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Lecture Notes 10

2.3 Meaning of Gaussian Curvature

In the previous lecture we gave a formal definition for Gaussian curvature
K in terms of the differential of the gauss map, and also derived explicit
formulas for K in local coordinates. In this lecture we explore the geometric
meaning of K.

2.3.1 A measure for local convexity

Let M ⊂ R3 be a regular embedded surface, p ∈ M , and Hp be hyperplane
passing through p which is parallel to TpM . We say that M is locally convex
at p if there exists an open neighborhood V of p in M such that V lies on
one side of Hp. In this section we prove:

Theorem 1. If K(p) > 0 then M is locally convex at p, and if k(p) < 0 then
M is not locally convex at p.

When K(p) =, we cannot in general draw an conclusion with regard to
the local convexity of M at p as the following two exercises demonstrate:

Exercise 2. Show that there exists a surface M and a point p ∈ M such
that M is strictly locally convex at p; however, K(p) = 0 (Hint: Let M be
the graph of the equation z = (x2+y2)2. Then may be covered by the Monge
patch X(u1, u2) := (u1, u2, ((u1)2 +(u2))2). Use the Monge Ampere equation
derived in the previous lecture to compute the curvature at X(0, 0).).

Exercise 3. Let M be the Monkey saddle, i.e., the graph of the equation
z = y3 − 3yx2, and p := (0, 0, 0). Show that K(p) = 0, but M is not locally
convex at p.
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After a rigid motion we may assume that p = (0, 0, 0) and TpM is the
xy-plane. Then, using the inverse function theorem , it is easy to show that
there exists a Monge Patch (U, X) centered at p, as the follwing exercise
demonstrates:

Exercise 4. Define π : M → R2 by π(q) := (q1, q2, 0). Show that dπp is
locally one-to-one. Then, by the inverse function theorem, it follows that π
is a local diffeomorphism. So there exists a neighborhood U of (0, 0) such
that π−1 : U → M is one-to-one and smooth. Let f(u1, y2) denote the z-
coordinate of π−1(u1, u2), and set X(u1, u2) := (u1, u2, f(u1, u2)). Show that
(U, X) is a proper regular patch.

The previous exercisle shows that local convexity of M at p depends on
whether or not f changes sign in a neighborhood of the origin. To examine
this we need to recall the Taylor’s formula for functions of two variables:

f(u1, u2) = f(0, 0) +
2∑

i=1

Dif(0, 0) +
1

2

2∑
i,j=1

Dij(ξ
1, ξ2)uiuj,

where (ξ1, ξ2) is a point on the line connecting (u1, u2) to (0, 0).

Exercise 5. Prove the Taylor’s formula given above. (Hints : First re-
call Taylor’s formula for functions of one variable: g(t) = g(0) + g′(0)t +
(1/2)g′′(s)t2, where s ∈ [0, t]. Then define γ(t) := (tu1, tu2), set g(t) :=
f(γ(t)), and apply Taylor’s formula to g. Then chain rule will yield the
desired result.)

Next note that, by construction, f(0, 0) = 0. Further D1f(0, 0) = 0 =
D2f(0, 0) as well. Thus

f(u1, u2) =
1

2

2∑
i,j=1

Dij(ξ
1, ξ2)uiuj.

Hence to complete the proof of Theorem 1, it remains to show how the
quanitity on the right hand side of the above euation is influence by K(p).
To this end, recall the Monge-Ampere equation for curvature:

det(Hess f
(
ξ1, ξ2)

)
= K(f(ξ1, ξ2))

(
1 + ‖ grad f(ξ1, ξ2)‖2

)2
.
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Now note that K(f(0, 0)) = K(p). Thus, by continuity, if U is a sufficiently
small neighborhood of (0, 0), the sign of det(Hess f) agrees with the sign of
K(p) throughout U .

Finally, we need some basic facts about quadratic forms. A quadratic
form is a function of two variables Q : R2 → R given by

Q(x, y) = ax2 + 2bxy + cy2,

where a, b, and c are constants. Q is said to be definite if Q(x, x) 6= 0 whenver
x 6= 0.

Exercise 6. Show that if ac− b2 > 0, then Q is definite, and if ac− b2 < 0,
then Q is not definite. (Hints : For the first part, suppose that x 6= 0, but
Q(x, y) = 0. Then ax2+2bxy+cy2 = 0, which yields a+2b(x/y)+c(x/y)2 = 0.
Thus the discriminant of this equation must be positive, which will yield a
contradiction. The proof of the second part is similar).

Theorem 1 follows from the above exercise.

2.3.2 Ratio of areas

In the previous subsection we gave a geometric interpretation for the sign
of Gaussian curvature. Here we describe the geometric significance of the
magnitude of K.

If V is a sufficiently small neighborhood of p in M (where M , as always,
denotes a regular embedded surface in R3), then it is easy to show that there
exist a patch (U, X) centered at p such that X(U) = V . Area of V is then
defined as follows:

Area(V ) :=

∫ ∫
U

‖D1X × D2X‖ du1du2.

Using the chain rule, one can show that the above definition is independent
of the the patch.

Exercise 7. Let V ⊂ S2 be a region bounded in between a pair of great
circles meeting each other at an angle of α. Show that Area(V ) = 2α(Hints :
Let U := [0, α] × [0, π] and X(θ, φ) := (cos θ sin φ, sin θ sin φ, cos φ). Show
that ‖D1X × D2X‖ = | sinφ|. Further, note that, after a rotation we may
assume that X(U) = V . Then an integration will yield the desired result).
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Exercise 8. Use the previous exercise to show that the area of a geodesic
triangle T ⊂ S2 (a region bounded by three great circles) is equal to sum of
its angles minus π (Hints: Use the picture below: A + B + C + T = 2π, and
A = 2α − T , B = 2β − T , and C = 2γ − T ).

Let Vr := Br(p) ∩ M . Then, if r is sufficiently small, V (r) ⊂ X(U), and,
consequently, Ur := X−1(Vr) is well defined. In particular, we may compute
the area of Vr using the patch (Ur, X). In this section we show that

|K(p)| = lim
r→0

Area(n(Vr))

Area(Vr)
.

Exercise 9. Recall that the mean value theorem states that
∫ ∫

U
fdu1du2 =

f(ū1, ū2) Area(U), for some (ū1, ū2) ∈ U . Use this theorem to show that

lim
r→0

Area(n(Vr))

Area(Vr)
=

‖D1N(0, 0) × D2N(0, 0)‖
‖D1X(0, 0) × D2X(0, 0)‖

(Recall that N := n ◦ X.)

Exercise 10. Prove Lagrange’s identity: for every pair of vectors v, w ∈ R3,

‖v × w‖2 = det

∣∣∣∣ 〈v, v〉 〈v, w〉
〈w, v〉 〈w, w〉

∣∣∣∣ .

Now set g(u1, u2) := det[gij(u
1, u2)]. Then, by the previous exercise it

follows that ‖D1X(0, 0) × D2X(0, 0)‖ =
√

g(0, 0). Hence, to complete the
proof of the main result of this section it remains to show that

‖D1N(0, 0) × D2N(0, 0)‖ = K(p)
√

g(0, 0).
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We prove the above formula using two different methods:
METHOD 1. Recall that K(p) := det(Sp), where Sp := −dnp : TpM → TpM
is the shape operator of M at p. Also recall that DiX(0, 0), i = 1, 2, form a
basis for TpM . Let Sij be the coefficients of the matrix representation of Sp

with respect to this basis, then

Sp(DiX) =

2∑
j=1

Sij DjX.

Further, recall that N := n ◦ X. Thus the chain rule yields:

Sp(DiX) = −dn(DiX) = −Di(n ◦ X) = −DiN.

Exercise 11. Verify the middle step in the above formula, i.e., show that
dn(DiX) = Di(n ◦ X).

From the previous two lines of formulas, it now follows that

−DiN =
2∑

j=1

Sij DjX.

Taking the inner product of both sides with DkN , k = 1, 2, we get

〈−DiN, DkN〉 =
2∑

j=1

Sij〈DjX, DkN〉.

Exercise 12. Let F , G : U ⊂ R2 → R3 be a pair of mappings such that
〈F, G〉 = 0. Prove that 〈DiF, G〉 = −〈F, DiG〉.

Now recall that 〈DjX, N〉 = 0. Hence the previous exercise yields:

〈DjX, DkN〉 = −〈DkjX, N〉 = −lij .

Combining the previous two lines of formulas, we get: 〈DiN, DkN〉 =
∑2

k=1 Sijljk;
which in matrix notation is equivalent to

[〈DiN, DjN〉] = [Sij ][lij ].

Finally, recall that det[〈DiN, DkN〉] = ‖D1N × D2N‖2, det[Sij ] = K, and
det[lij ] = Kg. Hence taking the determinant of both sides in the above
equation, and then taking the square root yields the desired result.
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Next, we discuss the second method for proving that ‖D1N × D2N‖ =
K
√

g.
METHOD 2. Here we work with a special patch which makes the computa-
tions easier:

Exercise 13. Show that there exist a patch (U, X) centered at p such that
[gij(0, 0)] is the identity matrix. (Hint: Start with a Monge patch with
respect to TpM)

Thus, if we are working with the coordinate patch referred to in the
above exercise, g(0, 0) = 1, and, consequently, all we need is to prove that
‖D1N(0, 0) × D2N(0, 0)‖ = K(p).

Exercise 14. Let f : U ⊂ R2 → S2 be a differentiable mapping. Show that
〈Dif(u1, u2), f(u1, u2)〉 = 0 (Hints: note that 〈f, f〉 = 1 and differentiate).

It follows from the previous exercise that 〈DiN, N〉 = 0. Now recall that
N(0, 0) = n ◦ X(0, 0) = n(p). Hence, we may conclude that N(0, 0) ∈ TpM .
Further recall that {D1X(0, 0), D2X(0, 0)} is now an orthonormal basis for
TpM (because we have chosen (U, X) so that [gij(0, 0)] is the identity matrix).
Consequently,

DiN =
2∑

k=1

〈DiN, DkX〉DkX,

where we have omitted the explicit reference to the point (0, 0) in the above
formula in order to make the notation less cumbersome (it is important to
keep in mind, however, that the above is valid only at (0, 0)). Taking the
inner product of both sides of this equation with DjN(0, 0) yields:

〈DiN, DjN〉 =
2∑

k=1

〈DiN, DkX〉〈DkX, DjN〉.

Now recall that 〈DiN, DkX〉 = −〈N, DijX〉 = −lij . Similarly, 〈DkX, DjN〉 =
−lkj. Thus, in matrix notation, the above formula is equivalent to the fol-
lowing:

[〈DiN, DjN〉] = [lij]
2

Finally, recall that K(p) = det[lij(0, 0)]/ det[gij(0, 0)] = det[lij(0, 0)]. Hence,
taking the determinant of both sides of the above equation yields the desired
result.
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2.3.3 Product of principal curvatures

For every v ∈ TpM with ‖v‖ = 1 we define the normal curvature of M at p
in the direction of v by

kv(p) := 〈γ′′(0), n(p)〉,
where γ : (−ε, ε) → M is a curve with γ(0) = p and γ′(0) = v.

Exercise 15. Show that kv(p) does not depend on γ.

In particular, by the above exercise, we may take γ to be a curve which
lies in the intersection of M with a plane which passes through p and is
normal to n(p)× v. So, intuitively, kv(p) is a measure of the curvature of an
orthogonal cross section of M at p.

Let UTpM := {v ∈ TpM | ‖v‖ = 1} denote the unit tangent space of M
at p. The principal curvatures of M at p are defined as

k1(p) := min
v

kv(p), and k2(p) := max
v

kv(p),

where v ranges over UTpM . Our main aim in this subsection is to show that

K(p) = k1(p)k2(p).

Since K(p) is the determinant of the shape operator Sp, to prove the above
it suffices to show that k1(p) and k2(p) are the eigenvalues of Sp.

First, we need to define the second fundamental form of M at p. This is
a bilinear map IIp : TpM × TpM → R defined by

IIp(v, w) := 〈Sp(v), w〉.
We claim that, for all v ∈ UTpM ,

kv(p) = IIp(v, v).

The above follows from the following computation

〈Sp(v), v〉 = −〈dnp(v), v〉
= −〈(n ◦ γ)′(0), γ′(0)〉
= 〈(n ◦ γ)(0), γ′′(0)〉
= 〈n(p), γ′′(0)〉
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Exercise 16. Verify the passage from the second to the third line in the
above computation, i.e., show that −〈(n ◦ γ)′(0), γ′(0)〉 = 〈(n ◦ γ)(0), γ′′(0)〉
(Hint: Set f(t) := 〈n(γ(t)), γ′(t)〉, note that f(t) = 0, and differentiate.)

So we conclude that ki(p) are the minimum and maximum of IIp(v) over
UTpM . Hence, all we need is to show that the extrema of IIp over UTpM
coincide with the eigenvalues of Sp.

Exercise 17. Show that IIp is symmetric, i.e., IIp(v, w) = IIp(w, v) for all v,
w ∈ TpM .

By the above exercise, Sp is a self-adjoint operator, i.e, 〈Sp(v), w〉 =
〈v, Sp(w)〉. Hence Sp is orthogonally diagonalizable, i.e., there exist orthonor-
mal vectors ei ∈ TpM , i = 1, 2, such that

Sp(ei) = λiei.

By convention, we suppose that λ1 ≤ λ2. Now note that each v ∈ UTpM
may be represented uniquely as v = v1e1 + v2e2 where (v1)2 + (v2)2 = 1. So
for each v ∈ UTpM there exists a unique angle θ ∈ [0, 2π) such that

v(θ) := cos θe1 + sin θe2;

Consequently, bilinearity of IIp yields

IIp(v(θ), v(θ)) = λ1 cos2 θ + λ2 sin2 θ.

Exercise 18. Verify the above claim, and show that minimum and maximum
values of IIp are λ1 and λ2 respectively. Thus k1(p) = λ1, and k2(p) = λ2.

The previous exercise completes the proof that K(p) = k1(p)k2(p), and
also yields the following formula which was discovered by Euler:

kv(p) = k1(p) cos2 θ + k2(p) sin2 θ.

In particular, note that by the above formula there exists always a pair
of orthogonal directions where kv(p) achieves its maximum and minimum
values. These are known as the principal directions of M at p.
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