Solutions to Midterm 1

1a. $\ln e^{2x} = 2x$. So

$$y' = \left(\tan(2x)\right)' = \left(\sec^2(2x)\right)(2x)' = 2\sec^2(2x).$$

1b. Differentiating any function of the form $y = f(x)^{g(x)}$, such as $y = x^{\sin x}$, involves 3 steps:

(Step 1) Take natural log of both sides:

$$\ln y = \ln(x^{\sin x})$$
$$= \sin x \cdot \ln x$$

(Step 2) Differentiate both sides:

$$\frac{y'}{y} = (\sin x)'(\ln x) + (\sin x)(\ln x)'$$
$$= \cos x \cdot \ln x + \sin x \cdot \frac{1}{x}.$$

(Step 3) Solve for y' in terms of x:

$$y' = x^{\sin x} \left(\cos x \ln x + \frac{\sin x}{x} \right).$$

2a. METHOD 1. Let $y = a^x$. Then $\ln y = x \ln a$. So

$$\frac{y'}{y} = \ln a;$$

$$y' = y \ln a = a^x \ln a.$$

METHOD 2.

$$a^{x} = e^{\ln a^{x}} = e^{x \ln a}$$
$$(a^{x})' = (e^{x \ln a})' = e^{x \ln a} \cdot (x \ln a)' = a^{x} \ln a.$$

2b. To differentiate an inverse trigonometric function, such as $\cos^{-1} x$, follow these 3 steps:

(Step 1) Let $y = \cos^{-1} x$. Then

$$\cos y = x$$
.

(Step 2) Differentiate both sides:

$$(-\sin y)\,y'=1.$$

(Step 3) Solve for y' in terms of x

$$y' = \frac{-1}{\sin y} = \frac{-1}{\sqrt{1 - \cos^2 y}} = \frac{-1}{\sqrt{1 - x^2}}.$$

We put $\sin y = \sqrt{1 - \cos^2 x}$ (as opposed to $-\sqrt{1 - \cos^2 x}$) because by definition $0 \le y \le \pi$, which forces $\sin y \ge 0$.

3a. Let $u = x^2 + 1$. Then du = 2xdx, or xdx = du/2. So

$$\int \frac{x}{x^2 + 1} dx = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln u + C = \ln \sqrt{x^2 + 1} + C.$$

3b.

$$\int \frac{1}{x^2 + 4x + 8} dx = \int \frac{1}{(x+2)^2 + 4} dx$$

$$= \int \frac{1}{(u)^2 + 2^2} du \qquad (u = x+2)$$

$$= \frac{1}{2} \tan^{-1} \frac{u}{2} + C$$

$$= \frac{1}{2} \tan^{-1} \frac{x+2}{2} + C.$$

4a.

$$\cosh x - \sinh x = \frac{e^x + e^{-x}}{2} - \frac{e^x - e^{-x}}{2} = \frac{2e^{-x}}{2} = e^{-x}.$$

4b. METHOD 1. Let $y = \sin^{-1} x$. Then $\sin y = x$. Further, $\pi/2 \le y \le -\pi/2$. So $\cos y \ge 0$, which yields $\cos y = \sqrt{1 - \sin^2 x}$. Hence

$$\tan(\sin^{-1} x) = \tan y = \frac{\sin y}{\cos y} = \frac{x}{\sqrt{1 - x^2}}.$$

METHOD 2. Draw a triangle with $\sin \theta = x$.

Then

$$\tan(\sin^{-1} x) = \tan \theta = \frac{x}{\sqrt{1 - x^2}}.$$

5. Let y(t) be the population at time t. By assumption, y(0) = 1000. So

$$y(t) = y(0)e^{kt} = 1000e^{kt}.$$

Further, we are given that y(3) = 8000. So $8000 = 1000e^{k3}$, which implies

$$k = \frac{1}{3} \ln \frac{8000}{1000} = \ln \sqrt[3]{8} = \ln 2.$$

Thus

$$y(5) = 1000e^{(\ln 2)5} = 1000e^{\ln 2^5} = 1000 \cdot 2^5 = 32000.$$

IATEX \mathcal{MG}