1. Find the following limits:

 \[a) \lim_{x \to 1} \frac{x^2 - 2x + 1}{x - 1} \quad \text{b) } \lim_{x \to \infty} \frac{2x + 1}{x^2 + 4} \]

2. (a) State the \(\epsilon-\delta \) definition of limit. (b) Use this definition to prove that \(\lim_{x \to -21}(3x - 1) = -64 \).

3. Use the definition of the derivative to find the derivative of \(f(x) = x^2 \).

4. Find the maximum and minimum values of \(f(x) = x^2 + 2x + 5 \) over the interval \([-2, 1]\).

5. Sketch the graph of \(f(x) = 2x^3 - 3x - 10 \). Find all the intervals where the function is increasing, decreasing, is concave up or concave down.

6. Find the following integrals:

 \[a) \int \sin(2x - 4) \, dx \quad \text{b) } \int_0^1 x^2(x^3 + 5)^9 \, dx \]

7. (a) Estimate the area under the curve \(f(x) = 3x - 1 \) over the interval \((1, 3)\) by dividing the interval into 4 equal subintervals and computing the area of the corresponding circumscribed polygon. (b) Find the exact value of the area under the curve by dividing the interval into \(n \) equal segments and computing the limit of the area of the corresponding polygon as \(n \to \infty \).
8. Find the area trapped between \(y = x + 4 \) and \(y = x^2 - 2 \).

9. Let \(R \) be the region trapped by \(y = x^3 \), \(x = 3 \), and \(y = 0 \). Find the volume of the solid generated by revolving \(R \) about the \(x \)-axis.

10. Find all the work done in pumping all the oil (density \(\delta = 2 \) pounds per cubic foot) over the edge of a cylindrical tank that stands on one of its bases. Assume that the radius of the base is 4 feet, the height is 10 feet, and the tank is full of oil.

 Each problem is worth 10 points.