1. Show that

\[w(z) = i \int_0^z (t + 1)^{-\frac{1}{2}} t^{-\frac{1}{2}} (t - 1)^{-\frac{1}{2}} \, dt, \]

maps the upper half plane into the square with vertices 0, b,ib and b+ib. Determine b. (Show all steps)

2.a. Show that the equation \(z = 2 - e^{-z} \) has exactly one root in the right half plane. Where must this root be?

 b. Prove that the equation \(z^3 + 9z + 27 \) has no roots in the disk \(|z| < 2 \)

2.b. Suppose that \(f \) is analytic on \(|z| \leq 1 \) and satisfies \(|f(z)| < 1 \) for \(|z| = 1 \). Prove that the equation \(f(z) = z \) has exactly one solution.

3.a. Show that the mapping \(w = z + 1/z \) maps circles \(|z| = \rho \) (\(\rho \neq 1 \)) onto ellipses.

 b. Find the Mobius transformation that maps \((-1, 1, i)\) onto \((1, 2, i)\)

 c. Show that Mobius transformation that take the real line to itself must have real coefficients.