## Lecture Notes 12

These notes are supposed to be on Gauss-Bonnet theorem, and will be typeset later.
Exercise 1. Show that great circles on a sphere and helices on a cylinder are geodesics.

Exercise 2. Compute the Euler characteristic of a torus.
The following are all simple consequences of the Gauss-Bonnet theorem:
Exercise 3. Show that the sum of the angles in a triangle is $\pi$.
Exercise 4. Show that the total geodesic curvature of a simple closed planar curve is $2 \pi$.

Exercise 5. Show that the Gaussian curvature of a surface which is homeomorphic to the torus must alwasy be equal to zero at some point.

Exercise 6. Show that the Gaussian curvature of a surface which is homeomorphic to a torus must always be zero at some point.

Exercise 7. Show that a simple closed curve with total geodesic curvature zero on a sphere bisects the area of the sphere.

Exercise 8. Show that there exists at most one closed geodesic on a cylinder with negative curvature.

Exercise 9. Show that the area of a geodesic polygon with $k$ vertices on a sphere of radius 1 is equal to the sum of its angles minus $(k-2) \pi$.

Exercise 10. Let $p$ be a point of a surface $M, T$ be a geodesic triangle which contains $p$, and $\alpha, \beta, \gamma$ be the angles of $T$. Show that

$$
K(p)=\lim _{T \rightarrow p} \frac{\alpha+\beta+\gamma-\pi}{\operatorname{Area}(T)} .
$$

In particular, note that the above proves Gauss's Theorema Egregium.

[^0]
[^0]:    ${ }^{1}$ Last revised: April 15, 2004

