Apr 14, 2004^1

Math 426 Introduction to Modern Geometry Spring 2004, PSU

Lecture Notes 12

These notes are supposed to be on Gauss-Bonnet theorem, and will be typeset later.

Exercise 1. Show that great circles on a sphere and helices on a cylinder are geodesics.

Exercise 2. Compute the Euler characteristic of a torus.

The following are all simple consequences of the Gauss-Bonnet theorem:

Exercise 3. Show that the sum of the angles in a triangle is π .

Exercise 4. Show that the total geodesic curvature of a simple closed planar curve is 2π .

Exercise 5. Show that the Gaussian curvature of a surface which is homeomorphic to the torus must always be equal to zero at some point.

Exercise 6. Show that the Gaussian curvature of a surface which is homeomorphic to a torus must always be zero at some point.

Exercise 7. Show that a simple closed curve with total geodesic curvature zero on a sphere bisects the area of the sphere.

Exercise 8. Show that there exists at most one closed geodesic on a cylinder with negative curvature.

Exercise 9. Show that the area of a geodesic polygon with k vertices on a sphere of radius 1 is equal to the sum of its angles minus $(k-2)\pi$.

Exercise 10. Let p be a point of a surface M, T be a geodesic triangle which contains p, and α , β , γ be the angles of T. Show that

$$K(p) = \lim_{T \to p} \frac{\alpha + \beta + \gamma - \pi}{Area(T)}.$$

In particular, note that the above proves Gauss's Theorema Egregium.

¹Last revised: April 15, 2004