FINAL EXAM

Time: 180min

Choose 10 problems:

1. Evaluate $\iint_{D} \sin \left(x^{2}+y^{2}\right) d x d y$ where D is the disk $x^{2}+y^{2} \leq \pi$.
2. Find the center of mass of the icecream cone given by $x^{2}+y^{2}+z^{2} \leq 1$ and $z \geq \sqrt{x^{2}+y^{2}}$ if the density is $\delta(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$.
3. Find the average value of the y coordinate of the semicircle $x^{2}+y^{2}=1$, $y>0$.
4. Use greens theorem to compute the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
5. Show that the gravitational vector filed $\mathbf{F}:=-\frac{\mathbf{r}}{\|\mathbf{r}\|^{3}}$. What is the total work done in moving a particle from a point $\mathbf{r}_{\mathbf{0}}$ to a point $\mathbf{r}_{\mathbf{1}}$.
6. Use Gauss's theorem to show that the volume of the cone with base D and height h is given by $1 / 3$ Area $(D) h$.
7. Show that the area of a surface given by rotating the graph of a function $f(x), a \leq x \leq b$, around x-axis is given by $2 \pi \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x$.
8. Use the previous problem to show that the area of a sphere cut by a pair of parallel planes depends only on the distance between the two planes.
9. Prove that the midpoints of a quadrilateral determine a parallelogram.
10. Suppose that a particle of mass m moves on a path $\mathbf{c}(t)$ in the gravitational vectorfield \mathbf{F} according to Newton's second law: $\mathbf{F}(c(t))=m \mathbf{c}^{\prime \prime}(t)$. Show that (a) the angular momentum $h(t):=\mathbf{c}(t) \times \mathbf{c}^{\prime}(t)$ stays constant in time, and (b) $c(t) \cdot h(t)=0$. What can we conclude from (a) and (b) with regard to the path of the particle?
11. Find the distance between the lines $\ell_{1}(t)=t(8,-1,0)+(-1,3,5)$ and $\ell_{2}(t)=t(0,3,1)+(0,3,4)$.
12. Find $\iint_{S} \nabla \times \mathbf{F} \dot{d} \mathbf{S}$ where S is the hemisphere given by $x^{2}+y^{2}+z^{2}=1$ and $\mathbf{F}(x, y, z):=\left(x+z, y+z, z^{2}\right)$ (Hint: use Stokes theorem).
