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1.11 The four vertex theorem

A vertex of a planar curve α : I → R2 is a point where the curvature of α
has a local max or min.

Exercise 1. Show that an ellipse has exactly 4 vertices, unless it is a circle.

The main aim of this section is to show that:

Theorem 2. Any convex planar curve has (at least) four vertices.

In fact any simple closed curve has 4 vertices, but the proof is hader. On
the other hand if the curve is not simple, then the 4 vertex property may no
longer be true:

Exercise 3. Sketch the limacon α : [0, 2π] → R2 given by

α(t) := (2 cos t + 1)(cos t, sin t)

and show that it has only two vertices. (Hint : It looks like a loop with a
smaller loops inside)

The proof of the above theorem is by contradiction. Suppose that α has
fewer than 4 vertices, then it must have exactly 2.

Exercise 4. Verify the last sentence.

Suppose that these two vertices occur at t0 and t1. Then κ′(t) will have
one sign on (t1, t2) and the opposite sign on I − [t1, t2]. Let ` be the line
passing through α(t1) and α(t2). Then, since α is convex, α restricted to
(t1, t2) lies on side of ` and α restricted to I − [t1, t2] lies on the other side.
Let p be a point of ` and v be a vector orthogonal to `, then f : I → R, given
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by f(t) := 〈α(t)− p, v〉 has one sign on (t1, t2) and has the opposite sign on
I − [t1, t2]. Consequently, κ′(t)f(t) is always nonnegative. So

0 <

∫
I

κ′(t)〈α(t)− p, v〉dt.

On the other hand∫
I

κ′(t)〈α(t)− p, v〉dt = κ(t)〈α(t)− p, v〉|ba −
∫

I

κ(t)〈T (t)− p, v〉dt

= 0−
∫

I

〈−N ′(t)− p, v〉dt

= 〈−N(t) − p, v〉|ba
= 0.

So we have a contradiction, as desired.

Exercise 5. Justify each of the lines in the above computation.

1.12 Isoperimetric inequality

Let α : I → R2 be a simple closed planar curve. By the Jordan curve the-
orem (which we will not prove here), R2 − α(I) consists of two connected
components, and the boundary of each component is α(I). Further, one of
these components is contained in some large sphere, while the other is un-
bounded. The two dimensional Lebegue measure of the bounded component
is what we call the area of α.

Theorem 6. For any simple closed planar curve α : I → R2,

Area[α] ≤ Length[α]2

4π
.

Equality holds only when α is a circle.

Our proof of the above theorem hinges on the following subtle fact whose
proof we leave out

Lemma 7. Of all simple closed curves of fixed length L, there exists at least
one with the biggest area. Further, every such curve is C1.

2



Exercise* 8. Show that the area maximizer (for a fixed length) must be
convex. (Hint : It is enough to show that if the maximizer, say α, is not
convex, then there exist a line ` with respect to which α(I) lies on one side,
and intersects α(I) at two points p and q but not in the intervening open
segment of ` determined by p and q. Then reflecting one of the segments
of α(I), determined by p and q, through ` increases area while leaving the
length unchanged.)

We say that α is symmetric with respect to a line ` provided that the
image of α is invariant under reflection with respect to `.

Exercise 9. Show that a C1 convex planar curve α : I → R2 is a circle, if
and only if for every unit vector u ∈ S1 there exists a line perpendicular to
u with respect to which α is symmetric (Hint Suppose that α has a line of
symmetry in every direction. First show that each line of symmetry is unique
in the corresponding direction. After a translation we may assume that α
is symmetric with respect to both the x-axis and the y-axis. Show that this
yields that α is symmetric with respect to the origin, i.e. rotation by 180◦.
From this and the uniqueness of the lines of symmetry conclude that every
line of symmetry passes through the origin. Finally show that each line of
symmetry must meet the curve orthogonally at the intersection points. This
shows that 〈α(t), α′(t)〉 = 0, which in turn yields that ‖α(t)‖ = const.)

Let α : I → R2 be an area maximizer. By Exercise 8 we may assume
that α is convex. We claim that α must have a line of symmetry in every
direction, which would show, by Exercise 9, that α is a circle, and hence
would complete the proof.

Suppose, towards a contradiction, that there exists a direction u ∈ S1

such that α has no line of symmetry in that direction. Ater a rigid motion,
we may assume that u = (0, 1).

Let [a, b] be the projection of α(I) to the x-axis. Then, since α is convex,
every vertical line which passes through an interior point of (a, b) intersects
α(I) at precisely two points. Let f(x) be the y-coordinate of the higher
point, and g(x) be the y-coordinate of the other points. Then

Area[α] =

∫ b

a

f(x)− g(x) dx.

Further note that if α is C1 then f and g are C1 as well, thus

Length[α] = f(a)−g(a)+

∫ b

a

√
1 + f ′(x)2 dx+

∫ b

a

√
1 + g′(x)2 dx+f(b)−g(b).
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Now we are going to define a new curve α which is bounded above by the
graph of the function f : [a, b] → R given by

f(x) :=
f(x)− g(x)

2
,

is bounded below by the graph of −f , and is bouned on the left and right
by vertical segments, which may consist only of a single point. One immde-
diately checks that

Area[α] = Area[α].

Further, note that since by assumption α is not symmetric with respect to
the x-axis, f is strictly positive on (a, b). This may be used to show that

Length[α] < Length[α].

Exercise 10. Verify the last inequlaity above (Hint : It is enough to check

that
∫ b

a

√
1 + f

′
(x)2dx is strictly smaller that either of the integrals in the

above formula for the length of α).
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