PRACTICE QUIZ 2

Show that any parametric curve with constant speed, and the property that its acceleration vector is always parallel to its position vector, must be a circle.

Hints:

Let $\mathbf{r}(t), \mathbf{v}(t)$, and $\mathbf{a}(t)$ denote, respectively, the position, velocity, and the acceleration vectors of the curve.

1. Recall that when the speed is constant, $\mathbf{v}(t)$ and $\mathbf{a}(t)$ are perpendicular (can you recall the proof?).
2. Then $\mathbf{v}(t)$ and $\mathbf{r}(t)$ must be perpendicular as well (why?).
3. Show that $\left(\|\mathbf{r}\|^{2}\right)^{\prime}=2 \mathbf{r}(t) \cdot \mathbf{v}(t)$.
4. Conclude then that the magnitude of \mathbf{r} is constant.
\qquad
