Lecture Notes 10

2.3 Meaning of Gaussian Curvature

In the previous lecture we gave a formal definition for Gaussian curvature K in terms of the differential of the gauss map, and also derived explicit formulas for K in local coordinates. In this lecture we explore the geometric meaning of K.

2.3.1 A measure for local convexity

Let $M \subset \mathbf{R}^{3}$ be a regular embedded surface, $p \in M$, and H_{p} be hyperplane passing through p which is parallel to $T_{p} M$. We say that M is locally convex at p if there exists an open neighborhood V of p in M such that V lies on one side of H_{p}. In this section we prove:

Theorem 1. If $K(p)>0$ then M is locally convex at p, and if $k(p)<0$ then M is not locally convex at p.

When $K(p)=$, we cannot in general draw an conclusion with regard to the local convexity of M at p as the following two exercises demonstrate:

Exercise 2. Show that there exists a surface M and a point $p \in M$ such that M is strictly locally convex at p; however, $K(p)=0$ (Hint: Let M be the graph of the equation $z=\left(x^{2}+y^{2}\right)^{2}$. Then may be covered by the Monge patch $X\left(u^{1}, u^{2}\right):=\left(u^{1}, u^{2},\left(\left(u^{1}\right)^{2}+\left(u^{2}\right)\right)^{2}\right)$. Use the Monge Ampere equation derived in the previous lecture to compute the curvature at $X(0,0)$.).

Exercise 3. Let M be the Monkey saddle, i.e., the graph of the equation $z=y^{3}-3 y x^{2}$, and $p:=(0,0,0)$. Show that $K(p)=0$, but M is not locally convex at p.

[^0]After a rigid motion we may assume that $p=(0,0,0)$ and $T_{p} M$ is the $x y$-plane. Then, using the inverse function theorem, it is easy to show that there exists a Monge Patch (U, X) centered at p, as the follwing exercise demonstrates:

Exercise 4. Define $\pi: M \rightarrow \mathbf{R}^{2}$ by $\pi(q):=\left(q^{1}, q^{2}, 0\right)$. Show that $d \pi_{p}$ is locally one-to-one. Then, by the inverse function theorem, it follows that π is a local diffeomorphism. So there exists a neighborhood U of $(0,0)$ such that $\pi^{-1}: U \rightarrow M$ is one-to-one and smooth. Let $f\left(u^{1}, y^{2}\right)$ denote the z coordinate of $\pi^{-1}\left(u^{1}, u^{2}\right)$, and set $X\left(u^{1}, u^{2}\right):=\left(u^{1}, u^{2}, f\left(u^{1}, u^{2}\right)\right)$. Show that (U, X) is a proper regular patch.

The previous exercisle shows that local convexity of M at p depends on whether or not f changes sign in a neighborhood of the origin. To examine this we need to recall the Taylor's formula for functions of two variables:

$$
f\left(u_{1}, u_{2}\right)=f(0,0)+\sum_{i=1}^{2} D_{i} f(0,0)+\frac{1}{2} \sum_{i, j=1}^{2} D_{i j}\left(\xi^{1}, \xi^{2}\right) u^{i} u^{j}
$$

where $\left(\xi^{1}, \xi^{2}\right)$ is a point on the line connecting $\left(u^{1}, u^{2}\right)$ to $(0,0)$.
Exercise 5. Prove the Taylor's formula given above. (Hints: First recall Taylor's formula for functions of one variable: $g(t)=g(0)+g^{\prime}(0) t+$ $(1 / 2) g^{\prime \prime}(s) t^{2}$, where $s \in[0, t]$. Then define $\gamma(t):=\left(t u^{1}, t u^{2}\right)$, set $g(t):=$ $f(\gamma(t))$, and apply Taylor's formula to g. Then chain rule will yield the desired result.)

Next note that, by construction, $f(0,0)=0$. Further $D_{1} f(0,0)=0=$ $D_{2} f(0,0)$ as well. Thus

$$
f\left(u_{1}, u_{2}\right)=\frac{1}{2} \sum_{i, j=1}^{2} D_{i j}\left(\xi^{1}, \xi^{2}\right) u^{i} u^{j}
$$

Hence to complete the proof of Theorem 1, it remains to show how the quanitity on the right hand side of the above euation is influence by $K(p)$. To this end, recall the Monge-Ampere equation for curvature:

$$
\operatorname{det}\left(\operatorname{Hess} f\left(\xi^{1}, \xi^{2}\right)\right)=K\left(f\left(\xi^{1}, \xi^{2}\right)\right)\left(1+\left\|\operatorname{grad} f\left(\xi^{1}, \xi^{2}\right)\right\|^{2}\right)^{2}
$$

Now note that $K(f(0,0))=K(p)$. Thus, by continuity, if U is a sufficiently small neighborhood of $(0,0)$, the sign of $\operatorname{det}(\operatorname{Hess} f)$ agrees with the sign of $K(p)$ throughout U.

Finally, we need some basic facts about quadratic forms. A quadratic form is a function of two variables $Q: \mathbf{R}^{2} \rightarrow \mathbf{R}$ given by

$$
Q(x, y)=a x^{2}+2 b x y+c y^{2}
$$

where a, b, and c are constants. Q is said to be definite if $Q(x, x) \neq 0$ whenver $x \neq 0$.

Exercise 6. Show that if $a c-b^{2}>0$, then Q is definite, and if $a c-b^{2}<0$, then Q is not definite. (Hints: For the first part, suppose that $x \neq 0$, but $Q(x, y)=0$. Then $a x^{2}+2 b x y+c y^{2}=0$, which yields $a+2 b(x / y)+c(x / y)^{2}=0$. Thus the discriminant of this equation must be positive, which will yield a contradiction. The proof of the second part is similar).

Theorem 1 follows from the above exercise.

2.3.2 Ratio of areas

In the previous subsection we gave a geometric interpretation for the sign of Gaussian curvature. Here we describe the geometric significance of the magnitude of K.

If V is a sufficiently small neighborhood of p in M (where M, as always, denotes a regular embedded surface in \mathbf{R}^{3}), then it is easy to show that there exist a patch (U, X) centered at p such that $X(U)=V$. Area of V is then defined as follows:

$$
\operatorname{Area}(V):=\iint_{U}\left\|D_{1} X \times D_{2} X\right\| d u^{1} d u^{2}
$$

Using the chain rule, one can show that the above definition is independent of the the patch.

Exercise 7. Let $V \subset \mathbf{S}^{2}$ be a region bounded in between a pair of great circles meeting each other at an angle of α. Show that $\operatorname{Area}(V)=2 \alpha$ (Hints: Let $U:=[0, \alpha] \times[0, \pi]$ and $X(\theta, \phi):=(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)$. Show that $\left\|D_{1} X \times D_{2} X\right\|=|\sin \phi|$. Further, note that, after a rotation we may assume that $X(U)=V$. Then an integration will yield the desired result).

Exercise 8. Use the previous exercise to show that the area of a geodesic triangle $T \subset \mathbf{S}^{2}$ (a region bounded by three great circles) is equal to sum of its angles minus π (Hints: Use the picture below: $A+B+C+T=2 \pi$, and $A=2 \alpha-T, B=2 \beta-T$, and $C=2 \gamma-T)$.

Let $V_{r}:=B_{r}(p) \cap M$. Then, if r is sufficiently small, $V(r) \subset X(U)$, and, consequently, $U_{r}:=X^{-1}\left(V_{r}\right)$ is well defined. In particular, we may compute the area of V_{r} using the patch $\left(U_{r}, X\right)$. In this section we show that

$$
|K(p)|=\lim _{r \rightarrow 0} \frac{\operatorname{Area}\left(n\left(V_{r}\right)\right)}{\operatorname{Area}\left(V_{r}\right)}
$$

Exercise 9. Recall that the mean value theorem states that $\iint_{U} f d u^{1} d u^{2}=$ $f\left(\bar{u}^{1}, \bar{u}^{2}\right) \operatorname{Area}(U)$, for some $\left(\bar{u}^{1}, \bar{u}^{2}\right) \in U$. Use this theorem to show that

$$
\lim _{r \rightarrow 0} \frac{\operatorname{Area}\left(n\left(V_{r}\right)\right)}{\operatorname{Area}\left(V_{r}\right)}=\frac{\left\|D_{1} N(0,0) \times D_{2} N(0,0)\right\|}{\left\|D_{1} X(0,0) \times D_{2} X(0,0)\right\|}
$$

(Recall that $N:=n \circ X$.)
Exercise 10. Prove Lagrange's identity: for every pair of vectors $v, w \in \mathbf{R}^{3}$,

$$
\|v \times w\|^{2}=\operatorname{det}\left|\begin{array}{cc}
\langle v, v\rangle & \langle v, w\rangle \\
\langle w, v\rangle & \langle w, w\rangle
\end{array}\right| .
$$

Now set $g\left(u^{1}, u^{2}\right):=\operatorname{det}\left[g_{i j}\left(u^{1}, u^{2}\right)\right]$. Then, by the previous exercise it follows that $\left\|D_{1} X(0,0) \times D_{2} X(0,0)\right\|=\sqrt{g(0,0)}$. Hence, to complete the proof of the main result of this section it remains to show that

$$
\left\|D_{1} N(0,0) \times D_{2} N(0,0)\right\|=K(p) \sqrt{g(0,0)}
$$

We prove the above formula using two different methods: METHOD 1. Recall that $K(p):=\operatorname{det}\left(S_{p}\right)$, where $S_{p}:=-d n_{p}: T_{p} M \rightarrow T_{p} M$ is the shape operator of M at p. Also recall that $D_{i} X(0,0), i=1,2$, form a basis for $T_{p} M$. Let $S_{i j}$ be the coefficients of the matrix representation of S_{p} with respect to this basis, then

$$
S_{p}\left(D_{i} X\right)=\sum_{j=1}^{2} S_{i j} D_{j} X
$$

Further, recall that $N:=n \circ X$. Thus the chain rule yields:

$$
S_{p}\left(D_{i} X\right)=-d n\left(D_{i} X\right)=-D_{i}(n \circ X)=-D_{i} N .
$$

Exercise 11. Verify the middle step in the above formula, i.e., show that $d n\left(D_{i} X\right)=D_{i}(n \circ X)$.

From the previous two lines of formulas, it now follows that

$$
-D_{i} N=\sum_{j=1}^{2} S_{i j} D_{j} X
$$

Taking the inner product of both sides with $D_{k} N, k=1,2$, we get

$$
\left\langle-D_{i} N, D_{k} N\right\rangle=\sum_{j=1}^{2} S_{i j}\left\langle D_{j} X, D_{k} N\right\rangle .
$$

Exercise 12. Let $F, G: U \subset \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ be a pair of mappings such that $\langle F, G\rangle=0$. Prove that $\left\langle D_{i} F, G\right\rangle=-\left\langle F, D_{i} G\right\rangle$.

Now recall that $\left\langle D_{j} X, N\right\rangle=0$. Hence the previous exercise yields:

$$
\left\langle D_{j} X, D_{k} N\right\rangle=-\left\langle D_{k j} X, N\right\rangle=-l_{i j} .
$$

Combining the previous two lines of formulas, we get: $\left\langle D_{i} N, D_{k} N\right\rangle=\sum_{k=1}^{2} S_{i j} l_{j k}$; which in matrix notation is equivalent to

$$
\left[\left\langle D_{i} N, D_{j} N\right\rangle\right]=\left[S_{i j}\right]\left[l_{i j}\right] .
$$

Finally, recall that $\operatorname{det}\left[\left\langle D_{i} N, D_{k} N\right\rangle\right]=\left\|D_{1} N \times D_{2} N\right\|^{2}$, $\operatorname{det}\left[S_{i j}\right]=K$, and $\operatorname{det}\left[l_{i j}\right]=K g$. Hence taking the determinant of both sides in the above equation, and then taking the square root yields the desired result.

Next, we discuss the second method for proving that $\left\|D_{1} N \times D_{2} N\right\|=$ $K \sqrt{g}$.
METHOD 2. Here we work with a special patch which makes the computations easier:

Exercise 13. Show that there exist a patch (U, X) centered at p such that $\left[g_{i j}(0,0)\right]$ is the identity matrix. (Hint: Start with a Monge patch with respect to $\left.T_{p} M\right)$

Thus, if we are working with the coordinate patch referred to in the above exercise, $g(0,0)=1$, and, consequently, all we need is to prove that $\left\|D_{1} N(0,0) \times D_{2} N(0,0)\right\|=K(p)$.

Exercise 14. Let $f: U \subset \mathbf{R}^{2} \rightarrow \mathbf{S}^{2}$ be a differentiable mapping. Show that $\left\langle D_{i} f\left(u^{1}, u^{2}\right), f\left(u^{1}, u^{2}\right)\right\rangle=0$ (Hints: note that $\langle f, f\rangle=1$ and differentiate).

It follows from the previous exercise that $\left\langle D_{i} N, N\right\rangle=0$. Now recall that $N(0,0)=n \circ X(0,0)=n(p)$. Hence, we may conclude that $N(0,0) \in T_{p} M$. Further recall that $\left\{D_{1} X(0,0), D_{2} X(0,0)\right\}$ is now an orthonormal basis for $T_{p} M$ (because we have chosen (U, X) so that $\left[g_{i j}(0,0)\right]$ is the identity matrix). Consequently,

$$
D_{i} N=\sum_{k=1}^{2}\left\langle D_{i} N, D_{k} X\right\rangle D_{k} X
$$

where we have omitted the explicit reference to the point $(0,0)$ in the above formula in order to make the notation less cumbersome (it is important to keep in mind, however, that the above is valid only at $(0,0))$. Taking the inner product of both sides of this equation with $D_{j} N(0,0)$ yields:

$$
\left\langle D_{i} N, D_{j} N\right\rangle=\sum_{k=1}^{2}\left\langle D_{i} N, D_{k} X\right\rangle\left\langle D_{k} X, D_{j} N\right\rangle .
$$

Now recall that $\left\langle D_{i} N, D_{k} X\right\rangle=-\left\langle N, D_{i j} X\right\rangle=-l_{i j}$. Similarly, $\left\langle D_{k} X, D_{j} N\right\rangle=$ $-l_{k j}$. Thus, in matrix notation, the above formula is equivalent to the following:

$$
\left[\left\langle D_{i} N, D_{j} N\right\rangle\right]=\left[l_{i j}\right]^{2}
$$

Finally, recall that $K(p)=\operatorname{det}\left[l_{i j}(0,0)\right] / \operatorname{det}\left[g_{i j}(0,0)\right]=\operatorname{det}\left[l_{i j}(0,0)\right]$. Hence, taking the determinant of both sides of the above equation yields the desired result.

2.3.3 Product of principal curvatures

For every $v \in T_{p} M$ with $\|v\|=1$ we define the normal curvature of M at p in the direction of v by

$$
k_{v}(p):=\left\langle\gamma^{\prime \prime}(0), n(p)\right\rangle,
$$

where $\gamma:(-\epsilon, \epsilon) \rightarrow M$ is a curve with $\gamma(0)=p$ and $\gamma^{\prime}(0)=v$.
Exercise 15. Show that $k_{v}(p)$ does not depend on γ.
In particular, by the above exercise, we may take γ to be a curve which lies in the intersection of M with a plane which passes through p and is normal to $n(p) \times v$. So, intuitively, $k_{v}(p)$ is a measure of the curvature of an orthogonal cross section of M at p.

Let $U T_{p} M:=\left\{v \in T_{p} M \mid\|v\|=1\right\}$ denote the unit tangent space of M at p. The principal curvatures of M at p are defined as

$$
k_{1}(p):=\min _{v} k_{v}(p), \quad \text { and } \quad k_{2}(p):=\max _{v} k_{v}(p),
$$

where v ranges over $U T_{p} M$. Our main aim in this subsection is to show that

$$
K(p)=k_{1}(p) k_{2}(p) .
$$

Since $K(p)$ is the determinant of the shape operator S_{p}, to prove the above it suffices to show that $k_{1}(p)$ and $k_{2}(p)$ are the eigenvalues of S_{p}.

First, we need to define the second fundamental form of M at p. This is a bilinear map $\mathrm{II}_{p}: T_{p} M \times T_{p} M \rightarrow \mathbf{R}$ defined by

$$
\operatorname{II}_{p}(v, w):=\left\langle S_{p}(v), w\right\rangle
$$

We claim that, for all $v \in U T_{p} M$,

$$
k_{v}(p)=\operatorname{II}_{p}(v, v)
$$

The above follows from the following computation

$$
\begin{aligned}
\left\langle S_{p}(v), v\right\rangle & =-\left\langle d n_{p}(v), v\right\rangle \\
& =-\left\langle(n \circ \gamma)^{\prime}(0), \gamma^{\prime}(0)\right\rangle \\
& =\left\langle(n \circ \gamma)(0), \gamma^{\prime \prime}(0)\right\rangle \\
& =\left\langle n(p), \gamma^{\prime \prime}(0)\right\rangle
\end{aligned}
$$

Exercise 16. Verify the passage from the second to the third line in the above computation, i.e., show that $-\left\langle(n \circ \gamma)^{\prime}(0), \gamma^{\prime}(0)\right\rangle=\left\langle(n \circ \gamma)(0), \gamma^{\prime \prime}(0)\right\rangle$ (Hint: Set $f(t):=\left\langle n(\gamma(t)), \gamma^{\prime}(t)\right\rangle$, note that $f(t)=0$, and differentiate.)

So we conclude that $k_{i}(p)$ are the minimum and maximum of $\mathrm{II}_{p}(v)$ over $U T_{p} M$. Hence, all we need is to show that the extrema of II_{p} over $U T_{p} M$ coincide with the eigenvalues of S_{p}.

Exercise 17. Show that I_{p} is symmetric, i.e., $\mathrm{I}_{p}(v, w)=\mathrm{I}_{p}(w, v)$ for all v, $w \in T_{p} M$.

By the above exercise, S_{p} is a self-adjoint operator, i.e, $\left\langle S_{p}(v), w\right\rangle=$ $\left\langle v, S_{p}(w)\right\rangle$. Hence S_{p} is orthogonally diagonalizable, i.e., there exist orthonormal vectors $e_{i} \in T_{p} M, i=1,2$, such that

$$
S_{p}\left(e_{i}\right)=\lambda_{i} e_{i} .
$$

By convention, we suppose that $\lambda_{1} \leq \lambda_{2}$. Now note that each $v \in U T_{p} M$ may be represented uniquely as $v=v^{1} e_{1}+v^{2} e_{2}$ where $\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}=1$. So for each $v \in U T_{p} M$ there exists a unique angle $\theta \in[0,2 \pi)$ such that

$$
v(\theta):=\cos \theta e_{1}+\sin \theta e_{2}
$$

Consequently, bilinearity of II_{p} yields

$$
\mathrm{II}_{p}(v(\theta), v(\theta))=\lambda_{1} \cos ^{2} \theta+\lambda_{2} \sin ^{2} \theta .
$$

Exercise 18. Verify the above claim, and show that minimum and maximum values of II_{p} are λ_{1} and λ_{2} respectively. Thus $k_{1}(p)=\lambda_{1}$, and $k_{2}(p)=\lambda_{2}$.

The previous exercise completes the proof that $K(p)=k_{1}(p) k_{2}(p)$, and also yields the following formula which was discovered by Euler:

$$
k_{v}(p)=k_{1}(p) \cos ^{2} \theta+k_{2}(p) \sin ^{2} \theta
$$

In particular, note that by the above formula there exists always a pair of orthogonal directions where $k_{v}(p)$ achieves its maximum and minimum values. These are known as the principal directions of M at p.

[^0]: ${ }^{1}$ Last revised: March 16, 2004

