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1.4 Curves of Constant Curvature

Here we show that the only curves in the plane with constant curvature are
lines and circles. The case of lines occurs precisely when the curvature is
zero:

Exercise 1. Show that the only curves with constant zero curvature in Rn

are straight lines. (Hint : We may assume that our curve, α : I → Rn has unit
speed. Then κ = ‖α′′‖. So zero curvature implies that α′′ = 0. Integrating
the last expression twice yields the desired result.)

So it remains to consider the case where we have a planar curve whose
curvature is equal to some nonzero constant c. We claim that in this case the
curve has to be a circle of radius 1/c. To this end we introduce the following
definition. If a curve α : I → Rn has nonzero curvature, the principal normal
vector field of α is defined as

N(t) :=
T ′(t)
‖T ′(t)‖ ,

where T (t) := α′(t)/‖α′(t)‖ is the tantrix of α as we had defined earlier.
Thus the principal normal is the tantrix of the tantrix.

Exercise 2. Show that T (t) and N(t) are orthogonal. (Hint : Differentiate
both sides of the expression 〈T (t), T (t)〉 = 1).

So, if α is a planar curve, {T (t), N(t)} form a moving frame for R2, i.e.,
any element of R2 may be written as a linear combination of T (t) and N(t)
for any choice of t. In particular, we may express the derivatives of T and
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N in terms of this frame. The definition of N already yields that, when α is
parametrized by arclength,

T ′(t) = κ(t)N(t).

To get the corresponding formula for N ′, first observe that

N ′(t) = aT (t) + bN(t).

for some a and b. To find a note that, since 〈T, N〉 = 0, 〈T ′, N〉 = −〈T, N ′〉.
Thus

α = 〈N ′(t), T (t)〉 = −〈T ′(t), N(t)〉 = −κ(t).

Exercise 3. Show that b = 0. (Hint Differentiate 〈N(t), N(t)〉 = 1).

So we conclude that
N ′(t) = −κ(t)T (t),

where we still assume that t is the arclength parameter. The formulas for
the derivative may be expressed in the matrix notation as[

T (t)
N(t)

]′
=

[
κ(t) 0
0 −κ(t)

] [
T (t)
N(t)

]
.

Now recall that our main aim here is to classify curves of constant curva-
ture in the plane. To this end define the center of the osculating circle of α
as

p(t) := α(t) +
1

κ(t)
N(t).

The circle which is centered at p(t) and has radius of 1/κ(t) is called the
osculating circle of α at time t. This is the circle which best approximates α
up to the second order:

Exercise 4. Check that the osculating circle of α is tangent to α at α(t) and
has the same curvature as α at time t.

Now note that if α is a circle, then it coincides with its own osculating
circle. In particular p(t) is a fixed point (the center of the circle) and ‖α(t)−
p(t)‖ is constant (the radius of the circle). Conversely:

Exercise 5. Show that if α has constant curvature c, then (i) p(t) is a fixed
point, and (ii) ‖α(t)− p(t)‖ = 1/c (Hint : For part (i) differentiate p(t); part
(ii) follows immediately from the definition of p(t)).

So we conclude that a curve of constant curvature c 6= 0 lies on a circle
of radius 1/c.
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1.5 Signed Curvature and Turning Angle

As we mentioned earlier the curvature of a curve is a measure of how fast
it is turning. When the curve lies in a plane, we may assign a sign of plus
or minus one to this measure depending on whether the curve is rotating
clockwise or counterclockwise. Thus we arrive at a more descriptive notion
of curvature for planar curves which we call signed curvature and denote by
κ. Then we may write

|κ| = κ.

To obtain a formula for κ, for any vector v ∈ R2, let iv be the clockwise
rotation by 90 degrees. Then we may simply set

κ(t) :=

〈
T ′(t), iT (t)

〉
‖α′(t)‖ .

Exercise 6. Show that if α is a unit speed curve then

κ(t) = κ(t)
〈
N(t), iT (t)

〉
.

In particular, |κ| = κ.

Exercise 7. Compute the signed curvatures of the clockwise circle α(t) =
(cos t, sin t), and the counterclockwise circle α(t) = (cos(−t), sin(−t)).

Another simple and useful way to define the signed curvature (and the
regular curvature) of a planar curve is in terms of the turning angle θ, which
is defined as follows. We claim that for any planar curve α : I → R2 there
exists a function θ : I → R2 such that

T (t) =
(
cos θ(t), sin θ(t)

)
.

Then, assuming that t is the arclength parameter, we have

κ(t) = θ′(t).

Exercise 8. Check the above formula.

Now we check that θ indeed exists. To this end note that T may be
thought of as a mapping from I to the unit circle S1. Thus it suffices to show
that
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Proposition 9. Show that for any continuous function T : I → S1, where
I = [a, b] is a compact interval, there exists a continuous function θ : I → S1

such that the above formula relating T and θ holds.

Proof. Since T is continuous and I is compact, T is uniformly continuous,
this means that for ε > 0, we may find a δ > 0 such that ‖T (t)− T (s)‖ < ε,
whenever |t − s| < δ. In particular, we may set δ0 to be equal to some
constant less than one, and ε0 to be the corresponding constant. Now choose
the points

a =: x0 ≤ x1 ≤ · · · ≤ xn := b

such that |xi − xi−1| < ε0, for i = 1, . . . , n. Then T restricted to each
subinterval [xi, xi−1] is not unto. So we may define θi : [xi−1, xi] → R by
setting θi(x) to be the angle in [0, 2π), measured counterclockwise, between
T (xi−1) and T (x). Finally, θ may be defined as

θ(x) := θ0 +

k−1∑
i=1

θi(xi) + θk(x) if x ∈ [xk−1, xk].

1.6 Total Signed Curvature and Winding Number

The total signed curvature of α : I → Rn is defined as

τ [α] :=

∫
I

κ(t) dt

where t is the arclength parameter. Note that since κ = θ′, the fundamental
theorem of calculus yields that, if I = [a, b], then

τ [α] = θ(a)− θ(b).

We say that α : [a, b] → R2 is a closed curve provided that α(a) = α(b) and
T (a) = T (b).

Exercise 10. Show that the total signed curvature of a closed curve is a
multiple of 2π.
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So, if α is a closed curve,

rot[α] :=
1

2π

∫
I

κ(t) dt

is an integer which we call the Hopf rotation index or winding number of α.
So we have

τ [α] = rot[α]2π.

Exercise 11. (i) Compute the total curvature and rotation index of a circle
which has been oriented clockwise, and a circle which is oriented counter-
clockwise. Sketch the figure eight curve (cos t, sin 2t), 0 ≤ t ≤ 2π, and
compute its total signed curvature and rotation index.

We say that α is simple if it is one-to-one in the interior of I. The
following result proved by H. Hopf is one of the fundamental theorems in
theory of planar curves.

Theorem 12. Any simple closed planar curve has rotation index ±1.

Hopf proved the above result using analytic methods including the Green’s
theorem. Here we outline a more elementary proof which will illustrate that
the above theorem is simply a generalization of one of the most famous re-
sult in classical geometry: the sum of the angles in a triangle is π, which is
equivalent to the sum of the exterior angles being 2π.

First we will give another definition for τ which will establish the connec-
tion between the total signed curvature and the sum of the exterior angles
in a polygon. By a polygon we mean an ordered set of points

P :=
(
p0, . . . , pn

)

in R2, where pn = p0, but pi 6= pi−1, for i = 1, . . . , n. Each pi is called a
vertex of P . At each vertex pi, i = 1 . . . n, we define the exterior angle θi to
be the angle in [−π, π] determined by the vectors pi−pi−i, and pi+1−pi, and
measured in the counterclockwise direction (we set pn+1 := p1). The total
curvature of P is defined as the sum of these angles:

τ [P ] :=

n∑
i=1

θi.
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Now let α : [a, b] → R2 be a closed planar curve. For i = 0, . . . , n, set

ti := a + i
b − a

n
,

and let
Pn[α] :=

(
α(t0), . . . , α(tn)

)
be the nth polygonal approximation of α. The following proposition shows
that the total curvature of a closed curve is just the limit of the sum of the
exterior angles of the polygonal approximations.

Proposition 13.
τ [α] = lim

n→∞
τ
[
Pn[α]

]
.

Proof. Let θ be the rotation angle of α, and θi be the exterior angles of Pn[α].
If we choose n large enough, then there exists, for i = 0, . . . , n, an element
ti ∈ [ti−1, ti] such that T (ti) is parallel to α(ti) − α(ti−1). Consequently

θi = θ(ti)− θ(ti−1).

By the mean value theorem, there exists t∗i ∈ [ti−1, ti] such that

θ(ti)− θ(ti−1) = θ′(t∗i )(ti − ti−1) = κ(t∗i )(ti − ti−1).

So

lim
n→∞

τ
[
Pn[α]

]
= lim

n→∞

n∑
i=1

θi = lim
n→∞

n∑
i=1

θ′(t∗i )(ti − ti−1) =

∫ b

a

κ(t) dt = τ [α].

Exercise* 14. Verify the second statement in the proof of the above theo-
rem.

Now to complete the proof of Theorem 12 we need to verify:

Exercise* 15. Show that any simple polygon with more than three vertices
has a vertex such that if we delete that vertex then the remaining polygon
is still simple.

Exercise* 16. Show that the operation of deleting the vertex of a polygon
described above does not change the sum of the exterior angles.

Since the sum of the exterior angles in a triangle is 2π, it would follow
then that the sum of the exterior angles in any simple polygon is 2π. This
in turn would imply Theorem 12 via Proposition 13.
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1.7 The fundamental theorem for planar curves

If α : [0, L] → R2 is a planar curve parametrized by arclength, then its signed
curvature yields a function κ : [0, L] → R. Now suppose that we are given a
continuous function κ : [0, L] → R. Is it always possible to find a unit speed
curve α : [0, L] → R2 whose signed curvature is κ? If so, to what extent
is such a curve unique? In this section we show that the signed curvature
does indeed determine a planar curve, and such a curve is unique up to rigid
motion.

By a rigid motion we mean a composition of a translation with a rotation.
A translation is a mapping T : R2 → R2 given by

T (p) := p + v

where v is a fixed vector. And a rotation ρ : R2 → R2 is a linear mapping
given by

ρ
([

x
y

] )
:=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
.

Exercise 17. Show that the signed curvature of a planar curve is invariant
under rigid motions.

Exercise 18. Show that if the curvature of a planar curve α : I → R2 does
not vanish at an interior point t0 of I then there exists an open neighborhood
U of t0 in I such that α(U) lies on one side of the tangent line of α at t0.
(Hint : By the invariance of signed curvature under rigid motions, we may
assume that α(t0) = (0, 0) and α′(0) = (1, 0). Then we may reparametrize α
as (t, f(t)) in a neighborhood of t0. Recalling the formula for curvature for
graphs, and applying the Taylor’s theorem yields the desired result.)

Now suppose that we are given a function κ : [0, L] → R. If there exist a
curve α : [0, L] → R2 with signed curvature κ, then

θ′ = κ

where θ is the rotation angle of α. Integration yields

θ(t) :=

∫ t

0

κ(s)ds + θ(0).

By the definition of the turning angle

α′(t) =
(

cos θ(t), sin θ(t)
)
.
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Consequently,

α(t) =
(∫ t

0

cos θ(s)ds,

∫ t

0

sin θ(s)ds
)

+ α(0),

which gives an explicit formula for the desired curve.

Exercise 19. Let α, β : [0, L] → R2 be unit speed planar curves with the
same signed curvature function κ. Show that there exists a rigid motion
m : R2 → R2 such that α(t) = m(β(t)).

Exercise 20. Use the above formula to show that the only closed curves of
constant curvature in the plane are circles.
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