MIDTERM 3

Time: 50min

1. Find the equation of the tangent plane to the surface $x^{2}-y^{2}+z^{2}+1=0$ at the point $(1,3, \sqrt{7})$.
2. Find the maximum and minimum values of $f(x, y)=x^{2}-y^{2}$ over $D=$ $\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.
3. What are the dimensions of the rectangular box, open at the top, which has maximum volume when the surface area is 48 ?
4. Evaluate $\iint_{S}(x+y) d A$, where S is the triangular region with vertices $(0,0),(0,4)$, and $(1,4)$.
5. Find the area of the region inside the circle $(x-2)^{2}+y^{2}=4$ and outside the circle $x^{2}+y^{2}=4$ (Hint: change to polar coordinates).

Each problem is worth 20 points

