Lecture Notes 9

2.2 Definition of Gaussian Curvature

Let $M \subset \mathbf{R}^{3}$ be a regular embedded surface, as we defined in the previous lecture, and let $p \in M$. By the tangent space of M at p, denoted by $T_{p} M$, we mean the set of all vectors v in \mathbf{R}^{3} such that for each vector v there exists a smooth curve $\gamma:(-\epsilon, \epsilon) \rightarrow M$ with $\gamma(0)=p$ and $\gamma^{\prime}(0)=v$.

Exercise 1. Let $H \subset \mathbf{R}^{3}$ be a plane. Show that, for all $p \in H, T_{p} H$ is the plane parallel to H which passes through the origin.

Exercise 2. Prove that, for all $p \in M, T_{p} M$ is a 2-dimensional vector subspace of \mathbf{R}^{3} (Hint: Let (U, X) be a proper regular patch centered at p, i.e., $X(0,0)=p$. Recall that $d X_{(0,0)}$ is a linear map and has rank 2. Thus it suffices to show that $\left.T_{p} M=d X_{(0,0)}\left(\mathbf{R}^{2}\right)\right)$.

Exercise 3. Prove that $D_{1} X(0,0)$ and $D_{2} X(0,0)$ form a basis for $T_{p} M$ (Hint: Show that $D_{1} X(0,0)=d X_{(0,0)}(1,0)$ and $\left.D_{2} X(0,0)=d X_{(0,0)}(0,1)\right)$.

By a local gauss map of M centered at p we mean a pair (V, n) where V is an open neighborhood of p in M and $n: V \rightarrow \mathbf{S}^{2}$ is a continuous mapping such that $n(p)$ is orthogonal to $T_{p} M$ for all $p \in M$. For a more explicit formulation, let (U, X) be a proper regular patch centered at p, and define $N: U \rightarrow \mathbf{S}^{2}$ by

$$
N\left(u_{1}, u_{2}\right):=\frac{D_{1} X\left(u_{1}, u_{2}\right) \times D_{2} X\left(u_{1}, u_{2}\right)}{\left\|D_{1} X\left(u_{1}, u_{2}\right) \times D_{2} X\left(u_{1}, u_{2}\right)\right\|} .
$$

Set $V:=X(U)$, and recall that, since (U, X) is proper, V is open in M. Now define $n: V \rightarrow \mathbf{S}^{2}$ by

$$
n(p):=N \circ X^{-1}(p) .
$$

[^0]Exercise 4. Check that (V, n) is indeed a local gauss map.
Exercise 5. Show that $n: \mathbf{S}^{2} \rightarrow \mathbf{S}^{2}$, given by $n(p):=p$ is a Gauss map (Hint: Define $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$ by $f(p):=\|p\|^{2}$ and compute its gradient. Note that \mathbf{S}^{2} is a level set of f. Thus the gradient of f at p must be orthogonal to \mathbf{S}^{2}).

Let M_{1} and M_{2} be regular embedded surfaces in \mathbf{R}^{3} and $f: M_{1} \rightarrow M_{2}$ be a smooth map (recall that this means that f may be extended to a smooth map in an open neighborhood of M_{1} in \mathbf{R}^{3}). Then for every $p \in M_{1}$, we define a mapping $d f_{p}: T_{p} M_{1} \rightarrow T_{f(p)} M_{2}$, known as the differential of M_{1} at p as follows. Let $v \in T_{p} M_{1}$ and let $\gamma_{v}:(-\epsilon, \epsilon) \rightarrow M_{1}$ be a curve such that $\gamma(0)=p$ and $\gamma_{v}^{\prime}(0)=v$. Then we set

$$
d f_{p}(v):=\left(f \circ \gamma_{v}\right)^{\prime}(0)
$$

Exercise 6. Prove that $d f_{p}$ is well defined (i.e. is independent of the smooth extension) and linear (Hint: Let \tilde{f} be a smooth extension of f to an open neighborhood of M. Then $d \tilde{f}_{p}$ is well defined. Show that for all $v \in T_{p} M$, $d f_{p}(v)=d \tilde{f}_{p}(v)$.

Let (V, n) be a local gauss map centered at $p \in M$. Then the shape operator of M at p with respect to n is defined as

$$
S_{p}:=-d n_{p} .
$$

Note that the shape operator is determined up to two choices depending on the local gauss map, i.e., replacing n by $-n$ switches the sign of the shape operator.

Exercise 7. Show that S_{p} may be viewed as a linear operator on $T_{p} M$ (Hint: By definition, S_{p} is a linear map from $T_{p} M$ to $T_{n(p)} \mathbf{S}^{2}$. Thus it suffices to show that $T_{p} M$ and $T_{n(p)} \mathbf{S}^{2}$ coincide).

Exercise 8. A subset V of M is said to be connected if any pairs of points p and q in V may be joined by a curve in V. Suppose that V is a connected open subset of M, and, furthermore, suppose that the shape operator vanishes throughout V, i.e., for every $p \in M$ and $v \in T_{p} M, S_{p}(v)=0$. Show then that V must be flat, i.e., it is a part of a plane (Hint: It is enough to show that the gauss map is constant on V; or, equivalently, $n(p)=n(q)$ for all
pairs of points p and q in V. Since V is connected, there exists a curve $\gamma:[0,1] \rightarrow M$ with $\gamma(0)=p$ and $\gamma(1)=q$. Furthermore, since V is open, we may choose γ to be smooth as well. Define $f:[0,1] \rightarrow \mathbf{R}$ by $f(t):=n \circ \gamma(t)$, and differentiate. Then $f^{\prime}(t)=d n_{\gamma(t)}\left(\gamma^{\prime}(t)\right)=0$. Justify the last step and conclude that $n(p)=n(q)$.

Exercise 9. Compute the shape operator of a sphere of radius r (Hint: Define $\pi: \mathbf{R}^{3}-\{0\} \rightarrow \mathbf{S}^{2}$ by $\pi(x):=x /\|x\|$. Note that π is a smooth mapping and $\pi=n$ on \mathbf{S}^{2}. Thus, for any $\left.v \in T_{p} \mathbf{S}^{2}, d \pi_{p}(v)=d n_{p}(v)\right)$.

The Gaussian curvature of M at p is defined as the determinant of the shape operator:

$$
K(p):=\operatorname{det}\left(S_{p}\right) .
$$

Exercise 10. Show that $K(p)$ does not depend on the choice of the local gauss map, i.e, replacing n by $-n$ does not effect the value of $K(p)$.

Exercise 11. Compute the curvature of a sphere of radius r (Hint: Use exercise 9).

Next we derive an explicit formula for $K(p)$ in terms of local coordinates. Let (U, X) be a proper regular patch centered at p. For $1 \leqslant i, j \leqslant 2$, define the functions $g_{i j}: U \rightarrow \mathbf{R}$ by

$$
g_{i j}\left(u_{1}, u_{2}\right):=\left\langle D_{i} X\left(u_{1}, u_{2}\right), D_{j} X\left(u_{1}, u_{2}\right)\right\rangle .
$$

Note that $g_{12}=g_{21}$. Thus the above expression defines three functions. These are called the coefficients of the first fundamental form (a.k.a. the metric tensor) with respect to the given patch (U, X). In the classical notation, these functions are denoted by E, F, and $G\left(E:=g_{11}, F:=g_{12}\right.$, and $\left.G:=g_{22}\right)$. Next, define $l_{i j}: U \rightarrow \mathbf{R}$ by

$$
l_{i j}\left(u_{1}, u_{2}\right):=\left\langle D_{i j} X\left(u_{1}, u_{2}\right), N\left(u_{1}, u_{2}\right)\right\rangle .
$$

Thus $l_{i j}$ is a measure of the second derivatives of X in a normal direction. $l_{i j}$ are known as the coefficients of the second fundamental form of M with respect to the local patch (U, X) (the classical notation for these functions are $L:=l_{11}, M:=l_{12}$, and $N:=l_{22}$). We claim that

$$
K(p)=\frac{\operatorname{det}\left(l_{i j}(0,0)\right)}{\operatorname{det}\left(g_{i j}(0,0)\right)} .
$$

To see the above, recall that $e_{i}(p):=D_{i} X\left(X^{-1}(p)\right)$ form a basis for $T_{p} M$. Thus, since S_{p} is linear, $S_{p}\left(e_{i}\right)=\sum_{j=1}^{2} S_{i j} e_{j}$. This yields that $\left\langle S_{p}\left(e_{i}\right), e_{k}\right\rangle=$ $\sum_{j=1}^{2} S_{i j} g_{j k}$. It can be shown that that

$$
\left\langle S_{p}\left(e_{i}\right), e_{k}\right\rangle=l_{i k},
$$

see the exercise below. Then we have $\left[l_{i j}\right]=\left[S_{i j}\right]\left[g_{i j}\right]$, where the symbol $[\cdot]$ denotes the matrix with the given coefficients. Thus we can write $\left[S_{i j}\right]=$ $\left[g_{i j}\right]^{-1}\left[l_{i j}\right]$ which yields the desired result.

Exercise 12. Show that $\left\langle S_{p}\left(e_{i}(p)\right), e_{j}(p)\right\rangle=l_{i j}(0,0)$ (Hints: First note that $\left\langle n(p), e_{j}(p)\right\rangle=0$ for all $p \in V$. Let $\gamma:(-\epsilon, \epsilon) \rightarrow M$ be a curve with $\gamma(0)=p$ and $\gamma^{\prime}(0)=e_{i}(p)$. Define $f:(-\epsilon, \epsilon) \rightarrow M$ by $f(t):=\left\langle n(\gamma(t)), e_{j}(\gamma(t))\right\rangle$, and compute $\left.f^{\prime}(0).\right)$

Exercise 13. Compute the Gaussian curvature of a surface of revolution, i.e., the surface covered by the patch

$$
X(t, \theta)=(x(t) \cos \theta, x(t) \sin \theta, y(t))
$$

Next, letting

$$
(x(t), y(t))=(R+r \cos t, r \sin t)
$$

i.e., a circle of radius r centered at $(R, 0)$, compute the curvature of a torus of revolution. Sketch the torus and indicate the regions where the curvature is postive, negative, or zero.

Exercise 14. Let (U, X) be a Monge patch, i.e,

$$
X\left(u_{1}, u_{2}\right):=\left(u_{1}, u_{2}, f\left(u_{1}, u_{2}\right)\right)
$$

centered at $p \in M$. Show that

$$
K(p):=\frac{\operatorname{det}(\operatorname{Hess} f(0,0))}{\left(1+\|\operatorname{grad} f(0,0)\|^{2}\right)^{2}},
$$

where Hess $f:=\left[D_{i j} f\right]$ is the Hessian matrix of f and grad f is its gradient.
Exercise 15. Compute the curvature of the graph of $z=a x^{2}+b y^{2}$, where a and b are constants. Note how the signs of a and b effect the curvature and shape of the surface. Also note the values of a and b for which the curvature is zero.

[^0]: ${ }^{1}$ Last revised: March 4, 2004

