Math 241 Vector Calculus Fall 2000, USC

PRACTICE QUIZ 2

Show that any parametric curve with constant speed, and the property that its acceleration vector is always parallel to its position vector, must be a circle.

Hints:

Let $\mathbf{r}(t)$, $\mathbf{v}(t)$, and $\mathbf{a}(t)$ denote, respectively, the position, velocity, and the acceleration vectors of the curve.

- 1. Recall that when the speed is constant, $\mathbf{v}(t)$ and $\mathbf{a}(t)$ are perpendicular (can you recall the proof?).
- 2. Then $\mathbf{v}(t)$ and $\mathbf{r}(t)$ must be perpendicular as well (why?).
- 3. Show that $(\|\mathbf{r}\|^2)' = 2\mathbf{r}(t) \cdot \mathbf{v}(t)$.
- 4. Conclude then that the magnitude of \mathbf{r} is constant.

 $\mathtt{Iat}_{E} \mathtt{X} \quad \ldots \quad \ldots \quad \mathcal{M} \mathcal{G}$