Lecture Notes 6

1.13 The Frenet-Serret Frame and Torsion

Recall that if $\alpha: I \rightarrow \mathbf{R}^{n}$ is a unit speed curve, then the unit tangent vector is defined as

$$
T(t):=\alpha^{\prime}(t)
$$

Further, if $\kappa(t)=\left\|T^{\prime}(t)\right\| \neq 0$, we may define the principal normal as

$$
N(t):=\frac{T^{\prime}(t)}{\kappa(t)}
$$

As we saw earlier, in $\mathbf{R}^{2},\{T, N\}$ form a moving frame whose derivatives may be expressed in terms of $\{T, N\}$ itself. In \mathbf{R}^{3}, however, we need a third vector to form a frame. This is achieved by defining the binormal as

$$
B(t):=T(t) \times N(t)
$$

Then similar to the computations we did in finding the derivatives of $\{T, N\}$, it is easily shown that

$$
\left(\begin{array}{c}
T(t) \\
N(t) \\
B(t)
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
0 & \kappa(t) & 0 \\
-\kappa(t) & 0 & \tau(t) \\
0 & -\tau(t) & 0
\end{array}\right)=\left(\begin{array}{c}
T(t) \\
N(t) \\
B(t)
\end{array}\right)
$$

where τ is the torsion which is defined as

$$
\tau(t):=-\left\langle B^{\prime}, N\right\rangle
$$

Note that torsion is well defined only when $\kappa \neq 0$, so that N is defined. Torsion is a measure of how much a space curve deviates from lying in a plane:

[^0]Exercise 1. Show that if the torsion of a curve $\alpha: I \rightarrow \mathbf{R}^{3}$ is zero everywhere then it lies in a plane. (Hint: We need to check that there exist a point p and a (fixed) vector v in \mathbf{R}^{3} such that $\langle\alpha(t)-p, v\rangle=0$. Let $v=B$, and p be any point of the curve.)

Exercise 2. Computer the curvature and torsion of the circular helix

$$
(r \cos t, r \sin t, h t)
$$

where r and h are constants. How does changing the values of r and h effect the curvature and torsion.

1.14 Curves of Constant Curvature and Torsion

The above exercise shows that the curvature and torsion of a circular helix are constant. The converse is also true

Theorem 3. The only curve $\alpha: I \rightarrow \mathbf{R}^{3}$ whose curvature and torsion are nonzero constants is the circular helix.

The rest of this section develops a number of exercises which leads to the proof of the above theorem

Exercise 4. Show that $\alpha: I \rightarrow \mathbf{R}^{3}$ is a circular helix (up to rigid motion) provided that there exists a vector v in \mathbf{R}^{3} such that

$$
\langle T, v\rangle=\text { const }
$$

and the projection of α into a plane orthogonal to v is a circle.
So first we need to show that when κ and τ are constants, v of the above exercise can be found. We do this with the aid of the Frenet-Serret frame. Since $\{T, N, B\}$ is an orthonormal frame, we may arite

$$
v=a(t) T(t)+b(t) N(t)+c(t) B(t)
$$

Next we need to find a, b and c subject to the condtions that v is a constant vector, i.e., $v^{\prime}=0$, and that $\langle T, v\rangle=$ const. The latter implies that

$$
a=\text { const }
$$

because $\langle T, v\rangle=a$. In particular, we may set $a=1$.

Exercise 5. By setting $v^{\prime}=0$ show that

$$
v=T+\frac{\kappa}{\tau} B
$$

and check that v is the desired vector, i.e. $\langle T, v\rangle=$ const and $v^{\prime}=0$.
So to complete the proof of the theorem, only the following remains:
Exercise 6. Show that the projection of α into a plane orthogonal to v, i.e.,

$$
\bar{\alpha}(t):=\alpha(t)-\langle\alpha(t), v\rangle \frac{v}{\|v\|^{2}}
$$

is a circle. (Hint: Compute the curvature of $\bar{\alpha}$.)

1.15 Intrinsic Characterization of Spherical Curves

In this section we derive a characterization in terms of curvature and torsion for unit speed curves which lie on a shphere. Suppose $\alpha: I \rightarrow \mathbf{R}^{3}$ lies on a sphere of radius r. Then there exists a point p in \mathbf{R}^{3} (the center of the sphere) such that

$$
\|\alpha(t)-p\|=r
$$

Thus differentiation yields

$$
\langle T(t), \alpha(t)-p\rangle=0
$$

Differentiating again we obtain:

$$
\left\langle T^{\prime}(t), \alpha(t)-p\right\rangle+1=0
$$

The above expression shows that $\kappa(t) \neq 0$. Consequently N is well defined, and we may rewrite the above expression as

$$
\kappa(t)\langle N(t), \alpha(t)-p\rangle+1=0 .
$$

Differentiating for the third time yields

$$
\kappa^{\prime}(t)\langle N(t), \alpha(t)-p\rangle+\kappa(t)\langle-\kappa(t) T(t)+\tau(t) B(t), \alpha(t)-p\rangle=0,
$$

which using the previous expressions above we may rewrite as

$$
-\frac{\kappa^{\prime}(t)}{\kappa(t)}+\kappa(t) \tau(t)\langle B(t), \alpha(t)-p\rangle=0
$$

Next note that, since $\{T, N, B\}$ is orthonormal,

$$
\begin{aligned}
r^{2} & =\|\alpha(t)-p\|^{2} \\
& =\langle\alpha(t)-p, T(t)\rangle^{2}+\langle\alpha(t)-p, N(t)\rangle^{2}+\langle\alpha(t)-p, B(t)\rangle^{2} \\
& =0+\frac{1}{\kappa^{2}(t)}+\langle\alpha(t)-p, B(t)\rangle^{2} .
\end{aligned}
$$

Thus, combining the previous two calculations, we obtain:

$$
-\frac{\kappa^{\prime}(t)}{\kappa(t)}+\kappa(t) \tau(t) \sqrt{r^{2}-\frac{1}{\kappa^{2}(t)}}=0
$$

Exercise 7. Check the converse, that is supposing that the curvature and torsion of some curve satisfies the above expression, verify whether the curve has to lie on a sphere of radius r.

To do the above exercise, we need to first find out where the center p of the sphere could lie. To this end we start by writing

$$
p=\alpha(t)+a(t) T(t)+b(t) N(t)+c(t) B(t)
$$

and try to find $a(t), b(t)$ and $c(t)$ so that $p^{\prime}=(0,0,0)$, and $\|\alpha(t)-p\|=r$. To make things easier, we may note that $\alpha(t)=0$ (why?). Then we just need to find $b(t)$ and $c(t)$ subject to the two constraints mentioned above. We need to verify whether this is possible, when κ and τ satisfy the above expression.

[^0]: ${ }^{1}$ Last revised: February 19, 2004

