,n}×{1,...,m}

= nm; (2.4.1)

(iii) there exist complex numbers cu, u ∈ (Λ+ − Λ+)\(Λ+ ∪ −Λ+) so that

(cu−v)u,v∈Λ+ > 0

and [
(cu−v)u,v∈Λ+\{(0,0)}

]−1
{1,...,n}×{0}
{0}×{1,...,m}

= 0.

(iv) For all pairs of sets S1 and S2 with

{1, . . . , n} × {0, . . . ,m} ⊆ S1 ⊆ {1, 2, . . . } × {. . . , m− 1, m}
{0, . . . , n} × {1, . . . ,m} ⊆ S2 ⊆ {. . . , n− 1, n} × {1, 2, . . . }

(2.4.2)
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there exist cu, u ∈ (S−S)\(Λ+ ∪ (−Λ+)), where S = {(0, 0)}∪S1 ∪S2, such that∑
u∈S−S

|cu| <∞,

(cu−v)u,v∈S > 0 (acting on l2(S)),

and

rank(cu−v)u∈S1
v∈S2

= nm; (2.4.3)

(v) For some pair of sets S1 and S2 satisfying (2.4.2) there exist cu, u ∈ (S−S)\(Λ+∪
(−Λ+)), where S = {(0, 0)} ∪ S1 ∪ S2, such that∑

u∈S−S

|cu| <∞

(cu−v)u,v∈S > 0 (acting on l2(S)),

and
rank(cu−v)u∈S1

v∈S2

= nm;

(vi) For all pairs of finite sets S1 and S2 satisfying (2.4.2) there exist cu, u ∈ (S −
S)\(Λ+ ∪ (−Λ+)), where S = {(0, 0)} ∪ S1 ∪ S2, such that

(cu−v)u,v∈S > 0

and
[(cu−v)u,v∈S1∪S2 ]

−1
S2\S1

S1\S2

= 0

(vii) For some pair of finite sets S1 and S2 satisfying (2.4.2) there exist cu, u ∈ (S −
S)\(Λ+ ∪ (−Λ+)), where S = {(0, 0)} ∪ S1 ∪ S2, such that

(cu−v)u,v∈S > 0

and
[(cu−v)u,v∈S1∪S2 ]

−1
S2\S1

S1\S2

= 0.

In case one of (i)-(vii) (and thus all of (i)-(vii)) hold, put

(qu)u∈Λ+ =
[
(cu−v)u,v∈Λ+

]−1
(δu)u∈Λ+ (2.4.4)

and let

p(z, w) = q
−1/2
00

 ∑
(k,l)∈Λ+

qklz
kwl

 . (2.4.5)

Then p(z, w) is a polynomial satisfying (i), and p(z, w) is unique up to multiplication
with a constant of modulus 1.

38



Proof. The equivalence of (ii) and (iii) follows directly from Lemma 2.3.5. The
implications (iv)→ (vi) and (vii)→ (v) also follow from Lemma 2.3.5. The implications
(ii)→ (v), (iv)→ (v), (iv)→ (ii), (iii)→ (vii), (vi)→ (vii), (vi)→ (iii) are tautologies.
The implication (v) → (ii) follows from the observation that the matrices appearing in
(ii) are submatrices of the matrices appearing in (v), and the fact that (cu−v)u,v∈Λ+ > 0
implies that

rank(cu−v)u∈{1,...,n}×{0,...,m}
v∈{0,...,n}×{1,...,m}

≥ nm. (2.4.6)

For the equivalence of (i)–(vii) it remains to prove the implications (i) → (iv) and (iii)
→ (i).

Assume that a stable polynomial p(z, w) as in (i) exists. Let f(z, w) be the spectral
density function of p(z, w) and put

ck = f̂(k), k ∈ Z2.

Then, because of (i), for k ∈ Λ+ this definition of ck coincides with the prescribed ck’s.
In addition, f is in the Wiener class, so

∑
u∈Z2 |cu| < ∞. Moreover, since f(z, w) > 0

for |z| = |w| = 1, the multiplication operator Mf : L2(T2) → L2(T2) defined by
Mf (g)(z, w) = f(z, w)g(z, w) is positive definite. Letting S1, S2 and S as in (iv), we
get that the restriction of Mf to PS(L2(T2)) is positive definite. Here, for K ⊂ Z2, the
projection PK is the orthogonal projection of L2(T2) onto the subspace of functions
with Fourier support in K. That is, PK(

∑
av

(
z
w

)
) =

∑
v∈K av

(
z
w

)
. Thus we obtain

the positive definiteness of (cu−v)u,v∈S. In addition, since the matrix in (2.4.3) is the
adjoint of a submatrix of the matrix in (2.2.4), we get by Theorem 2.2.1 that

rank(cu−v)u∈S1
v∈S2

≤ nm.

This together with observation (2.4.6) which is valid in this case, we obtain (2.4.3).
This proves (i) → (iv).

Assume now that (iii) holds. Define p(z, w) as in (2.4.5). By Theorem 2.3.1 , p is

stable, and moreover, cu = 1̂
|p|2 (u), u ∈ Λ+ − Λ+. This proves (i).

Suppose now that (i)–(vii) are valid, and let p(z, w) be as under (i). By multiplying
with a constant of modulus one we may choose p(z, w) so that p(0, 0) = p00 > 0. Let
f(z, w) be the spectral density function corresponding to p(z, w). Then f(z, w)p(z, w) =

1
p(1/z,1/w)

. Since p(z, w) is stable,

PH∪{(0,0)}(fp) = PH∪{(0,0)}

(
1

p̄

)
=

1

p00

,

where in the last step we used the stability and H is the standard halfspace in Z2.
Thus, in particular,

PΛ+(fp) =
1

p00

,
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which in matrix notation gives that

(cu−v)u,v∈Λ+(pu)u∈Λ+ =

(
1

p00

δu

)
u∈Λ+

.

By multiplying both sides with p00 it follows that p(z, w) is given by (2.4.5) where qu,
u ∈ Λ+, is given by (2.4.4). 2

Remark 2.4.2 Note that in fact the proof shows that 1̂
|p|2 (u) = cu, u ∈ S − S, for all

applicable S.

In the appendix we shall provide an alternative proof of (ii)→ (i) based on minimal
rank completions, and the full strip positive extension problem (see [5, 6]).

Note that the proof of Theorem 2.4.1 yields that the polynomial p(z, w) with p00 > 0
is uniquely determined by the matrix (cu−v)u,v∈Λ+ . One may ask whether in turn all
unknown entries cu, u ∈ (Λ+ − Λ+)\(Λ+ ∪ −Λ+) in this matrix are determined by the
conditions in Theorem 2.4.1(ii). When n = 1 or m = 1, it is not hard to see that the
rank condition (2.4.1) determines cu, u ∈ (Λ+−Λ+)\(Λ+ ∪−Λ+) uniquely. E.g., when
n = 1 the coefficients c1,−1, . . . , c1,−m are determined uniquely by the equations

c1,−j = [c0,−1 · · · c0,−m][(c0,i−k)
m−1
i,k=0]

−1[c1,−j+1 · · · c1,−j+m]T , j = 1, · · · , m.
(2.4.7)

It is still an open problem whether the coefficients cu, u ∈ (Λ+ − Λ+)\(Λ+ ∪−Λ+) are
determined uniquely in general by the conditions in Theorem 2.4.1(ii). If not, it would
mean that there are cases in which there are multiple solutions p to the problem. Our
computations so far have led us to believe, however, that this cannot occur.

Another natural question is whether the existence of cu, u ∈ (Λ+−Λ+)\(Λ+∪−Λ+)
so that (cu−v)u,v∈Λ+ > 0, automatically implies the existence of a choice for cu, u ∈
(Λ+ − Λ+)\(Λ+ ∪ −Λ+) so that in addition condition (2.4.1) is satisfied. This is false.
E.g., one may take n = 1, m = 3, c00 = 7.7, c01 = 6.3, c02 = 4.5, c03 = 2.5, c10 = 3,
c11 = 1.5, c12 = 2 and c13 = 1.6. By setting c1,−1 = 4.9301, c1,−2 = 7.2776 and
c1,−3 = 7.0593 (which we determined using the software of [3]), one may check that
one obtains a positive definite matrix (cu−v)u,v∈Λ+ (its smallest eigenvalue is 0.0099).
However, equation (2.4.7) forces c1,−1 = 2.4372, c1,−2 = 1.9405 and c1,−3 = 1.1570,
which does not give a positive definite matrix (it has an eigenvalue equal to −0.5228;
even the submatrix obtained by deleting the (0, 0) column and row has a negative
eigenvalue −0.3535).

Theorem 1.1.1 follows directly from Theorem 2.4.1.
Proof of Theorem 1.1.1 Let cu, u ∈ Λ+, be given so that cu, u ∈ (Λ+ −

Λ+)\(Λ+ ∪ −Λ+) exist satisfying (1) and (2) in the statement of Theorem 1.1.1. Thus

40



Theorem 2.4.1(ii) is satisfied, yielding the existence of a stable polynomial p(z, w) =∑n
k=0

∑m
l=0 pk,lz

kwl with p00 > 0 as in (i).
Conversely, given is a stable polynomial satisfying Theorem 2.4.1(i). Thus Theorem

2.4.1(ii) is valid, yielding (1) and (2) in Theorem 1.1.1. 2

We shall now build up to the general case of a finite set Λ+ ⊆ H. We first consider
the case when {(0, 0)} ⊆ Λ+ ⊆ {0, . . . , n} × {0, . . . ,m}.

Theorem 2.4.3 Let {(0, 0)} ⊆ Λ+ ⊆ {0, . . . , n} × {0, . . . ,m}, and let cu, u ∈ Λ+, be
given complex numbers. Put c−u = c̄u, u ∈ Λ+. The following are equivalent:

(i) there exists a stable polynomial p with support (p̂) ⊆ Λ+ such that 1
|p|2 has Fourier

coefficients 1̂
|p|2 (u) = cu, u ∈ Λ+;

(ii) there exist complex numbers cu, u ∈ {−n, . . . , n} × {−m, . . . , m}\(Λ+ ∪−Λ+) so
that

(cu−v)u,v∈{0,...,n}×{0,...,m} > 0, (2.4.8)

[
(cu−v)u,v∈{0,...,n}×{0,...,m}\{(0,0)}

]−1
{1,...,n}×{0}
{0}×{1,...,m}

= 0, (2.4.9)

and [
(cu−v)u,v∈{0,...,n}×{0,...,m}

]−1
{0,...,n}×{0,...,m}\Λ+
{0}×{0}

= 0. (2.4.10)

In case (i) (and (ii)) holds, a solution p is given by (2.4.4) and (2.4.5).

Note that (ii) in this theorem reduces to Theorem 2.4.1(iii) in the case when Λ+ =
{0, . . . , n}×{0, . . . ,m}. One may also formulate analogs of Theorem 2.4.1 (ii), (iv)–(vii)
but we leave this to the interested reader.

Proof. Suppose (i) is valid. Let f(z, w) be the spectral density function of p(z, w)
and put

cu = f̂(u), u ∈ Z2.

Now the polynomial p(z, w) satisfies Theorem 2.4.1(i) for the collection of numbers
{cu, u ∈ {0, . . . , n} × {0, . . . ,m}}. Thus Theorem 2.4.1(iii) and (2.4.4) and (2.4.5) are
valid. Theorem 2.4.1(iii) implies the first two conditions in (ii). Since p is given by
(2.4.4) and (2.4.5) (up to a constant) we have that support(p̂) ⊆ Λ+ implies (2.4.10).
This shows that (ii) is valid.

Next, assume that (ii) is valid. The first two properties in (ii) give that Theorem
2.4.1(iii) is satisfied. Thus Theorem 2.4.1(i) is valid, yielding that there exists a stable
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polynomial given by (2.4.4) and (2.4.5) so that 1̂
|p|2 (u) = cu, u ∈ {0, . . . , n}×{0, . . . ,m}.

Thus, in particular, this polynomial has the right match

1̂

|p|2
(u) = cu, u ∈ Λ+,

and, moreover, by the construction of p by (2.4.4) and (2.4.5) one sees that condition
(2.4.10) yields that support (p̂) ⊆ Λ+. This shows that (i) is valid. 2

Next consider an index set of the following type

J(n,m, q) =
n⋃

i=0

{i} × {−iq, . . . ,m− iq}, n,m ≥ 0, q ∈ Z.

So J(n, m, 0) = {0, . . . , n} × {0, . . . ,m}. We have the following proposition.

Proposition 2.4.4 Let n, m be nonnegative integers and q ∈ Z, and let {(0, 0} ⊆
∆+ ⊆ J(n, m, q). Let du, u ∈ ∆+, be given complex numbers. Put Λ+ = {(k, l + kq) :
(k, l) ∈ ∆+} and

c(r,s) = d(r,s−rq), (r, s) ∈ Λ+.

Then Λ+ ⊆ J(n,m, 0). Moreover, the following are equivalent.

(i) There exists a stable pseudopolynomial q(z, w) with support (q̂) ⊆ ∆+ such that
1̂
|q|2 (u) = du, u ∈ ∆+.

(ii) There exists a stable polynomial p(z, w) with support (p̂) ⊆ Λ+ such that 1
|p|2 (u) =

cu, u ∈ Λ+.

Proof. Use the correspondence q(z, w) = p
(

z
wq , w

)
, |z| = |w| = 1. 2

It remains to observe that any finite {(0, 0)} ⊂ Λ+ ⊆ H ∪ {(0, 0)} is a subset of
some J(n,m, q). Indeed, let

n = max{k : (k, l) ∈ Λ+} (≥ 0),
q = −min

{⌊
l
k

⌋
: (k, l) ∈ Λ+, k ≥ 1

}
,

and
m = max{l + kq : (k, l) ∈ Λ+} (≥ 0).

Then Λ+ ⊆ J(n,m, q). Consequently, we have, by applying a combination of Proposi-
tion 2.4.4 and Theorem 2.4.3, the problem introduced in the beginning of this section
reduced to a finite positive definite matrix completion problem where the completion
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is required to be block Toeplitz with Toeplitz matrix entries satisfying certain inverse
constraints. As is established in [64] finding such completions (if they exist) is nu-
merically feasible. We shall give some numerical results in Section 4.3. Interesting
open questions remain regarding the d-variable case (when d ≥ 3), and whether, for
instance, if {cu, u ∈ Λ+} and {dk, u ∈ Λ+} satisfy the conditions of Theorem 2.4.1 the
sum sequence {cu + du, u ∈ Λ+} also satisfies these conditions.

Partial necessary conditions for the autoregressive filter problem appear in [11] (see
also [12]), where it was shown that if Theorem 2.4.3(i) holds then[

(cu−v)u,v∈Λ+−Λ+

]−1
(Λ+−Λ+)\Λ+
{0}×{0}

= 0. (2.4.11)

That this condition is not sufficient, is shown by the following example. Let Λ+ =
{(0, 0), (1, 0), (0, 1)}, and c00 = 1, c01 = .25, c10 = .25. If we choose c1,−1 = .125 and
c1,−2 = 5/16, then (2.4.11) is satisfied. Computing for p we find p(z, w) = 9

8
− 1

4
z− 1

4
w,

which is stable (since |p(z, w)| ≥ 9
8
− 1

4
− 1

4
> 0 when |z| ≤ 1 and |w| ≤ 1). However,

the function 1
|p|2 does not have the prescribed Fourier coefficients, as

1̂

|p|2
(0, 0) = 0.9923,

1̂

|p|2
(0, 1) =

1̂

|p|2
(1, 0) = 0.0545.

The correct choice is given by c1,−1 = 0.0625 and c1,−2 = 0.0156, yielding the stable
polynomial p(z, w) = 1.1333− 0.2667z − 0.2667w satisfying

1̂

|p|2
(0, 0) = 1,

1̂

|p|2
(0, 1) =

1̂

|p|2
(1, 0) = 0.25.

Let us end this section with a comparison with the extension problem for positive-
definite functions as considered in [58]. There, a pattern Λ ⊆ Z2 is said to have the
extension property if every sequence (cu)u∈Λ−Λ which satisfies the positivity requirement

(cu−v)u,v∈Λ ≥ 0, (2.4.12)

admits the existence of a positive Borel measure µ on T2 so that

ck,l =

∫
T2

zkwldµ(z, w), (k, l) ∈ Λ− Λ.

Note that in our terminology, we would let Λ+ = (Λ− Λ) ∩ (H ∪ {(0, 0)}). Moreover,
we study the strictly positive definite case and look for a measure of the special form

dµ(z, w) =
1

|p(z, w)|2
dzdw

(2πi)2zw
, (2.4.13)

where p(z, w) is a stable polynomial with Fourier support in Λ+. Following [58] a con-
struction of a positive extension is given in [4] in the case that Λ = {0, 1}×{0, . . . ,m},
which in our terminology corresponds to the case when Λ+ = {0}×{0, . . . ,m}∪ {1}×
{−m, . . . , m}. We remark that their construction does not yield a measure of the form
(2.4.13) (see formula (3) in [4]), and indeed one cannot expect that strict positive defi-
niteness in (2.4.12) yields a measure of this special form as the rank condition (2.4.1)
also needs to be satisfied.
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Chapter 3

Applications of the extension
problem

In this chapter we treat four applications of the extension results. They concern two-
variable orthogonal polynomials, two variable stable autoregressive filters, Fejér-Riesz
factorization for two variable trigonometric functions, and inverse formulas for doubly-
indexed Toeplitz matrices.

3.1 Orthogonal and minimizing pseudopolynomials

We fix H = {(n, m) : n ≥ 1 or (n = 0 and m > 0)} ⊆ Z2 to be the standard halfspace
in Z2. Let ρ be a positive Borel measure on T2 and L2(ρ, T2) be the space of functions
square integrable with respect to ρ, i.e.

∫
T2 |f(θ, φ)|2dρ <∞. On this space there is a

natural inner product given by

〈f, g〉ρ =

∫
T2

f(θ, φ)ḡ(θ, φ)dρ, (3.1.1)

for all f, g ∈ L2(ρ, T2). We denote the Fourier coefficients of ρ by ckl, (k, l) ∈ Z2, which
are given by

ck,l =

∫
T2

e−ikθe−ikφdρ(θ, φ).

Let Λ+ be a finite subset of H ∪ {(0, 0)} containing (0, 0), and suppose that ρ is such
that

(cu−v)u,v∈Λ+ > 0. (3.1.2)

As mentioned before, for v = (k, l) ∈ Z2 we denote by
(

z
w

)v
the monomial

(
z
w

)v
= zkwl.

For an ordered set {v0, · · · , vm} we let C(v0, · · · , vm) denote the (m + 1) × (m + 1)
matrix

C(v0, · · · , vm) := (cvi−vj
)m
i,j=0.
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Definition 3.1.1 For an ordered subset {v0, . . . , vm} of Λ+ with v0 = (0, 0), we define
the orthogonal pseudopolynomials [33] φ

(
v0, · · · , vi;

(
z
w

))
, i = 0, · · · , m, by the relations,

φ

(
v0, · · · , vi;

(
z

w

))
=

i∑
j=0

ai,j

(
z

w

)vj

, (3.1.3)

with ai,i > 0, and

〈φ(v0, · · · , vi), φ(v0, · · · , vj)〉ρ = δvi−vj
i, j = 0, · · · , m. (3.1.4)

Here δv = 0 if v 6= (0, 0) and δ(0,0) = 1. For the construction of φ(v0, · · · , vi;
(

z
w

)
) the

above orthogonality equations are equivalent to

〈φ(v0, · · · , vi),

(
z

w

)vj

〉ρ =
1

ai,i

δvi−vj
j = 0, · · · , i.

Thus,

φ
(
v0, · · · , vi;

(
z
w

))
=

det



cv0−v0 · · · cv0−vi

...
...

cvi−1−v0 · · · cvi−1−vi(
z
w

)v0

· · ·
(

z
w

)vi


√

det C(v0,··· ,vi) det C(v0,··· ,vi−1)
.

(3.1.5)

They are called pseudopolynomials since negative powers of z and w may arise. From
the above equations we see that the orthogonal pseudopolynomials φ

(
v0, · · · , vi;

(
z
w

))
, i =

0, . . . , m, form a basis for the space spanned by the monomials {
(

z
w

)v0 , · · · ,
(

z
w

)vm}.
As usual the monic orthogonal pseudopolynomials solve the following minimiza-

tion problem: Let Π(v0, · · · , vm) be the set of polynomials with exponents taken from
{v0, · · · , vm} with the coefficient of

(
z
w

)vm
equal to one. Then ammφ

(
v0, · · · , vm;

(
z
w

))
is the solution to the minimization problem

min
π∈Π(v0,··· ,vm)

∫
T2

|π(θ, φ)|2dρ(θ, φ).

Another important set of polynomials called minimizing pseudopolynomials studied
in [18] can be characterized as follows.

Definition 3.1.2 For an ordered subset {v0, . . . , vm} of Λ+ with v0 = (0, 0), we define
the minimizing pseudopolynomial p

(
v0, · · · , vm;

(
z
w

))
by

p
(
v0, · · · , vm;

(
z
w

))
= 1

k(v0,... ,vm)
×

×
((

z
w

)v0

· · ·
(

z
w

)vm
)

C(v0 · · · vm)−1


1
0
...
0

 ,
(3.1.6)
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where

k(v0, . . . , vm) =

√
det C(v1 · · · vm)

det C(v0 · · · vm)
.

Alternative formulas for the minimizing polynomials are given by

p

(
v0, · · · , vm;

(
z

w

))
=

det



(
z
w

)v0

· · ·
(

z
w

)vm

cv1−v0 · · · cv1−vm

...
...

...
cvm−v0 · · · cvm−vm


√

det C(v0, · · · , vm) det C(v1, · · · , vm)

and

p

(
v0, · · · , vm;

(
z

w

))
=

((
z
w

)v0

· · ·
(

z
w

)vm
)

L1,

where L1 is the first column of the lower triangular Cholesky factor L of C(v0 · · · vm)−1

(= LL∗). It should be noted that in [18] the normalization constant 1
k(v0,... ,vm)

does
not appear in the definition of the minimizing pseudopolynomial. For our purposes
it is convenient to include this factor in the definition. In the definition above the
2-tuples v0, · · · , vm are ordered, however it is easy to check that for any permutation π
on {0, . . . ,m} with π(0) = 0

p

(
vπ(0), · · · , vπ(m);

(
z

w

))
= p

(
v0, · · · , vm;

(
z

w

))
.

Thus, on occasion we shall also write p
(
∆;
(

z
w

))
where ∆ is the set {v0, · · · , vm}, and

it is understood that
(
0
0

)
is first in the ordering. Minimizing pseudopolynomials appear

naturally in the following context. Let

Φρ : span{
(

z

w

)vk

: k = 0, . . . , m} → R

be given by
Φρ(g) = 〈g, g〉ρ − 2 Re(g00).

Then (see [18],[19]) Φρ is minimized by k(v0, . . . , vm)p
(
v0, · · · , vm;

(
z
w

))
. In taking

the reverse polynomial of p
(
v0, · · · , vm;

(
z
w

))
the term of

(
z
w

)vm
is taken to appear

last. In other words, if p
(
v0, · · · , vm;

(
z
w

))
=
∑m

i=0 ai

(
z
w

)vi , then ←−p
(
v0, · · · , vm;

(
z
w

))
=(

z
w

)vm
p
(

1
z
, 1

w

)
.

There is a close relationship between the two sets of pseudopolynomials introduced
in this section, namely:

←−p
(
v0, · · · , vm;

(
z
w

))
=
(

z
w

)vm
p
(
vm − vm, vm − vm−1, · · · , vm − v0;

(
1/z
1/w

))
= φ

(
vm − vm, vm − vm−1, · · · , vm − v0;

(
z
w

))
.

(3.1.7)
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Both sets of polynomials appear also in a prediction context. In Section 3 of [42] there is
an eloquent explanation of the one-variable prediction theory. One easily adjusts this to
the bivariate context and sees that p(v0, . . . , vm;

(
z
w

)
) appears in backward prediction,

while the pseudopolynomial φ(v0, . . . , vm;
(

z
w

)
) plays a role in forward prediction. We

will not further pursue this here.
In Lemmas 3.1.3, 3.1.4, 3.1.5 and Theorem 3.1.6 we recall some familiar properties

of the minimizing pseudopolynomials and their reverses. Using the connection (3.1.7),
one may state comparable properties of the orthogonal pseudopolynomials. We will
focus our attention mostly to the minimizing pseudopolynomials, following the lead of
[18] and [19].

The first lemma follows from the two determinantal formulas above, and describes
their orthogonality properties.

Lemma 3.1.3 [18, Corollary of Theorem 1] Let ρ be a positive Borel measure on T2

with Fourier coefficients cu, u ∈ Z2. Let {(0, 0)} ⊂ Λ+ ⊂ H ∪ {(0, 0)} be a finite set
and assume that (3.1.2) holds. Further, let {v0, . . . , vm} be an ordered subset of Λ+

with v0 = (0, 0). Denote p(z, w) = p
(
v0, . . . , vm;

(
z
w

))
. Then p satisfies and up to an

overall complex constant of modulus one is determined by the orthonormality relations

〈p, p〉ρ = 1 (3.1.8)

and

〈p,
(

z
w

)vi

〉ρ = 0, 0 < i ≤ m, (3.1.9)

with the inner product defined in (3.1.1). The above undetermined complex constant is
uniquely fixed by requiring the trailing coefficient of p to be positive.

Note that equation (3.1.7) and the definition of φ(v0, . . . , vm;
(

z
w

)
) implies that

〈←−p ,

(
z
w

)vm−vi

〉ρ = βmδi 0 ≤ i ≤ m,

where βm =
√

det C(vm···v0)
det C(vm···v1)

6= 0.

Next we will see that there is a recurrence relation among the minimizing pseu-
dopolynomials. To this end let

C(v0 · · · vm | w0 · · ·wm) = (cvi−wj
)i,j=0,··· ,m

be the matrix with rows indexed by vi and columns indexed by wi.
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Lemma 3.1.4 The minimizing pseudopolynomial p
(
v0 · · · vm;

(
z
w

))
satisfies the rela-

tion

p
(
v0 · · · vm;

(
z
w

))
= k(v0···vm)

k(v0···vm−1)

(
p
(
v0 · · · vm−1;

(
z
w

))
+α(v0 · · · vm)

(
z
w

)v1

←−p
(
vm − vm · · · vm − v1;

(
z
w

)))
, (3.1.10)

where

α(v0 · · · vm) =
(−1)m det C(v1 · · · vm | v0 · · · vm−1)√

det C(v0 · · · vm−1) det C(v1 · · · vm)
.

Furthermore,

←−p
(
v0 · · · vm;

(
z
w

))
= k(v0···vm)

k(v0···vm−1)

((
z
w

)vm−vm−1

←−p
(
v0 · · · vm−1;

(
z
w

))
+α(v0 · · · vm)p

(
vm − vm, vm − vm−1 · · · vm − v1;

(
z
w

)))
. (3.1.11)

We remark that equation (3.1.10) is given in Theorem 2 of [18].
Proof. ←−p

(
vm − vm, vm − vm−1, · · · vm − v1;

(
z
w

))
is characterized up to multiplica-

tion by a constant by its orthogonality to
(

z
w

)−vi+v1 , i = 0, 1, . . . ,m− 1. Now(
z

w

)−v1
(

p

(
v0 · · · vm;

(
z

w

))
− k(v0 · · · vm)

k(v0 · · · vm−1)
p

(
v0 · · · vm−1;

(
z

w

)))

is orthogonal to

(
z
w

)−vi+v1

, i = 0, . . . ,m−1, which gives (3.1.10) up to a scalar factor.

By comparing coefficients of

(
z
w

)vm

on both sides of the recurrence relation we find

that

α(v0 · · · vm) =
(−1)m det C(v1 · · · vm | v0 · · · vm−1)

√
det C(v1 · · · vm−1)√

det C(v0 · · · vm−1) det C(vm−1 − vm−1 · · · vm−1 − v1) det C(v1 · · · vm)
.

Equation (3.1.10) now follows since

det C(v1 · · · vi) = det C(vi − vi−1 · · · vi − v1).

Equation (3.1.11) is obtained by taking reversals in equation (3.1.10). 2
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From the definition of k and α in terms of determinants it is easy to see that
the following are true. Let wj = vm − vm−j, j = 0, . . . ,m, then α(w0 · · ·wm) =

α(v0 · · · vm) = α(−v0 · · · − vm). Moreover, the Jacobi identity implies that

k2(v0 · · · vm)

k2(v0 · · · vm−1)

(
1− |α(v0 · · · vm)|2

)
= 1.

Lemma 3.1.5 The minimizing pseudopolynomial p
(
v0 · · · vm;

(
z
w

))
satisfies the rela-

tion

p
(
v0 · · · vm;

(
z
w

))
p
(
v0 · · · vm;

(
z1

w1

))
−

←−p
(
vm − vm · · · vm − v0;

(
z
w

))←−p (vm − vm · · · vm − v0;
(

z1

w1

))
= p

(
v0 · · · vm−1;

(
z
w

))
p
(
v0 · · · vm−1;

(
z1

w1

))
−(

z
w

)v1

←−p
(
vm − vm · · · vm − v1;

(
z
w

)) (
z1

w1

)v1←−p
(
vm − vm · · · vm − v1;

(
z1

w1

))(3.1.12)

Proof. Set pm

(
z
w

)
= p

(
v0 · · · vm;

(
z
w

))
and pi

m

(
z
w

)
=←−p

(
vm − vm · · · vm − vi;

(
z
w

))
,

for i = 0, 1. From the recurrence relation we find

pm

(
z
w

)
pm

(
z1

w1

)
= k2(v0···vm)

k2(v0···vm−1)

[
pm−1

(
z
w

)
pm−1

(
z1

w1

)
+α(v0 · · · vm)

(
z
w

)v1

←−p 1
m−1

(
z
w

)
pm−1

(
z1

w1

)
+α(v0 · · · vm)

(
z1

w1

)v1

pm−1

(
z
w

)←−p 1
m−1

(
z1

w1

)
+α(v0 · · · vm)α(v0 · · · vm)

(
z
w

)v1
(

z1

w1

)v1

←−p 1
m−1

(
z
w

)←−p 1
m−1

(
z1

w1

)]
.

Also,

←−p 0
m

(
z
w

)←−p 0
m

(
z1

w1

)
= k2(vm−vm···vm−v0)

k2(vm−vm···vm−v1)

×

[(
z
w

)v1
(

z1

w1

)v1←−p 1
m−1

(
z
w

)←−p 1
m−1

(
z1

w1

)
+

(
z1

w1

)v1

α(vm − vm · · · vm − v0)pm−1

(
z
w

)←−p 1
m−1

(
z1

w1

)
+

(
z
w

)v1

α(vm − vm · · · vm − v0)pm−1

(
z1

w1

)
←−p 1

m−1

(
z
w

)
+α(vm − vm · · · vm − v0)α(vm − vm · · · vm − v0)pm−1

(
z
w

)
pm−1

(
z1

w1

)]
.
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Now using the relations between α(v0 · · · vm) and α(vm−vm · · · vm−v0) and k(v0 · · · vm)
and k(vm−vm · · · v0−v1), and then subtracting the lower equation from the upper gives
the result. 2

The theorem below in the case of reverse lexicographical ordering is Theorem 8 in
[18].

Theorem 3.1.6 Let ρ be a positive Borel measure on T2 with Fourier coefficients
cu, u ∈ Z2. Let {(0, 0)} ⊂ Λ+ ⊂ H ∪ {(0, 0)} be a finite set and assume that
(3.1.2) holds. Further, order Λ+ as Λ+ = {v0, · · · , vm}. The pseudopolynomials{(

z
w

)vip
(
vi − vi, vi+1 − vi · · · vm − vi;

(
z
w

))
: i = 0, . . . ,m

}
form an orthonormal basis

of the space {
(

z
w

)v
: v ∈ Λ+} endowed with the inner product 〈, 〉ρ. Furthermore, if we

set

P (z, w) =[
p
(
v0 − v0, . . . , vm − v0;

(
z
w

))
,
(

z
w

)v1p
(
v1 − v1, . . . , vm − v1;

(
z
w

))
, . . . ,

(
z
w

)vm
p
(
vm − vm;

(
z
w

))]
,

then P =
[(

z
w

)v0 · · ·
(

z
w

)vm
]
L, where L is the lower triangular Cholesky factor of C(v0, · · · , vm)−1

i.e., C(v0, · · · , vm)−1.

Note that in this theorem the order of the rows and columns in C(v0, · · · , vm) is
important. Furthermore, the indices arising in the lth pseudopolynomial above can be
read off from the lower triangular part of the lth column of the matrix C in the ordering
chosen.

Proof. For 0 ≤ j ≤ i ≤ m we need to show that

〈
(

z

w

)vj

p

(
vj − vj, . . . , vm − vj;

(
z

w

))
,

(
z

w

)vi

p

(
vi − vi, . . . , vm − vi;

(
z

w

))
〉ρ = δi,j

(3.1.13)

The result for i = j follows from equation (3.1.8) with p
(

z
w

)
= p
(
vj − vj, vj+1 − vj, . . . ,

vm − vj;
(

z
w

))
. For i > j the above result follows if it can be shown that

〈p
(

vj − vj, . . . , vm − vj;

(
z

w

))
,

(
z

w

)(vi−vj)

〉ρ = 0,

for i = j + 1, . . . ,m. But this is exactly the content of equation (3.1.9). Consequently
we see that the polynomials

(
z
w

)vip
(
vi − vi, . . . , vm − vi;

(
z
w

))
, i = 0, . . . ,m are linearly

independent and thus they form a basis for {
(

z
w

)v
: v ∈ Λ+}.
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In matrix form we see that (3.1.13) can be rewritten as L∗C(v0, · · · , vm)L = I
which implies that C(v0, · · · , vm)−1 = LL∗. Since L has positive diagonal elements we
see that each pseudopolynomial must have a positive trailing coefficient which uniquely
specifies the pseudopolynomial. 2

Up until this point ordering on the monomials has not played any special role. In
the results that follow the ordering will be important.

As noted in [18, Theorem 7], Theorem 3.1.6 allows us to connect certain minimizing
pseudopolynomials with the matrix orthogonal polynomials in (2.3.7) and (2.3.8), as
follows. From Theorem 3.1.6, and equation (2.3.9) with i = m it follows that,

Pm(z, w) = [p(0)(z, w) wp(1)(z, w) · · ·wmp(m)(z, w)],

where

p(j)(z, w) = p

(
{0} × {0, . . . ,m− j} ∪{1, . . . , n} × {−j, . . . ,m− j};

(
z
w

))
,

j = 0, . . . ,m.

This coupled with (2.3.20) in Section 2.3 implies that

Pm(z, w) = [p(z, w) wPm−1(z, w)], (3.1.14)

where P (m−1) has the following representation in terms of pseudo polynomials,

Pm−1(z, w) = [p(1)(z, w) wp(2)(z, w) · · ·wm−1p(m−1)(z, w)].

Analogous formulas for P̃ i, i = n, n− 1, also hold. With this we can recast Proposition
2.3.3 as follows.

Theorem 3.1.7 Let ρ be a positive Borel measure on T2 with Fourier coefficients cu,
u ∈ Z2. Let Λ+ = {0, . . . , n}× {0, . . . , m} and assume that (3.1.2) holds. In addition,
assume that [

(cu−v)u,v∈Λ+\{(0,0)}
]−1
{1,...,n}×{0}
{0}×{1,...,m}

= 0. (3.1.15)

Then

p
(
Λ+;

(
z
w

))
p
(
Λ+;

(
z1

w1

))
−←−p

(
Λ+;

(
z
w

))←−p (Λ+;
(

z1

w1

))
= (1− ww1)

∑m
k=1(ww1)

k−1p
(
Qk;

(
z
w

))
p
(
Qk;

(
z1

w1

))
+(1− zz1)

∑n
k=1
←−p
(
Q̃k;

(
z
w

))←−p (Q̃k;
(

z1

w1

))
,

(3.1.16)
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where

Qk = {0} × {0, . . . ,m− k} ∪ {1, . . . , n} × {−k + 1, . . . ,m− k}, k = 1, . . . ,m,

and
Q̃k = {0, . . . , n− k} × {0} ∪ {−k + 1, . . . , n− k} × {1, . . . , m},

and Qk and Q̃k are ordered so that (n,m− k) and (n− k,m) appear last, respectively.

In addition, we may recast Theorem 2.3.1 in the current context as follows.

Theorem 3.1.8 Let Λ+ = {0, . . . , n}×{0, . . . ,m} be ordered lexicographically, and let
ρ be a positive Borel measure on T2 so that its Fourier coefficients cu, u ∈ Z2 satisfy
(cu−v)u,v∈Λ+ > 0. Then the polynomial p(Λ+;

(
z
w

)
) is stable and satisfies

cu =
1

(2πi)2

∫ ∫
T2

(
z

w

)−u
1

|p(Λ+;
(

z
w

)
)|2

dz

z

dw

w
, u ∈ Λ+ − Λ+,

(3.1.17)

if and only if [
(cu−v)u,v∈Λ+\{(0,0)}

]−1
{1,...,n}×{0}
{0}×{1,...,m}

= 0. (3.1.18)

Similarly, the orthogonal polynomial φ(Λ+;
(

z
w

)
) is anti-stable (i.e., φ(Λ+;

(
z
w

)
) 6= 0 for

(z, w) ∈ (C∞ \ D)2) and satisfies

cu =
1

(2πi)2

∫ ∫
T2

(
z

w

)−u
1

|φ(Λ+;
(

z
w

)
)|2

dz

z

dw

w
, u ∈ Λ+ − Λ+,

(3.1.19)

if and only if (3.1.18) holds.

Proof. The first part is exactly the statement in Theorem 2.3.1. For the second
part, use the connection (3.1.7) and the fact that (n, m)− Λ+ = Λ+. 2

Proof of Theorem 1.1.2 Follows directly from Theorem 3.1.8. 2

3.2 Stable autoregressive filters

Two-dimensional signal processing has been an important field of study in the last
decades. Early influential papers in this area are the ones by Whittle [63], and Helson
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and Lowdenslager [47, 48], where many of the one-dimensional results were general-
ized to the two-dimensional situation after introducing a notion of causality based on
halfspaces.

In this section we shall show how the positive extension results may be interpreted
in the context of autoregressive filters. We consider stochastic processes X = (xu)u∈Z2

depending on two discrete variables defined on a fixed probability space (Ω,A, P ). We
shall consider zero mean processes X = (xu)u∈Z2 , i.e., E(xu) = 0 for all u. Recall that
the space L2(Ω,A, P ) of square integrable random variables endowed with the inner
product

〈x, y〉 := E(y∗x)

is a Hilbert space. A stochastic process X = (xu)u∈Z2 is called a (wide sense) stationary
process on Z2 if for u, v ∈ Z2 we have that

E(x∗uxv) = E(x∗u+pxv+p) =: RX(u− v), for all p ∈ Z2.

It is known that the function RX , termed the covariance function of X, defines a positive
semi-definite function on Z2, i.e.,

p∑
i,j=1

αiᾱjRX(ui − uj) ≥ 0,

for all p ∈ N, α1, . . . , αp ∈ C, u1, . . . , up ∈ Z2. The theorem of Herglotz, Bochner and
Weil (see, e.g., [49, Chapter 8]) on positive definite functions states that for such a
function RX there is a positive regular bounded measure µX defined for Borel sets on
the torus [0, 2π]2 such that

RX(u) =

∫
e−i〈u,t〉dµX(t),

for all two tuples of integers u. The measure µX is referred to as the spectral distribution
measure of the process X. The spectral density fX(t) of the process X is the spectral
density of the absolutely continuous part of µX , i.e., the absolutely continuous part of
µX equals

fX(t1, t2)
dt1dt2
(2π)2

.

Let H be the standard halfspace in Z2, and let (0, 0) ∈ Λ+ ⊂ H∪{(0, 0)} be a finite
set. A zero-mean stationary stochastic process X = (xu)u∈Z2 is said to be AR(Λ+), if
there exist complex numbers ak, k ∈ Λ+ \ {(0, 0)}, so that for every u

xu +
∑
v∈Λ+

v 6=(0,0)

avxu−v = eu, u ∈ Z2, (3.2.1)
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where {eu ; u ∈ Z2} is a white noise zero mean process with variance σ2, for some σ.
The AR(Λ+) process is said to be causal if there is a solution to equations (3.2.1) of
the form

xu =
∑

v∈H∪{(0,0)}

φveu−v, u ∈ Z2,

with
∑

v∈H∪{(0,0)}
|φv| < ∞. The bivariate autoregressive (AR) model problem concerns

the following. Given are autocorrelation elements

cu = E(xux̄0), u ∈ Λ+,

determine, if possible, the coefficients av, v ∈ Λ+ \ {(0, 0)}, and the variance σ2 of a
causal autoregressive filter representation (3.2.1). It is well known that if (3.2.1) is
causal then

p(z, w) :=
1

σ
(1 +

∑
0 6=v∈Λ+

av

(
z

w

)v

)

is stable and its spectral density function has Fourier coefficients equal to E(xux̄0).
Conversely, a solution p(z, w) =

∑
u∈Λ+

pu

(
z
w

)u
to the positive extension problem with

given data cu, u ∈ Λ+, yields a solution to the stable bivariate autoregressive filter
problem by putting σ = 1

p00
, and au = pu

p00
. We may therefore interpret the results of

Section 2.4 in terms of autoregressive filters. Below is this interpretation for the case
when Λ+ = {0, . . . , n} × {0, . . . , m}.

Theorem 3.2.1 There exists a causal solution to (3.2.1) for the given autocorrelation
elements ck,l, (k, l) ∈ {0, . . . , n}×{0, . . . , m} if and only if there exist complex numbers
ck,l, (k, l) ∈ {1, . . . , n} × {−m, . . . ,−1}, so that the (n + 1)(m + 1) × (n + 1)(m + 1)
doubly indexed Toeplitz matrix

Γ =

C0 · · · C−n
...

. . .
...

Cn · · · C0

 ,

where

Cj =

 cj0 · · · cj,−m
...

. . .
...

cjm · · · cj0

 , j = −n, . . . , n,

and c−k,−l = c̄k,l, has the following two properties:

(1) Γ is positive definite;

(2) the (n + 1)m × (m + 1)n submatrix of Γ obtained by removing scalar rows 1 +
j(m + 1), j = 0, . . . , n, and scalar columns 1, 2, . . . ,m + 1, has rank nm.
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In this case one finds the vector

1

σ2
[anm · · · an0 · · · a0m · · · a01 1]

as the last row of the inverse of Γ.

Proof. Let cu, u ∈ Λ+, be given so that cu, u ∈ (Λ+ − Λ+)\(Λ+ ∪ −Λ+) exist
satisfying (1) and (2) in the statement of the theorem. Thus Theorem 2.4.1(ii) is
satisfied, yielding the existence of a stable polynomial p(z, w) =

∑n
k=0

∑m
l=0 pk,lz

kwl

with p00 > 0 as in (i) of Theorem 2.4.1. Put now, σ = 1
p00

and akl = pklp00, (k, l) 6= (0, 0).

These choices for σ and ak,l provide the desired AR representation (3.2.1). That the
solution is causal follows from Proposition 2.1.1.

Conversely, when a causal solution to the AR representation (3.2.1) is given, one
may set p00 = 1

σ
and pk,l = akl

σ
, (k, l) 6= (0, 0), and obtain a stable polynomial satisfying

Theorem 2.4.1(i). Thus Theorem 2.4.1(ii) is valid, yielding (1) and (2) in Theorem
3.2.1. 2

For other sets Λ+ one needs to use the appropriate result of Section 2.4.
Based on characterization Theorem 2.4.3(ii) for the existence of a causal solution to

the AR model problem, a numerical algorithm was developed in [64] for computing the
solution. The algorithm has been implemented in MATLAB and several experiments
have been executed. We cite here two experiments.

Experiment 1. For the given data

c00 = 8, c01 = 4, c02 = 1, c03 = .25, c04 = 0.01, c12 = 2, c13 = 0.5,

c14 = 0.03, c15 = 0.006, c24 = 1, c25 = 0.1, c26 = 0.01, c27 = 0.001,

the program arrives at the pseudopolynomial (in MATLAB short format)

p(z, w) = 1√
0.1925

(0.1925− 0.1215w + 0.0450w2 − 0.0158w3 + 0.0049w4 − 0.0521zw2

+0.0486zw3 − 0.0239zw4 + 0.0083zw5 − 0.0157z2w4 + 0.0157z2w5

−0.0089z2w6 + 0.0034z2w7).

After computing the Fourier coefficients of 1/|p(w, z)|2 (by using 2D-fft and 2D-ifft with
grid size 64) we arrive at an error of 1.1026e-09. The error is the Euclidian norm of the
vector of differences of the given and the obtained Fourier coefficients.

Experiment 2. For the data

c00 = 1, c01 = .4, c02 = .1, c03 = .04, c10 = .2,

c11 = .05, c12 = .02, c13 = .005, c20 = .1, c21 = .05, c22 = .01,

c23 = .003, c30 = .04, c31 = .015, c32 = .002, c33 = .0005,
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we find the pseudopolynomial

1√
1.2646

( 1.2646− .5572w + .1171w2 − .0429w3 − .2612z + .1791zw − .0791zw2

+.0324zw3 − .0607z2 − .0171z2w + .0336z2w2 − .0143z2w3

−.0132z3 +.0107z3w − .0058z3w2 + .0037z3w3).

The error here is 2.0926e-11.

3.3 Fejér-Riesz factorization

The well-known Fejér-Riesz lemma, in the nonsingular case, states that a trigonometric
polynomial f(z) = f−nz

−n + · · ·+ fnz
n that takes on positive values on the circle (i.e.,

f(z) > 0 for |z| = 1) can be written as the modulus squared of a stable polynomial of
the same degree. That is, there exists a stable polynomial p(z) = p0 + · · ·+ pnz

n such
that

f(z) = |p(z)|2, |z| = 1.

In this section we obtain a two variable variation of this result.
Let H be the standard halfspace in Z2, and let Λ+ be a subset of H ∪ {(0, 0)}

containing (0, 0). Let f(z, w) be a Wiener function with Fourier support in Λ+ − Λ+.
Thus

f(z, w) =
∑

(k,l)∈Λ+−Λ+

fklz
kwl ,

∑
(k,l)∈Λ+−Λ+

|fkl| <∞.

Suppose that f(z, w) > 0 for |z| = |w| = 1, we ask the question whether there exists a
stable Wiener function p(z, w) with Fourier support in Λ+ so that f(z, w) = |p(z, w)|2,
(z, w) ∈ T2? For the case when Λ+ is the strip Λ+ = {(n, m) : 0 < n ≤ r or (n =
0 and m ≥ 0)} this question was answered affirmatively in [5, 6]. Also, for the truncated
strip Λ+ = {(n,m) : 0 < n < r or (n = 0 and m ≥ 0) or (n = r and m ≤ s)} the answer
is affirmative, as was observed in [56]. It needs to be noted that in both these two cases
(as well as in the classical one-variable case) Λ+ − Λ+ = Λ+ ∪ (−Λ+), which has been
conjectured by A. Seghier to be crucial for a direct factorization result to exist. In the
following theorem we shall deal with the case when Λ+ is a finite subset of Z2. In that
case we always have that Λ+ −Λ+ 6= Λ+ ∪ (−Λ+) (unless Λ+ lies on a line, reducing it
to the one-variable case). Let us remark that one may of course consider other algebras
of functions than the Wiener algebra (e.g., continuous functions, essentially bounded
functions); however, for the case when |Λ+| < ∞ the problem is independent of the
choice of any reasonable algebra. Recall that

J(n, m, q) =
n⋃

i=0

{i} × {−iq, . . . ,m− iq}, n, m ≥ 0, q ∈ Z.
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Theorem 3.3.1 Let (0, 0) ∈ Λ+ ⊂ H be a finite set, and suppose that

f(z, w) =
∑

(k,l)∈Λ+−Λ+

fklz
kwl,

is positive on the bitorus. Let crs, (r, s) ∈ Z2, denote the Fourier coefficients of 1
f(z,w)

.
The following are equivalent:

(i) there exists a stable pseudopolynomial p(z, w) with support (p̂) ⊆ Λ+ such that
f(z, w) = |p(z, w)|2, |z| = |w| = 1;

(ii) for some J(n, m, q) with Λ+ ⊆ J(n, m, q)

[
(cu−v)u,v∈J(n,m,q)\{(0,0)}

]−1
{(1,−q),(2,−2q),...,(n,−nq)}
{0}×{1,...,m}

= 0 (3.3.1)

and [
(cu−v)u,v∈J(n,m,q)

]−1
J(n,m,q)\Λ+
{0}×{0}

= 0. (3.3.2)

(iii) for all J(n, m, q) with Λ+ ⊆ J(n, m, q) (3.3.1) and (3.3.2) hold.

In the case one of (i)-(iii) (and thus all of (i)-(iii)) hold, one may find p(z, w) by
letting

p(z, w) = q
−1/2
00

 ∑
(k,l)∈Λ+

qklz
kwl

 , (3.3.3)

where

(qu)u∈Λ+ =
[
(cu−v)u,v∈Λ+

]−1
(δu)u∈Λ+ . (3.3.4)

Proof. Choose J(n, m, q) so that Λ+ ⊆ J(n, m, q). Using the change of variables
f̃(z, w) := f(zwq, w) = |p(zwq, w)|2 =: |p̃(z, w)|2, we get that the Fourier coefficients
c̃kl of 1

f̃
satisfy c̃kl = ck,l+kq, so that the corresponding Fourier support is J(n, m, 0).

We may therefore without loss of generality assume that q = 0.
(i)→ (iii). Consider the set of Fourier coefficients {ckl, (k, l) ∈ Λ+}. This collection

satisfies the conditions in Theorem 2.4.3(i), and therefore we may find complex numbers
cu ∈ (J(n,m, 0) − J(n, m, 0)) \ (Λ+ ∪ (−Λ+)) so that (2.4.8), (2.4.9) and (2.4.10)
are satisfied. Moreover, they are obtained in the proof of Theorem 2.4.3 by letting

cu = 1̂
|p|2 (u). Note that conditions (2.4.9) and (2.4.10) coincide with conditions (3.3.1)

and (3.3.2), finishing the proof of (i) → (iii).
The implication (iii) → (ii) is trivial.
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For (ii) → (i), observe that the coefficients cu satisfy (2.4.8), (2.4.9) and (2.4.10).
Indeed, (2.4.9) and (2.4.10) follow directly from (3.3.1) and (3.3.2), while (2.4.8) fol-
lows from the positivity of f . Introduce now the stable p(z, w) as in (3.3.3) and (3.3.4),

obtaining that 1̂
|p|2 (u) = cu = 1̂

f
(u), u ∈ Λ+ − Λ+ (see Remark 2.4.2). Consequently,

1
|p|2 and 1

f
are both, in the terminology of [4], positive extensions of {cu}u∈Λ+−Λ+ whose

reciprocal has Fourier support in Λ+ − Λ+. By the uniqueness result of the maximum
entropy extension (see [68] or Theorem 3.1 in [4]) , 1

|p|2 = 1
f
, yielding (i). 2

Proof of Theorem 1.1.3. Follows directly from Theorem 3.3.1 with Λ+ =
J(n,m, 0), and Proposition 2.1.1. 2

Note that in terms of inner/outer factorizations Theorem 3.3.1 gives a criterion
for when an invertible pseudopolynomial P has an outer factor with the same Fourier
support. Indeed, one lets f = |P |2 and checks whether conditions (3.3.1) and (3.3.2)

hold. If so, p as in (3.3.3) gives the outer factor (since support(p̂±1) ⊆ H ∪ {(0, 0)})
and P

p
has modulus constant equal to 1.

The criterion in Theorem 3.3.1 allows for a numerical algorithm to obtain the factor
p, when it exists. Let us illustrate this on the following example.

Example 3.3.2 Let f(z, w) =
∑2

i=−2

∑2
j=−2 ziwj(

∑2−|i|
r=0

∑2−|j|
s=0 2−2(r+s)−|i|−|j|). Com-

puting the Fourier coefficients of the reciprocal of f (using MATLAB; truncating the
Fourier series at index 64), we get:

c0,0 = 1.6125, c0,1 = c1,0 = −0.6450, c0,2 = c2,0 = −0.0806, c1,−2 = 0.0322,

c1,−1 = 0.2580, c1,1 = 0.2580, c1,2 = c2,1 = 0.0322, c2,−2 = 0.0040,

c2,−1 = 0.0322, c2,2 = 0.0040,

where only the first four decimal digits show. In order to check (3.3.1) (where n = m =
2, q = 0) we compute

c0,0 c0,−1 c−1,1 c−1,0 c−1,−1 c−2,1 c−2,0 c−2,−1

c0,1 c0,0 c−1,2 c−1,1 c−1,0 c−2,2 c−2,1 c−2,0

c1,−1 c1,−2 c0,0 c0,−1 c0,−2 c−1,0 c−1,−1 c−1,−2

c1,0 c1,−1 c0,1 c0,0 c0,−1 c−1,1 c−1,0 c−1,−1

c1,1 c1,0 c0,2 c0,1 c0,0 c−1,2 c−1,1 c−1,0

c2,−1 c2,−2 c1,0 c1,−1 c1,−2 c0,0 c0,−1 c0,−2

c2,0 c2,−1 c1,1 c1,0 c1,−1 c0,1 c0,0 c0,−1

c2,1 c2,0 c1,2 c1,1 c1,0 c0,2 c0,1 c0,0



−1

=
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0.9375 0.3750 0.0000 0.4688 0.1875 0.0000 0.2344 0.0938
0.3750 0.9375 0.0000 0.1875 0.4688 0.0000 0.0938 0.2344
0.0000 0.0000 0.9375 0.4688 0.2344 0.3750 0.1875 0.0938
0.4688 0.1875 0.4688 1.3477 0.5625 0.1875 0.5625 0.2344
0.1875 0.4688 0.2344 0.5625 1.1719 0.0938 0.2344 0.4922
0.0000 0.0000 0.3750 0.1875 0.0938 0.9375 0.4688 0.2344
0.2344 0.0938 0.1875 0.5625 0.2344 0.4688 1.1719 0.4922
0.0938 0.2344 0.0938 0.2344 0.4922 0.2344 0.4922 0.9961


,

which has zeroes in the required positions. Since Λ+ = J(2, 2, 0) the condition (3.3.2)
is void. Computing p(z, w) one finds p(z, w) =

∑2
k,l=0 2−k−lzkwl.

We remark that our result is quite different from results regarding writing positive
trigonometric polynomials as sums of squares of (pseudo-)polynomials (see, e.g., [10],
[58], [4]), again stressing the fact that we are considering functions of more than one
variable. E.g., the positive function |z − 4|2 + |w − 2|2 can not be written as |p(z, w)|2
where p is a pseudopolynomial (i.e., p has finite Fourier support). One may, however,
write |z − 4|2 + |w − 2|2 = |p(z, w)|2 when one allows p to be a Wiener function with
infinite Fourier support {0} × {0, 1, 2, . . . } ∪ {1} × {. . . ,−2,−1, 0} and in that case p
can be chosen to be stable as well (see [56]).

3.4 Inverses of doubly-indexed Toeplitz matrices

Due to the results developed in Section 2.3, we may formulate the following procedure
for finding the inverse of a doubly indexed positive definite Toeplitz matrix that satisfies
a low rank condition. In particular, it shows that in this case the matrix is fully
determined by the first column of its inverse. Recall that the notion of a left stable
factor is defined in Section 1.3.

Theorem 3.4.1 Let C be a positive definite block Toeplitz matrices C = (Ci−j)
n
i,j=0

whose blocks Cj = (cj,k−l)
m
k,l=0 are also Toeplitz. Suppose in addition that

rank(cu−v)u∈{0,... ,n}×{1,... ,m}
v∈{1,... ,n}×{0,... ,m}

= nm,

Let the i(m + 1) + j’th entry of the first column of C−1 be denoted by qij, i = 0, . . . , n,
j = 0, . . . , m. Then p(z, w) := 1√

q00

∑n
i=0

∑m
j=0 qijz

iwj is stable. Furthermore, let

Em−1(z) :=

 p0(z) ©
...

. . .

pm−1(z) · · · p0(z)


p̄0(1/z) · · · p̄m−1(1/z)

. . .
...

© p̄0(1/z)


−

p̄m(1/z) ©
...

. . .

p̄1(1/z) · · · p̄m(1/z)


pm(z) · · · p1(z)

. . .
...

© pm(z)

 ,
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where we write p(z, w) =
∑m

i=0 pi(z)wi. Then the following formula for C−1 holds:

C−1 =


P0

P1 P0
...

...
. . .

Pn Pn−1 · · · P0




P ∗0 P ∗1 · · · P ∗n
P ∗0 · · · P ∗n−1

. . .
...

P ∗0



−


0

Jm(P ∗n)T Jm 0
...

. . . . . .

Jm(P ∗1 )T Jm · · · Jm(P ∗n)T Jm 0




0 JmP T
n Jm · · · JmP T

1 Jm

0
. . .

...
. . . JmP T

n Jm

0

 ,

where

Pi =

(
pi0 0

col(pij)
m
j=1 Fi

)
,

and F (z) =
∑n

i=0 Fiz
i is the left stable factor of Em−1(z).

Proof. Let p(z, w) be as above. It follows from Theorem 2.3.1 in Chapter 2 that
p(z, w) is stable. In addition, it is straightforward to check that

p(z,w)p(1/z̄,w1)−←−p (z,w)←−p (1/z̄,w1)
1−ww̄1

= (1, . . . , wm−1)Em−1(z)

 1
...

w̄m−1
1

 . (3.4.1)

We have used a similar observation in the proof of Theorem 2.3.1. Furthermore, by
(2.3.17) with z1 = 1/z̄,

p(z, w)p(1/z̄, w1)−←−p (z, w)←−p (1/z̄, w1)

1− ww̄1

= Pm−1(z, w)Pm−1(1/z̄, w1)
∗.

(3.4.2)

Combining (3.4.1), (3.4.2), and (2.3.9) of Section 2.3 we find

Em−1(z) = Am−1
n (z)Am−1

n (0)−1Am−1
n (1/z̄)∗, (3.4.3)

where Am−1
n (z) is defined in (2.3.7). Since Am−1

n (z)(Y m−1
n )−1 is stable (use [17, The-

orem 6]; here (Y m−1
n )∗ is the lower Cholesky factor of Am−1

n (0)), and is lower trian-
gular at 0 with positive diagonal entries, we must have that Am−1

n (z)(Y m−1
n )−1 is the

left stable factor F (z) of E(z). Thus F (z) = Am−1
n (z)(Y m−1

n )−1. By Proposition
2.1.2(iii) we now have that P (z) is the left stable factor of Em(z). By equation (2.3.28)
P (z) = Am

n (z)(Y m
n )−1. By the definition (2.3.7) of Am

n (z), this yields that col(Pi)
n
i=0 is

the first column of the lower Cholesky factor of C−1. The result now follows from the
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matrix version of the Gohberg-Semencul formula (see [38]). 2

Though the above result gives a way to construct C−1 based solely on its first
column, the formula does not have the simple algebraic form as the classical Gohberg-
Semencul [43] formula. When n = m = 1 the formula for C−1 is as follows:

C−1 =


p00 p01 p10 p11

p01 f p01p10

p00
p10

p10
p10p01

p00
f p01

p11 p10 p01 p00

 ,

where

f =
1

2p00

(p2
00 + |p10|2 + |p01|2 − |p11|2 + (p4

00 − 2|p10|2p2
00 − 2p2

00|p01|2 − 2p2
00|p11|2+

|p10|4−2|p01|2|p10|2−2|p10|2|p11|2+|p01|4−2|p01|2|p11|2+|p11|4+4p11p10p01p00+4p10p11p01p00)
1/2).

Here it was assumed that c1,−1 = c01c10
c00

. Clearly, the formula for the (2,2) entry (or,

to be more precise, the ((0, 1), (0, 1)) entry) of C−1 is uniquely determined by the first
column of C−1, but the formula also involves taking square roots, a feature that is
not present in the classical Gohberg-Semencul formula. This suggests that a simple
algebraic formula as the classical Gohberg-Semencul formula may not exist for doubly-
indexed Toeplitz matrices.
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Appendix

In this appendix we present an alternative proof of Theorem 2.4.1 (ii) → (i). Assume
that cu, u ∈ {−n, . . . , n} × {−m, . . . , m} are given so that

(cu−v)u,v∈Λ+ > 0 (A.1)

and
rank(cu−v)u∈{1,... ,n}×{0,... ,m}

v∈{0,... ,n}×{1,... ,m}
= nm. (A.2)

Let Cj be the (m + 1)× (m + 1) Toeplitz matrix

Cj =

 cj0 · · · cj,−m
...

. . .
...

cjm · · · cj0

 , j ∈ {−n, . . . , n},

and Γk the (k + 1)× (k + 1) block Toeplitz matrix

Γk =

C0 · · · C−k
...

. . .
...

Ck · · · C0

 , k ∈ {0, . . . , n}.

By (A.1) , Γn > 0. Introduce the matrix valued trigonometric polynomial

F (λ) =
n∑

j=−n

λjCj, |λ| = 1.

By the results in Section 6 of [26] (see also [34], Section III.2 in [66] or Section II.3 in
[40]) there exist unique (m + 1)× (m + 1) matrices Cj, |j| > n, so that

∞∑
j=−∞

‖Cj‖ <∞,

and Fext(λ) :=
∑∞

j=−∞ λjCj satisfies

Fext(λ) > 0, |λ| = 1,
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F̂−1
ext(k) = 0, |k| > n.

These matrices Cj = C∗−j, j > n, are given inductively by

Cn+j =
[
Cn+j−1 · · ·Cj

]
Γ−1

n−1

C1
...

Cn

 , j = 1, 2, . . . , (A.3)

(see e.g., [27], [13, 14, 15]). We claim that because of (A.2) we actually have that the
matrices Cj, j > n, are Toeplitz.

Lemma A.1 The matrices Cj, |j| > n, are Toeplitz matrices.

Proof. Let P and Q be the (m + 1)×m matrices

P =


0 · · · 0
1 ©
© . . .

1

 , Q =


1 ©
© . . .

1
0 · · · 0

 .

Note that an (m + 1)× (m + 1) matrix M is Toeplitz if and only if

P ∗MP = Q∗MQ.

Condition (A.2) tells us that

rank


C1P C0P · · · C−n+1P
C2P C1P · · · C−n+2P

...
CnP Cn−1P · · · C0P

 = nm. (A.4)

We also have that

rank

 P ∗C0P · · · P ∗C−n+1P
...

P ∗Cn−1P · · · P ∗C0P

 = nm, (A.5)

since this matrix is a principal submatrix of size nm×nm of the positive definite matrix
Γn.

Consider now the partial matrices

(
n+1⊕
i=1

J1

)
C1 C0 · · · C−n+1

C2 C1 · · · C−n+2
...

...
...

Cn Cn−1 · · · C0

? Cn · · · C1


(

n+1⊕
i=1

J2

)
(A.6)
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where
(J1, J2) ∈ {(Im+1, P ), (Q∗, Im+1), (P

∗, P ), (Q∗, Q)}.
Recall from [50] (see also [65] or Section IV.2 [66]) that[

A B
? C

]
has a unique minimal rank completion if and only if

rank
[
A B

]
= rank B = rank

[
B
C

]
and in that case [

A B
CB(−1)A C

]
is the minimal rank completion, where B(−1) is a generalized inverse of B. The rank of
this unique minimal rank completion equals rank(B).

From (A.4) and (A.5) and the Toeplitz structure it is not hard to see that all four
partial matrices in (A.6) satisfy this uniqueness condition, and that the unique minimal
rank completion of (A.6) is given by completing with

J1Cn+1J2,

where Cn+1 is given by (A.3). We next note that, due to the Toeplitz structure of
C−n+1, . . . , Cn, we have that the partial matrices in (A.6) with (J1, J2) = (P ∗, P ) and
(J1, J2) = (Q∗, Q) are the same. Therefore, they have the same unique minimal rank
completion, and thus

P ∗Cn+1P = Q∗Cn+1Q,

giving that Cn+1 is Toeplitz. In addition,

Im

(
n+2⊕
i=1

J1

) C1
...

Cn+1

 ⊆ Im

(n+2⊕
i=1

J1

)C0 · · · C−n+1
...

...
Cn · · · C1

( n⊕
i=1

J2

)
for all four possibilities of (J1, J2).

By repeating the same arguments for taller matrices (A.6) (i.e., block rows are
added) one may show that Cn+2, Cn+3, . . . are Toeplitz as well. 2

Since Cj, |j| > n, are Toeplitz, we may define cjk, |j| > n, |k| ≤ m, via setting

Cj =

 cj0 · · · cj,−m
...

...
cjm · · · cj0

 , |j| > n.
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Let now
fC(z, w) =

∑
j∈Z
|k|≤m

cjkz
jwk, |z| = |w| = 1.

We may now apply Theorem 1.1 in [6], where the positive definiteness of the Toeplitz
operator follows from Fext(λ) > 0, |λ| = 1. It is not hard to see (because of the con-
struction of Cj, |j| > n) that the function xD(x)−1/2 in Theorem 1.1 of [6] corresponds
exactly to p(z, w) in (2.4.5) of Theorem 2.4.1. Thus by Theorem 1.1 in [6] , p is stable,

and 1̂
|p|2 (u) = cu, u ∈ Z× {−m, . . . , m}. Thus, we have established Theorem 2.4.1(i).
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