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2.2 Definition of Gaussian Curvature

Let M ⊂ R3 be a regular embedded surface, as we defined in the previous
lecture, and let p ∈ M . By the tangent space of M at p, denoted by TpM ,
we mean the set of all vectors v in R3 such that for each vector v there exists
a smooth curve γ : (−ε, ε) → M with γ(0) = p and γ′(0) = v.

Exercise 1. Let H ⊂ R3 be a plane. Show that, for all p ∈ H , TpH is the
plane parallel to H which passes through the origin.

Exercise 2. Prove that, for all p ∈ M , TpM is a 2-dimensional vector sub-
space of R3 (Hint: Let (U, X) be a proper regular patch centered at p, i.e.,
X(0, 0) = p. Recall that dX(0,0) is a linear map and has rank 2. Thus it
suffices to show that TpM = dX(0,0)(R

2)).

Exercise 3. Prove that D1X(0, 0) and D2X(0, 0) form a basis for TpM (Hint:
Show that D1X(0, 0) = dX(0,0)(1, 0) and D2X(0, 0) = dX(0,0)(0, 1)).

By a local gauss map of M centered at p we mean a pair (V, n) where V
is an open neighborhood of p in M and n : V → S2 is a continuous mapping
such that n(p) is orthogonal to TpM for all p ∈ M . For a more explicit
formulation, let (U, X) be a proper regular patch centered at p, and define
N : U → S2 by

N(u1, u2) :=
D1X(u1, u2)×D2X(u1, u2)

‖D1X(u1, u2)×D2X(u1, u2)‖ .

Set V := X(U), and recall that, since (U, X) is proper, V is open in M . Now
define n : V → S2 by

n(p) := N ◦X−1(p).
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Exercise 4. Check that (V, n) is indeed a local gauss map.

Exercise 5. Show that n : S2 → S2, given by n(p) := p is a Gauss map
(Hint: Define f : R3 → R by f(p) := ‖p‖2 and compute its gradient. Note
that S2 is a level set of f . Thus the gradient of f at p must be orthogonal
to S2).

Let M1 and M2 be regular embedded surfaces in R3 and f : M1 → M2 be
a smooth map (recall that this means that f may be extended to a smooth
map in an open neighborhood of M1 in R3). Then for every p ∈ M1, we
define a mapping dfp : TpM1 → Tf(p)M2, known as the differential of M1 at
p as follows. Let v ∈ TpM1 and let γv : (−ε, ε) → M1 be a curve such that
γ(0) = p and γ′

v(0) = v. Then we set

dfp(v) := (f ◦ γv)
′(0).

Exercise 6. Prove that dfp is well defined (i.e. is independent of the smooth
extension) and linear (Hint: Let f̃ be a smooth extension of f to an open
neighborhood of M . Then df̃p is well defined. Show that for all v ∈ TpM ,
dfp(v) = df̃p(v).

Let (V, n) be a local gauss map centered at p ∈ M . Then the shape
operator of M at p with respect to n is defined as

Sp := −dnp.

Note that the shape operator is determined up to two choices depending on
the local gauss map, i.e., replacing n by −n switches the sign of the shape
operator.

Exercise 7. Show that Sp may be viewed as a linear operator on TpM (Hint:
By definition, Sp is a linear map from TpM to Tn(p)S

2. Thus it suffices to
show that TpM and Tn(p)S

2 coincide).

Exercise 8. A subset V of M is said to be connected if any pairs of points p
and q in V may be joined by a curve in V . Suppose that V is a connected open
subset of M , and, furthermore, suppose that the shape operator vanishes
throughout V , i.e., for every p ∈ M and v ∈ TpM , Sp(v) = 0. Show then
that V must be flat, i.e., it is a part of a plane (Hint: It is enough to show
that the gauss map is constant on V ; or, equivalently, n(p) = n(q) for all
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pairs of points p and q in V . Since V is connected, there exists a curve
γ : [0, 1] → M with γ(0) = p and γ(1) = q. Furthermore, since V is open, we
may choose γ to be smooth as well. Define f : [0, 1] → R by f(t) := n ◦ γ(t),
and differentiate. Then f ′(t) = dnγ(t)(γ

′(t)) = 0. Justify the last step and
conclude that n(p) = n(q).

Exercise 9. Compute the shape operator of a sphere of radius r (Hint:
Define π : R3 − {0} → S2 by π(x) := x/‖x‖. Note that π is a smooth
mapping and π = n on S2 . Thus, for any v ∈ TpS

2, dπp(v) = dnp(v)).

The Gaussian curvature of M at p is defined as the determinant of the
shape operator:

K(p) := det(Sp).

Exercise 10. Show that K(p) does not depend on the choice of the local
gauss map, i.e, replacing n by −n does not effect the value of K(p).

Exercise 11. Compute the curvature of a sphere of radius r (Hint: Use
exercise 9).

Next we derive an explicit formula for K(p) in terms of local coordinates.
Let (U, X) be a proper regular patch centered at p. For 1 6 i, j 6 2, define
the functions gij : U → R by

gij(u1, u2) :=
〈
DiX(u1, u2), DjX(u1, u2)

〉
.

Note that g12 = g21. Thus the above expression defines three functions. These
are called the coefficients of the first fundamental form (a.k.a. the metric
tensor) with respect to the given patch (U, X). In the classical notation,
these functions are denoted by E, F , and G (E := g11, F := g12, and
G := g22). Next, define lij : U → R by

lij(u1, u2) :=
〈
DijX(u1, u2), N(u1, u2)

〉
.

Thus lij is a measure of the second derivatives of X in a normal direction.
lij are known as the coefficients of the second fundamental form of M with
respect to the local patch (U, X) (the classical notation for these functions
are L := l11, M := l12, and N := l22). We claim that

K(p) =
det(lij(0, 0))

det(gij(0, 0))
.
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To see the above, recall that ei(p) := DiX(X−1(p)) form a basis for TpM .
Thus, since Sp is linear, Sp(ei) =

∑2
j=1 Sijej . This yields that 〈Sp(ei), ek〉 =

∑2
j=1 Sijgjk. It can be shown that that

〈Sp(ei), ek〉 = lik,

see the exercise below. Then we have [lij] = [Sij][gij ], where the symbol [·]
denotes the matrix with the given coefficients. Thus we can write [Sij] =
[gij]

−1[lij] which yields the desired result.

Exercise 12. Show that 〈Sp(ei(p)), ej(p)〉 = lij(0, 0) (Hints: First note that
〈n(p), ej(p)〉 = 0 for all p ∈ V . Let γ : (−ε, ε) → M be a curve with γ(0) = p
and γ′(0) = ei(p). Define f : (−ε, ε) → M by f(t) := 〈n(γ(t)), ej(γ(t))〉, and
compute f ′(0).)

Exercise 13. Compute the Gaussian curvature of a surface of revolution,
i.e., the surface covered by the patch

X(t, θ) =
(
x(t) cos θ, x(t) sin θ, y(t)

)
.

Next, letting (
x(t), y(t)

)
= (R + r cos t, r sin t),

i.e., a circle of radius r centered at (R, 0), compute the curvature of a torus
of revolution. Sketch the torus and indicate the regions where the curvature
is postive, negative, or zero.

Exercise 14. Let (U, X) be a Monge patch, i.e,

X(u1, u2) :=
(
u1, u2, f(u1, u2)

)
,

centered at p ∈ M . Show that

K(p) :=
det

(
Hess f(0, 0)

)

(
1 + ‖ grad f(0, 0)‖2

)2 ,

where Hess f := [Dijf ] is the Hessian matrix of f and grad f is its gradient.

Exercise 15. Compute the curvature of the graph of z = ax2 + by2, where a
and b are constants. Note how the signs of a and b effect the curvature and
shape of the surface. Also note the values of a and b for which the curvature
is zero.
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