PRACTICE QUIZ 2

1. Let $B \subset \mathbf{R}^3$ be a planar region, and let $o \in \mathbf{R}^3$ be a point. If we connect all points in B to o we get a cone, say C, with vertex o and base B. Show that

$$Volume(C) = \frac{1}{3}Area(B)h,$$

where h is the distance of o from the plane of B.

Hints: Follow these steps:

- 1. Let o be the origin of the coordinate system. Define $\mathbf{r}(x, y, z) := (x, y, z)$. Evaluate the flux of \mathbf{r} through the boundary of C, i.e, $\int \int_{\partial C} \mathbf{r} \cdot \mathbf{n} \, dA$ where \mathbf{n} is the outward unit normal to ∂C .
- 2. Evaluate the divergence of **r** in C, i.e., $\int \int \int_C \nabla \cdot \mathbf{r} \, dV$.
- 3. Use Gauss's theorem, which states that the total divergence of a vectorfield within a region enclosed by a surface is equal to the flux of that vectorfield through the surface:

$$\iint \int \int_C \nabla \cdot \mathbf{r} \, dV = \iint \int_{\partial C} \mathbf{r} \cdot \mathbf{n} \, dA.$$

IAT_EX \mathcal{MG}