FINAL EXAM

Time: 180min

Choose 10 problems:

- **1.** Evaluate $\int \int_D \sin(x^2 + y^2) dx dy$ where D is the disk $x^2 + y^2 \le \pi$.
- **2.** Find the center of mass of the icecream cone given by $x^2 + y^2 + z^2 \le 1$ and $z \ge \sqrt{x^2 + y^2}$ if the density is $\delta(x, y, z) = \sqrt{x^2 + y^2 + z^2}$.
- **3.** Find the average value of the y coordinate of the semicircle $x^2 + y^2 = 1$, y > 0.
- 4. Use greens theorem to compute the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 5. Show that the gravitational vector filed $\mathbf{F} := -\frac{\mathbf{r}}{\|\mathbf{r}\|^3}$. What is the total work done in moving a particle from a point \mathbf{r}_0 to a point \mathbf{r}_1 .
- 6. Use Gauss's theorem to show that the volume of the cone with base D and height h is given by 1/3Area(D)h.
- 7. Show that the area of a surface given by rotating the graph of a function f(x), $a \le x \le b$, around x-axis is given by $2\pi \int_a^b f(x) \sqrt{1 + f'(x)^2} dx$.
- 8. Use the previous problem to show that the area of a sphere cut by a pair of parallel planes depends only on the distance between the two planes.
- 9. Prove that the midpoints of a quadrilateral determine a parallelogram.
- 10. Suppose that a particle of mass m moves on a path $\mathbf{c}(t)$ in the gravitational vectorfield \mathbf{F} according to Newton's second law: $\mathbf{F}(c(t)) = m\mathbf{c}''(t)$. Show that (a) the angular momentum $h(t) := \mathbf{c}(t) \times \mathbf{c}'(t)$ stays constant in time, and (b) $c(t) \cdot h(t) = 0$. What can we conclude from (a) and (b) with regard to the path of the particle?
- **11.** Find the distance between the lines $\ell_1(t) = t(8, -1, 0) + (-1, 3, 5)$ and $\ell_2(t) = t(0, 3, 1) + (0, 3, 4)$.
- **12.** Find $\int \int_{S} \nabla \times \mathbf{F} d\mathbf{S}$ where S is the hemisphere given by $x^{2} + y^{2} + z^{2} = 1$ and $\mathbf{F}(x, y, z) := (x + z, y + z, z^{2})$ (*Hint*: use Stokes theorem).

Latex \mathcal{MG}