Midterm 2

Time: 50min

1. Is $\mathbf{F}(x, y, z)=(y z, x z, x y)$ a gradient vector field?
2. Show that if a particle moves with constant speed, then its velocity and acceleration vectors are orthogonal.
3. Compute the length of $\mathbf{c}(t):=(\cos t, \sin t, t)$ from $t=0$ to $t=2 \pi$.
4. Show that $\|u \times v\|^{2}=\|u\|^{2}\|v\|^{2}-(u \cdot v)^{2}$.
5. What is the distance between the line $\ell=(2,3,1)+t(1,1,1)$ and the point $(2,2,0)$.
6. Let \mathbf{r} be the vector field given by $\mathbf{r}(x, y, z)=(x, y, z)$ and $r:=\|\mathbf{r}\|$. Compute the divergence of the gravitational vectorfield $\mathbf{F}:=\frac{\mathbf{r}}{r^{3}}$.
7. Suppose that a particle of mass m moves on a path $\mathbf{c}(t)$ in the gravitational vectorfield \mathbf{F} according to Newton's second law: $\mathbf{F}(c(t))=m \mathbf{c}^{\prime \prime}(t)$. Show that (a) the angular momentum $h(t):=\mathbf{c}(t) \times \mathbf{c}^{\prime}(t)$ stays constant in time, and (b) $c(t) \cdot h(t)=0$. What can we conclude from (a) and (b) with regard to the path of the particle?

Each problem is worth 15 points.

