Math 23B
Multivariable Calculus
Fall 1999, UCSC

FINAL EXAM

Time: 180 min

1. Evaluate \(\int \int_D \sin(x^2 + y^2) \, dx \, dy \) where \(D \) is the disk \(x^2 + y^2 \leq \pi \).

2. Compute the volume of an ellipsoid with semiaxes \(a, b, \) and \(c \).

3. Find the center of mass of the ice cream cone given by \(x^2 + y^2 + z^2 \leq 1 \) and \(z \geq \sqrt{x^2 + y^2} \), if the density is \(\delta(x, y, z) := \sqrt{x^2 + y^2 + z^2} \).

4. Find the average value of the distance of the helix \((\cos t, \sin t, t) \), \(0 \leq t \leq \pi \), from the \(xz \)-plane.

5. Find the surface area of the portion of the sphere \(x^2 + y^2 + z^2 = 1 \) which lies above the plane \(z = \frac{\sqrt{2}}{2} \).

6. Show that the gravitational vectorfield \(\mathbf{F} := -\frac{\mathbf{r}}{\|\mathbf{r}\|^3} \) is conservative. What is the total work done by this force in moving a particle from a point \(\mathbf{r}_0 \) to a point \(\mathbf{r}_1 \)?

7. Compute the area of the region enclosed by the curve \((\cos^3 t, \sin^3 t), \) \(0 \leq t \leq 2\pi \). (Hint: use Green's theorem).

8. Show that the volume of any cone with base \(D \) and height \(h \) is given by \(1/3 \text{Area}(D)h \) (Hint: suppose that the vertex of the cone is at the origin and apply Gauss's theorem to the vectorfield \(\mathbf{r} := (x, y, z) \)).

9. Find \(\int \int_S \nabla \times \mathbf{F} \cdot d\mathbf{S} \) where \(S \) is given by \(x^2 + y^2 + (z - \frac{1}{2})^2 = 1, \) and \(z \geq 0, \) and \(\mathbf{F}(x, y, z) := (x + z, y + z, z^2) \) (Hint: use Stokes's theorem).

10. Suppose that rain is described by the vectorfield \(\mathbf{F}(x, y, z) = -(1, 0, 1). \) What is the flux through the hemispherical cup \(z = -\sqrt{1 - x^2 - y^2} \)? How long does it take before the cup is filled with water?

11 (Bonus). Prove that the there exists a surface which has infinite area but bounds a finite volume.

Each problem is worth 10 points.