1a. Find the eigenvalues and corresponding eigenvectors to the matrix

\[A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} \]

b. Find \(A^{15} \) (Show all work).

c. Solve \(\vec{x}_n = A\vec{x}_{n-1}, \quad \vec{x}(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \).

d. Suppose \(B \) is a \(4 \times 4 \) matrix with three distinct eigenvalues. One eigenvalue has geometric multiplicity one and one has geometric multiplicity two. Is it possible that \(B \) is not diagonalizable?

2. Let \(L \) be the line in \(\mathbb{R}^3 \) given by

\[L = \{ \vec{x} = t \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad -\infty < t < \infty \} \]

and \(\vec{y} = [2, 1, 1]^T \)

a. Find the orthogonal projection of \(\vec{y} \) onto \(L \).

b. Find the matrix representing the orthogonal projection onto \(L \).

c. Find the matrix that represents the reflection of a vector about \(L \).

3a. Two matrices \(A \) and \(B \) are similar if \(B = P^{-1}AP \) where \(P \) is an invertible matrix. Show that \(A \) and \(B \) have the same determinant.

3b. Show that \(A \) and \(B \) have the same characteristic polynomial.

3c. Find the characteristic polynomial of the matrix

\[A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \\ 0 & 3 & 2 \end{pmatrix} \]

4(a) Let \(A \) be an \(m \times n \) matrix. Show \(\text{Null} A \perp \text{Col}(A^T) \)

(b) Let,

\[\vec{v}_1 = [1, 0, 1, 1]^T, \quad \vec{v}_2 = [1, 1, 0, 0]^T, \quad \vec{v}_3 = [1, 2, 1, 1]^T. \]

From the above vectors construct an orthonormal set of vectors.

(c) Let \(S \) be the space spanned by \(\vec{v}_1, \vec{v}_2 \) and \(\vec{v}_3 \). If \(\vec{x} = [1, 1, 1, 1]^T \) find the vector in \(S \) closest to \(\vec{x} \).

(d) Let \(A \) be the matrix whose columns are \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \) and \(Q \) be the matrix whose columns are the orthonormal basis just constructed. Find \(R \) so that \(A = QR \).